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Quantifying non-Gaussianity of quantum-state correlation
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We consider how to quantify non-Gaussianity for the correlation of a bipartite quantum state by using
various measures such as relative entropy and geometric distances. We first show that an intuitive approach,
i.e., subtracting the correlation of a reference Gaussian state from that of a target non-Gaussian state, fails to yield
a non-negative measure with monotonicity under local Gaussian channels. Our finding clearly manifests that
quantum-state correlations generally have no Gaussian extremality. We therefore propose a different approach by
introducing relevantly averaged states to address correlation. This enables us to define a non-Gaussianity measure
based on, e.g., the trace-distance and the fidelity, fulfilling all requirements as a measure of non-Gaussian
correlation. For the case of the fidelity-based measure, we also present readily computable lower bounds of
non-Gaussian correlation.
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I. INTRODUCTION

Non-Gaussianity, i.e., deviation from Gaussianity, is a
notion of keen interest in many branches of science. In general,
a nonlinear process is capable of generating a non-Gaussian
distribution, e.g., primordial non-Gaussianity in an inflationary
model [1], fluctuations in a nuclear fusion process [2], and
extremal waves in a nonlinear optical medium [3]. Particularly
for continuous variable (CV) quantum informatics [4], the
competition between Gaussianity and non-Gaussianity has
been addressed as a critical issue from fundamental and
practical aspects as no-go theorems in a Gaussian regime
necessitate non-Gaussian resources. For instance, there is
no way to distill Gaussian entanglement by using Gaussian
operations [5–7], enhance Gaussian-state squeezing by pas-
sive Gaussian operations [8], and manifest Gaussian-state
nonlocality with Gaussian measurements [9,10]. Furthermore,
non-Gaussian resources provide advantages over Gaussian
counterparts. Non-Gaussian entanglement can be more robust
against Gaussian noises than Gaussian entanglement [11–17].
Non-Gaussian states can be distilled by Gaussian operations
to increase squeezing [18–20] and entanglement [21,22]. Non-
Gaussian operations can enhance the nonclassical properties,
e.g., squeezing [23,24], entanglement [25–33], nonlocality
[9,10,34], and multipartite correlation [35,36], as well as
the performance of CV quantum informatic tasks, e.g.,
quantum teleportation [37–40], quantum dense coding [41],
and quantum key distribution [42].

To rigorously understand the role of non-Gaussianity
in quantum science, it is desirable to characterize the
non-Gaussianity in a quantitative manner. Non-Gaussianity
measures in the quantum regime have been proposed by
using geometric [43–46] and entropic [44,47] distances. Each
measure has characterized the non-Gaussianity of a quantum
state reliably employing the distance between a target state and
the reference state, i.e., the Gaussian state that has the same first
and second moments as the target state. Here we intend to fur-
ther pursue the study on non-Gaussianity, particularly for cor-
relation, because the non-Gaussianity measures proposed so
far are inadequate to characterize the correlation aspect; those

measures give a nonzero quantity even for the non-Gaussianity
of a product state that clearly has no correlation [48,49].

We explore how to quantify the non-Gaussianity of corre-
lation by using various measures, e.g., the relative entropy and
geometric distances. We first address a set of required proper-
ties for a legitimate non-Gaussianity measure of correlation.
We then try to define a measure of non-Gaussian correlation
as the difference in the quantum correlation between the target
state and the reference Gaussian state, which may seem to be
intuitive and reasonable satisfying some relevant properties. In
particular, Gaussian extremality has been found in a number
of quantum informatic measures. Under the assumption that
the covariance matrix of a state is fixed, a Gaussian state
maximizes the von Neumann entropy [50] as well as the
quantum information transfer under a Gaussian channel
[51]. Entanglement measures satisfying superadditivity are
minimized by a Gaussian state under the covariance matrix
constraint [52]. If a quantum mutual information has Gaussian
extremality as supposed, it instantly yields a non-Gaussianity
measure with a desirable property of non-negativity, which
also means that the Gaussian approximation of a given non-
Gaussian state does not overestimate correlation. However,
contrary to a popular belief in the community [53], we find
that the non-Gaussianity measures obtained by subtracting
the correlation of the reference Gaussian state from that of
the target state is neither non-negative nor monotonic under
local Gaussian channels. Our observations indicate that the
quantum-state correlations generally do not possess Gaussian
extremality. As a remark, our results are unrelated to quantum
mutual information in channel theory because the interest of
the latter is the information transfer attainable by a given input
state through a channel, not the quantum correlation of a given
bipartite quantum state (see Fig. 1).

