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Experimental detection of entanglement of an arbitrary state of a given bipartite system is crucial for exploring
many areas of quantum information processing. But such a detection should be made in a device-independent way
if the preparation process of the state is considered to be faithful, in order to avoid detection of a separable state as
an entangled one. The recently developed scheme of detecting bipartite entanglement in a measurement-device-
independent way [Phys. Rev. Lett. 110, 060405 (2013)] does require information about the state. Here, by using