We therefore propose a different approach by defining
some averaged states relevant to address correlation, which
leads us to a legitimate non-Gaussian correlation measure
based on, e.g., the trace-distance and the quantum fidelity.
We show that these measures satisfy all required properties,
particularly being non-negative and nonincreasing under local
Gaussian channels. For the case of fidelity-based measure, it
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FIG. 1. Illustration for distinguishing different notions of quan-
tum mutual information. (a) In quantum channel theory, quantum
mutual information is the measure of information transfer through a
channel, e.g., a loss channel (the case of ρenv = |vac〉). It quantifies
how much information on the input state ρin can be retrieved from the
output state ρout. More precisely, it is the amount of shareable quantum
information between the sender who encodes the information in ρin

at time t and the receiver who decodes the information in ρ ′
out at time

t + �t . This is quantified as S(ρin) + S(ρ ′
out) − S(ρ ′

env) [51]. (b) On
the other hand, in this paper, we are interested in the correlation of
a bipartite quantum state itself. For example, when two uncorrelated
states ρ1 and ρ2 are mixed at a beam splitter, the output state ρ ′

12 has the
quantum mutual information given by S(ρ ′

1) + S(ρ ′
2) − S(ρ ′

12), with
the identity S(ρ ′

12) = S(ρ1) + S(ρ2). Thus, the Gaussian extremality
found in panel (a) has no direct relation to the results in our work.

is typically hard to obtain an exact value because it requires
a nontrivial eigen-decomposition in an infinite-dimensional
Hilbert space. Thus, we further provide two reliable and
computable lower bounds for the fidelity-based measure. We
illustrate the validity of our measures by showing monotonic
behavior of the measures under a loss channel.

II. QUANTUM MUTUAL INFORMATION

The mutual information of a bipartite quantum state is
conventionally addressed by

I1[ρAB] = S[ρA] + S[ρB] − S[ρAB]

= S[ρAB ||ρA ⊗ ρB], (1)

where S[ρ] = −tr[ρ ln ρ] is the von Neumann entropy of
a state ρ and S[ρ||σ ] = trρ ln ρ − trρ ln σ is the quantum
relative entropy of ρ with respect to σ . Note that both of
the expressions are identical at the level of Shannon entropy.
More generally, we may define two types of quantum Rényi
mutual information in a similar fashion as

Iα[ρAB] = Sα[ρA] + Sα[ρB] − Sα[ρAB], (2)

I ′
α[ρAB] = Sα[ρAB ||ρA ⊗ ρB], (3)

where the quantum Rényi entropy of a state ρ is given by
Sα[ρ] = 1

1−α
ln tr[ρα] and the quantum Rényi relative entropy

[54,55] of ρ with respect to σ is given by

Sα[ρ||σ ] = 1

α − 1
ln
{
tr
[(

σ
1−α
2α ρσ

1−α
2α

)α]}
. (4)

The first type of quantum Rényi mutual information in
Eq. (2) is intuitive with an analogy to the intersection of two
sets, i.e., A ∩ B = A + B − A ∪ B, and has been employed
for measuring information in the Gaussian regime [56] as

well as for investigating quantum critical systems [57,58].
However, it can be negative for α �= 1, which is undesirable
for quantifying the amount of correlation. We thus adopt
the second type of quantum Rényi mutual information in
Eq. (3) since the relative entropy is always non-negative
for every α. It is worth noting that both of the definitions
in Eqs. (2) and (3) recover Eq. (1) as a limiting case, i.e.,
limα→1 Iα = limα→1 I ′

α = I1.
In addition, we may define geometrical measures of

correlation, namely,

IHS[ρAB] =
√

tr(ρAB − ρA ⊗ ρB)2, (5)

ITR[ρAB] = 1
2 tr|ρAB − ρA ⊗ ρB |, (6)

where IHS and ITR employ the Hilbert–Schmidt distance and
the trace distance, respectively, to quantify a distance between
two states.

The quantum Hilbert–Schmidt mutual information in
Eq. (5) can be readily obtained for CV states because
it allows a phase-space description: i.e., tr(ρ − σ )2 =
πn
∫

d2nα{Wρ(α) − Wσ (α)}2 for n-mode states ρ and σ ,
where Wρ(α) is the Wigner function for the state ρ [59].
As a note, we can also define a fidelity-based correlation,
i.e., the quantum Bures mutual information I2

B[ρAB] = 2(1 −√
F [ρAB,ρA ⊗ ρB]), where F [ρ,σ ] = (tr

√√
ρσ

√
ρ)2 is the

quantum fidelity between ρ and σ [60,61]. It is, however,
a special case of the second type of quantum Rényi mutual
information for α = 1

2 because both of the measures are
directly related to the fidelity, i.e., S1/2[ρ||σ ] = − ln F [ρ,σ ].

III. BREAKDOWN OF GAUSSIAN EXTREMALITY
IN QUANTUM-STATE CORRELATION

A non-Gaussianity measure for quantum mutual informa-
tion must satisfy two obvious properties: (P1) The measure is
zero if a target state ρAB has no correlation, i.e., ρAB = ρA ⊗
ρB , or is Gaussian, i.e., ρAB = σAB where we denote as σAB the
reference Gaussian state. (P2) The measure is invariant under
local unitary Gaussian operations, which have no effect on
correlation and non-Gaussianity of local and global states. In
addition, it is desirable to satisfy two more properties: (P3) The
measure is non-negative. (P4) The measure is nonincreasing
under local Gaussian channels because they increase neither
correlation nor non-Gaussianity of local and global states.

To quantify the non-Gaussianity of correlation, we may
attempt a method of subtracting the correlation of the reference
Gaussian state from that of a target state under a given measure,
which immediately fulfills the properties (P1) and (P2). If
a target state is a product state (I[ρ] = 0) or Gaussian, the
reference state is also a product state (I[σ ] = 0) or the target
state itself (ρ = σ ), respectively. The measures thus satisfy
(P1). A Gaussian unitary operation changes the first and second
moments of a state according to a linear transformation for
position and momentum operators, which is independent of
the state [59]. If we apply a local Gaussian unitary operation
on a target state, its reference state is also affected by the same
operation. In addition, the mutual information [cf. Eqs. (2),
(3), (5), and (6)] are invariant under local unitary operations.
The measures thus meet (P2).
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FIG. 2. (a), (b) Contour plots of �Iα = Iα[ρAB ] − Iα[σAB ] and
�I ′

α = I ′
α(ρAB ) − I ′

α(σAB ) for the entangled coherent state |�〉
against the coherent amplitude γ and Rényi parameter α. Negative
regions indicate the breakdown of Gaussian extremality. (c), (d)
Contour plots of �Iα , �I ′

α for the entangled coherent state under
a symmetric loss channel Lη[|�〉〈�|] with γ = 1 as functions of
the effective transmittance η and the Rényi parameter α. (e), (f)
Contour plots for the loss dynamics of �IHS = IHS(ρAB ) − IHS(σAB )
and �ITR = ITR(ρAB ) − ITR(σAB ) for the entangled coherent state
against the amplitude γ and the effective transmittance η.

Then, is it possible for such non-Gaussianity measures to
meet (P3) and (P4) as well? We give a negative answer by
finding counterexamples. In Figs. 2(a) and 2(b), we plot the
non-Gaussianity of quantum Rényi mutual information for an
entangled coherent state |�〉 = 1√

N (|γ 〉A|γ 〉B − | − γ 〉A| −
γ 〉B) where N = 2 − 2e−4|γ |2 and |γ 〉 is the coherent state
with amplitude γ . The quantum mutual information of the en-
tangled coherent state is independent of γ since it is essentially
a Bell state, i.e., |�〉 = 1√

2
(|+〉A|−〉B + |−〉A|+〉B) where

|±〉 = 1√
N±

(|γ 〉 ± | − γ 〉) with N± = 2 ± 2e−2|γ |2 . Further-
more, the quantum Rényi mutual information of a Bell state
is 2 ln 2 (2 bits) independent of α (see Appendixes A and B
for the quantum mutual information of the entangled coherent

FIG. 3. Loss dynamics of �IHS = IHS(ρAB ) − IHS(σAB ) for a
photon number entangled state |ψ〉 =∑2

k=0 ck|k〉A|k〉B with c0 =
0.986, c1 = 0.162, and c2 = (1 − c2

0 − c2
1)1/2 as a function of the

effective transmittance η.

state). However, the quantum Rényi mutual information of its
reference Gaussian state increases with γ and can even exceed
that of the entangled coherent state (refer to Appendixes C
and D for the quantum mutual information of the reference
Gaussian state).

In Figs. 2(c)–2(f), we also examine the dynamics of the
non-Gaussianity measures under a symmetric loss channel Lη.
A loss channel can be modeled by the mixing of an input state
and vacuum at a beam splitter with transmittance η. Here we
focus on the case that each mode passes through the same loss
channel. The contour plots manifest that the three measures
�Iα , �I ′

α , and �ITR are neither non-negative nor monotonic
under local Gaussian channels.

In Fig. 2(e), on the other hand, the non-Gaussianity of
the Hilbert–Schmidt mutual information �IHS seems well
behaved, unlike other measures, with monotonicity under
local Gaussian channels. However, we can also observe the
breakdown of Gaussian extremality of IHS by using a different
state, i.e., a photon number entangled state in the form∑

k ck|k〉A|k〉B [62]. In Fig. 3, we plot the loss dynamics of
�IHS for

∑2
k=0 ck|k〉A|k〉B with c0 = 0.986, c1 = 0.162, and

c2 = (1 − c2
0 − c2

1)1/2 � 0.039. It clearly shows that �IHS also
fails to meet (P3) and (P4).

IV. NON-GAUSSIANITY MEASURE FOR QUANTUM
MUTUAL INFORMATION

In this section, we propose a method to quantify non-
Gaussianity of correlation satisfying all necessary properties
introduced in Sec. III. Inspired from Eqs. (5) and (6), it makes
sense to look into the difference between a global state and the
product of local states, i.e., ρAB − ρA ⊗ ρB , in order to obtain
information on correlation. It may be plausible to define the
non-Gaussianity of correlation as the distance between the
correlation parts of the target state and its reference state, i.e.,
D[ρAB − ρA ⊗ ρB,σAB − σA ⊗ σB], for any legitimate mea-
sure of distance D. However, we note that the correlation parts
themselves do not represent physical states because tr[ρAB −
ρA ⊗ ρB] = tr[σAB − σA ⊗ σB] = 0. We can overcome this
issue by defining the distance in terms of two physical states
by using the property D[ρAB − ρA ⊗ ρB,σAB − σA ⊗ σB] =
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FIG. 4. JD (trace distance, purple dotted curve), JLB1 (black
dashed curve) and JLB2 (red solid curve) for the entangled coherent
state with amplitude γ = 1 under the symmetric loss channel Lη

plotted against the effective transmittance η. The difference between
the two measures JLB1 and JLB2 is negligible. For comparison,
we also plot �I1 (brown dot-dashed curve) which clearly shows
a nonmonotonic behavior.

D[ρAB + σA ⊗ σB,σAB + ρA ⊗ ρB]. We thus introduce two
relevantly averaged states, i.e.,

ρ̃AB = 1
2 (ρAB + σA ⊗ σB),

σ̃AB = 1
2 (σAB + ρA ⊗ ρB), (7)

and define the measure of non-Gaussian correlation as

JD[ρAB] ≡ D[ρ̃AB ,̃σAB]. (8)

It may be regarded as a smoothed non-Gaussianity mea-
sure for D[ρAB − ρA ⊗ ρB,σAB − σA ⊗ σB] obtained by
jointly mixing ρA ⊗ ρB + σA ⊗ σB into each correlation
part.

Equation (8) generates a non-Gaussianity measure satis-
fying all the properties introduced in Sec. III if the distance
measure D is invariant under unitary operations and nonin-
creasing under quantum channels, e.g., trace distance. The
properties (P1) and (P2) are readily shown to satisfy in the
same way we used in the previous section. The property
(P3) is also straightforwardly satisfied because a distance
measure is non-negative by definition. We thus need to focus on
property (P4) only. Every Gaussian channel can be described
as an interaction with a Gaussian environment, i.e., M[ρ] ≡
trE[ÛGρ ⊗ σEÛ

†
G] [4]. Combining it with the argument for

(P2) in the previous section, we find that a target state and
its reference state evolve under the same Gaussian channel
M. When a local Gaussian channel, M = MA ⊗ MB , is
applied, Eq. (8) becomes D[M[ρ̃AB],M[̃σAB]]. Therefore,
if the distance measure D is nonincreasing under quantum
channels, (P4) is satisfied.

Using the trace-distance as a quantifier of correlation, we
plot in Fig. 4 its behavior as a function of η (transmittance)
of the lossy Gaussian channel for the case of an entangled
coherent state (purple dotted curve). It shows a monotonically
decreasing behavior with loss, in contrast to the nonmonotonic
behavior of �I1 (brown dot-dashed curve).

We may define the non-Gaussian correlation measures
based on other quantities like Rényi entropy or fidelity. The
quantum Rényi relative entropy with α � 1

2 satisfies desirable
conditions like the nonincreasing behavior under quantum
channels [63]. However, it may be challenging to directly
compute these measures as expanding the mixtures of non-
Gaussian and Gaussian states in the eigen-decomposition can
generally be nontrivial. Coping with the difficulty, we focus
on the fidelity-based measures providing readily computable
lower bounds. In Refs. [64,65], an alternative fidelity measure
is proposed as

G[ρ,σ ] = tr[ρσ ] +
√

1 − tr[ρ2]
√

1 − tr[σ 2], (9)

which is an upper bound of the conventional fidelity mea-
sure, i.e., F � G. Interestingly, this superfidelity measure is
computable for an arbitrary pair of quantum states because
the measure allows a phase-space description: tr[ρσ ] =
πn
∫

d2nαWρ(α)Wσ (α). Contrary to the fidelity, it is unnec-
essary for the superfidelity to solve an eigenvalue problem on
an infinite-dimensional Hilbert space.

We now define our computable non-Gaussianity
measure as

JLB1[ρAB] = − ln G[ρ̃AB ,̃σAB] (10)

in relation to S1/2[ρ||σ ] = − ln F [ρ,σ ]. In addition, we
propose another computable measure based on quantum
Hilbert–Schmidt distance as

JLB2[ρAB] = − ln
(
1 − 1

2D2
HS[ρ̃AB ,̃σAB]

)
, (11)

satisfying JLB1[ρAB] � JLB2[ρAB]. The order relation be-
tween two measures can be seen from

G[ρ1,ρ2] � tr[ρ1ρ2] + (1 − tr[ρ2]) + (1 − tr[σ 2])

2

= 1 − 1

2
tr(ρ1 − ρ2)2

= 1 − 1

2
D2

HS[ρ1,ρ2]. (12)

It also implies that G[ρ1,ρ2] is a strict fidelity measure taking
the value of unity iff the two states are identical and less than
unity otherwise, and JLB1 and JLB2 meet (P3). However, the
lower bounds may fail to satisfy (P4) because the superfidelity
and quantum Hilbert–Schmidt distance can be increased under
a quantum channel [64]. Therefore, strictly speaking, the
quantities in Eqs. (10) and (11) can be used only as a lower
bound to (under)estimate the true measure based on a regular
fidelity. Of course, we must take care in interpreting these
lower bounds; for instance, we cannot determine which state
possesses a stronger non-Gaussian correlation by comparing
only the lower bounds among different states.

Two measures JLB1 and JLB2 do not show an appreciable
difference in many cases because the gap between the
arithmetic and geometrical means of impurities, i.e., μ̃1+μ̃2

2
and

√
μ̃1μ̃2 where μ̃i = 1 − trρ2

i with i ∈ {1,2}, is small for
a wide range of parameters. Note that the two averaged states
ρ̃AB and σ̃AB can be pure iff ρA and ρB are pure Gaussian
states.
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FIG. 5. �EF = EF [ρAB ] − EF [σAB ] for the entangled coherent
state under a symmetric loss channel versus our non-Gaussianity
measure JLB1. We randomly sampled 105 states for this parametric
plot and observe a positive relation between two measures.

We plot JLB1 (black dashed curve) and JLB2 (red solid
curve) for the entangled coherent state in Fig. 4. We see
that the lower bounds in Eqs. (10) and (11) show a mono-
tonic behavior under a local Gaussian channel using our
approach.

Note that JLB2 is particularly useful for two extremal cases:
(i) The reference Gaussian state is a product state, i.e., σAB =
σA ⊗ σB . (ii) The target state is a non-Gaussian correlated state
with local Gaussian states. For these cases, we can further
reduce the computational efforts because only two states are
involved, i.e., JLB2[ρAB] = − ln(1 − 1

8D2
HS[ρAB,ρA ⊗ ρB])

and JLB2[ρAB] = − ln(1 − 1
8D2

HS[ρAB,σAB]) for (i) and (ii),
respectively. We provide explicit examples for the extremal
cases. (i) A photon number entangled state in the form
|ψ〉 =∑k ck|nk〉A|nk〉B satisfying nk+1 − nk � 2 for every k,
e.g., |ψ〉 = √

x|0〉A|0〉B + √
1 − x|2〉A|2〉B , has no Gaussian

correlation because its covariance matrix is � = (n̄ + 1
2 )I4

with n̄ =∑k nk|ck|2. (ii) A photon number correlated state
in the form ρ =∑∞

k=0
n̄k

(n̄+1)k+1 |k〉〈k|A ⊗ |k〉〈k|B is locally
Gaussian but globally non-Gaussian. We identify the global
state as non-Gaussian with its covariance matrix equivalent to
that of a uncorrelated thermal state, i.e., � = (n̄ + 1

2 )I4.
In Fig. 5, we consider the difference in the entanglement

of formation [66] between the target state and the reference
Gaussian state, �EF = EF [ρAB] − EF [σAB], and compare it
with our non-Gaussianity measure for the entangled coherent
state under a symmetric loss channel Lη. From the Gaussian
entanglement criterion [67,68], we observe that the reference
Gaussian state has no entanglement (EF [σAB] = 0), which
allows us to focus on the entanglement of formation for
the target state with a two-qubit structure [66]. Although
there does not exist a one-to-one correspondence in defining
those two measures, the amount of entanglement and our
non-Gaussianity measure show a positive relation with a
bounded interval. Of course, such an interesting feature
disappears if we look into non-Gaussianity of total state, e.g.,
S1(σAB) − S1(ρAB), instead of our measures.

Let us now consider another example, i.e., CV Werner states
[69]; that is, a mixture of a vacuum state and a two-mode

FIG. 6. (a) JTR for CV Werner state in Eq. (13) against the
fraction f . Black solid and brown dashed curves represent the
cases for r = 0.05 and r = 0.1, respectively. (b) �EN = EN [ρAB ] −
EN [σAB ] versus our non-Gaussianity measure JTR for CV Werner
states. We have randomly sampled 104 states with 0 � f � 1 and
0 � r � 0.2 for this parametric plot. (c), (d) entanglement negativity
N for the original CV Werner state (dashed) and an output state from
a Gaussian distillation protocol (solid), respectively [(c) r = 0.05
and (d) r = 0.1]. Shaded regions represent the degree of distillable
entanglement with respect to the fraction f .

squeezed state,

ρAB = (1 − f )|0〉〈0|A ⊗ |0〉〈0|B + f |φ〉〈φ|, (13)

where |φ〉 = 1
cosh r

∑∞
k=0 tanhk r|k〉A|k〉B is a two-mode

squeezed vacuum with squeezing strength r . Here we focus
on experimentally feasible cases with weak squeezing r �
0.2 [30]. We investigate the difference in the entanglement
negativity [70,71] between the given state and the reference
Gaussian state, �EN = EN [ρAB] − EN [σAB], in comparison
with our non-Gaussianity measure JTR in Fig. 6, which again
shows a strong correlation between two measures.

We may further seek to identify the role of non-Gaussian
correlation in other quantum tasks, e.g., distillable entan-
glement by Gaussian operations. To this aim, we introduce
here a Gaussian distillation protocol by using beam splitters
and homodyne measurements as follows: (1) We prepare a
non-Gaussian correlated state, e.g., ρAB = (1 − f )|0〉〈0|A ⊗
|0〉〈0|B + f |φ〉〈φ|. (2) Each mode passes through a beam
splitter B̂ with transmittance η, i.e., ρ̃ABCD = B̂ACB̂BD(ρAB ⊗
|0〉〈0|C ⊗ |0〉〈0|D)B̂†

BDB̂
†
AC . (3) We measure the quadratures

of the ancillary modes C and D and postselect the outcomes
of homodyne measurements. It yields

ρ ′
AB = 〈xc|〈xd |ρ̃ABCD|xc〉|xd〉

tr[〈xc|〈xd |ρ̃ABCD|xc〉|xd〉] , (14)

where |xc〉 and |xd〉 represent quadrature eigenstates [59] for
the ancillary modes C and D, respectively.

In Figs. 6(c) and 6(d), we plot EN for the CV Werner state
(dashed) and the output distilled state ρ ′

AB (solid), respectively,
for the case of η = 0.9, xc = xd = 0.8. The shaded region
represents the degree of distillable entanglement, which
coincides overall with our measure of non-Gaussian
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correlation JTR in Fig. 6(a). While our current approach
does not provide a rigorous basis to make an operational
interpretation of our non-Gaussian correlation measure in
relation to distillable entanglement, such a relation could be
justified under certain conditions, which will be an interesting
issue for further investigation.

V. CONCLUSION

We have investigated how to characterize the non-
Gaussianity of quantum-state correlation by using various
measures such as the relative entropy and geometric distances.
We have found that Gaussian extremality holds for none of
these measures in our consideration. In other words, there
exists a non-Gaussian correlated state that has equal or less
quantum mutual information compared with its reference
state, i.e., the Gaussian state having the same covariance
matrix as the non-Gaussian state. The same issue on Gaussian
extremality may be raised toward other quantum correlation
measures, such as quantum discord [72], which would be a
topic of further investigation.

To come up with a measure of non-Gaussian correlation
satisfying all desirable properties, we have established a
method to characterize the non-Gaussianity contained in
correlation part and proposed the distance-based and the
fidelity-based measures. For the latter case, we also provided
two readily computable lower bounds. It is an issue of crucial
importance to characterize and quantify non-Gaussianity
for CV quantum informatics, particularly the non-Gaussian
quantum correlation. It may be interesting to extend our
consideration to the realms of strictly nonclassical correlation
and genuine multipartite correlations [73] and investigate their
roles for the emergence of advantages in using non-Gaussian
resources for CV information processing.
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APPENDIX A: ENTANGLED COHERENT STATE

We first introduce two basis states as

|±〉 = 1√
N±(γ )

(|γ 〉 ± | − γ 〉), (A1)

where |γ 〉 is a coherent state with a real amplitude γ and
the normalization factors given by N±(γ ) = 2 ± 2 exp(−2γ 2).
The basis states are orthogonal, 〈+|−〉 = 0, and can be
transformed to each other by a single photon subtraction as

â|±〉 =
√

N∓
N±

γ |∓〉. (A2)

We then consider an entangled coherent state, |�〉 =
1√
2
(|+〉A|−〉B + |−〉A|+〉B), which is one of Bell states. The

reduced density matrix of a local mode i ∈ {A,B} for state |�〉
becomes a maximally mixed state, ρi = 1

2 (|+〉〈+| + |−〉〈−|).

For a pure state of the form |ψ〉 =∑k ck|k〉A|k〉B with∑
k |ck|2 = 1, the quantum mutual information is given by

Iα[|ψ〉〈ψ |] = 2

1 − α
ln

(∑
k

|ck|2α

)
,

I ′
α[|ψ〉〈ψ |] = α

α − 1
ln

(∑
k

|ck| 4−2α
α

)
,

IHS[|ψ〉〈ψ |] =
√√√√1 +
(∑

k

|ck|4
)2

− 2

(∑
k

|ck|6
)

, (A3)

which yield Iα[|�〉〈�|] = I ′
α[|�〉〈�|] = 2 ln 2 for the case

of entangled coherent states.
Under a symmetric loss with effective transmittance η, the

entangled coherent state |�〉 evolves as

Lη[|�〉〈�|] = N+(
√

2 − 2ηγ )N−(
√

2ηγ )

4N−(
√

2γ )
|� ′〉〈� ′|

+ N−(
√

2 − 2ηγ )N+(
√

2ηγ )

4N−(
√

2γ )
|′〉〈′|, (A4)

where

|� ′〉 = 1√
2

(|+′〉A|−′〉B + |−′〉A|+′〉B),

|′〉 = N+(
√

ηγ )

2
√

N+(
√

2ηγ )
|+′〉A|+′〉B

+ N−(
√

ηγ )

2
√

N+(
√

2ηγ )
|−′〉A|−′〉B, (A5)

with

|±′〉 = 1√
N±(

√
ηγ )

(|√ηγ 〉 ± | − √
ηγ 〉). (A6)

APPENDIX B: MUTUAL INFORMATION FOR
TWO-QUBIT X STATES

For a two-qubit X state in the form

ρ =

⎛⎜⎝ a v

b u

u∗ c

v∗ d

⎞⎟⎠, (B1)

with basis states {|+〉|+〉,|+〉|−〉,|−〉|+〉,|−〉|−〉}, the first
type of quantum Rényi mutual information is given by

Iα[ρ] = 1

1 − α
ln {(a + b)α + (c + d)α}

+ 1

1 − α
ln {(a + c)α + (b + d)α}

− 1

1 − α
ln

{
4∑

i=1

λα
i

}
, (B2)

where

λ1,2 = 1
2 (a + d ±

√
(a − d)2 + 4|v|2),

λ3,4 = 1
2 (b + c ±

√
(b − c)2 + 4|u|2). (B3)
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On the other hand, the second type of quantum Rényi mutual
information is given by

I ′
α[ρ] = 1

α − 1
ln

{
4∑

i=1

(
λ′

i

)α}
, (B4)

where

λ′
1,2 = 1

2 (a′ + d ′ ±
√

(a′ − d ′)2 + 4|v′|2),

λ′
3,4 = 1

2 (b′ + c′ ±
√

(b′ − c′)2 + 4|u′|2), (B5)

with

a′ = a(a + b)
1−α
α (a + c)

1−α
α ,

b′ = b(a + b)
1−α
α (b + d)

1−α
α ,

c′ = c(c + d)
1−α
α (a + c)

1−α
α ,

(B6)
d ′ = d(c + d)

1−α
α (b + d)

1−α
α ,

u′ = u{(a + b)(c + d)(a + c)(b + d)} 1−α
2α ,

v′ = v{(a + b)(c + d)(a + c)(b + d)} 1−α
2α .

Finally, the quantum Hilbert–Schmidt mutual information for
the two-qubit X state is given by

I2
HS[ρ] = {a − (a + b)(a + c)}2 + {b − (a + b)(b + d)}2

+{c − (c + d)(a + c)}2 + {d − (c + d)(b + d)}2

+ 2(|u|2 + |v|2). (B7)

APPENDIX C: MUTUAL INFORMATION FOR
GAUSSIAN STATES

An n-mode Gaussian state is characterized by the first-
order moments, i.e., 〈Q̂〉 = (〈q̂1〉,〈p̂1〉, . . . 〈q̂n〉,〈p̂n〉), and its
covariance matrix � whose elements are defined as

�ij = 1
2 〈Q̂iQ̂j + Q̂j Q̂i〉 − 〈Q̂i〉〈Q̂j 〉, (C1)

where q̂j = âj +â
†
j√

2
and p̂j = âj −â

†
j√

2i
are the position and mo-

mentum operators for the j th mode, respectively.
For a Gaussian state σ , there always exists a Gaussian

unitary operator Ŝ that transforms the state σ into a product of
thermal state [74]: Ŝσ Ŝ† =⊗n

j=1 σ (λj − 1
2 ) where σth(n̄) =∑∞

k=0
n̄k

(n̄+1)k+1 |k〉〈k| represents a thermal state with the mean
photon number n̄, and λj is the j th symplectic eigenvalue of
the covariance matrix �, i.e., the positive eigenvalues of the
matrix i�� with � =⊕n

j=1 ω and

ω =
(

0 1
−1 0

)
.

Using the same transformation, we obtain

Ŝσ αŜ†

tr[σα]
=

n⊕
j=1

σth

(
ζj − 1

2

)
, (C2)

where

ζj = 1

2

(
λj + 1

2

)α + (λj − 1
2

)α(
λj + 1

2

)α − (λj − 1
2

)α , (C3)

and tr[σα] =∏n
j=1 g(λj ,α) with

g(x,α) = 1(
x + 1

2

)α − (x − 1
2

)α . (C4)

From now on, without loss of generality, let us deal only
with the standard form of the covariance matrix for the
calculation of quantum mutual information, i.e.,

� =

⎛⎜⎝a c

a d

c b

d b

⎞⎟⎠. (C5)

Note that there always exists a local Gaussian unitary operator
that transforms the covariance matrix of a two-mode state into
its standard form, and the unitary operation has no effect on the
mutual information measures. The first type of Rényi mutual
information Iα[σAB] is obtained as

Iα[σAB] = 1

1 − α
ln

g(a,α)g(b,α)

g(λ1,α)g(λ2,α)
, (C6)

where λ1,2 = [� ± (�2 + m)1/2]1/2 with � = 1
2 (a2 + b2 + 2cd)

and m = (ab − c2)(ab − d2).
Next, we introduce a composition rule for two Gaussian

states having the same means [75] as

σ1σ2 = 1√
det (�1 + �2)

σ̃ , (C7)

where σ̃ is a Gaussian state with the same mean and its
covariance matrix is obtained by

h(�1,�2) = − i

2
� +
(

�2 + i

2
�

)
(�1 + �2)−1

(
�1 + i

2
�

)
.

(C8)

Here we derive a computable expression of I ′
α[σAB] for

a Gaussian state as follows: Using the transformation in
Eq. (C2), we first have

I ′
α[σAB] = 1

α − 1
ln tr
[{

(σA ⊗ σB)
1−α
2α σAB(σA ⊗ σB)

1−α
2α

}α]
= 2α

α − 1
ln

[
g

(
a,

1 − α

2α

)
g

(
b,

1 − α

2α

)]
+ 1

α − 1
ln tr[{(σ ′

A ⊗ σ ′
B)σAB(σ ′

A ⊗ σ ′
B)}α],

(C9)

where σ ′
j = σα

j

tr[σα
j ] with j ∈ {A,B}. Employing the composition

rule in Eq. (C7) twice and Eq. (C2) again, we obtain

I ′
α[σAB] = 2α

α − 1
ln

[
g

(
a,

1 − α

2α

)
g

(
b,

1 − α

2α

)]
− α

2(α − 1)
ln[det(�′ + �) det{h(�′,�) + �′}]

+ 1

α − 1
ln[g(̃λ1,α)g(̃λ2,α)], (C10)

where �′ denotes the covariance matrix of σ ′
A ⊗ σ ′

B , and λ̃1

and λ̃2 are the symplectic eigenvalues for h(h(�′,�),�′).
Finally, from the composition rule in Eq. (C7), the overlap

between two Gaussian states having the same means is given
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by [det(�1 + �2)]−1/2. The quantum Hilbert–Schmidt mutual
information is then obtained as

I2
HS[σAB] = 1

4
√

(ab − c2)(ab − d2)
+ 1

4ab

− 2√
(4ab − c2)(4ab − d2)

. (C11)

APPENDIX D: COVARIANCE MATRICES FOR
NON-GAUSSIAN STATES

The covariance matrix of the entangled coherent state under
a symmetric loss channel Lη[|�〉〈�|] is given by

�Lη[|�〉〈�|] =
(
X + 1

2I2 X
X X + 1

2I2

)
, (D1)

where

X = ηγ 2

sinh 2γ 2

(
e2γ 2

0
0 e−2γ 2

)
. (D2)

For the case the photon number entangled state in the
form
∑

k ck|k〉A|k〉B , we obtain the corresponding covariance
matrix as

� =

⎛⎜⎜⎝
a + 1

2 b

a + 1
2 −b

b a + 1
2

−b a + 1
2

⎞⎟⎟⎠, (D3)

with a =∑k k|ck|2 and b =∑k(k + 1)c∗
kck+1.
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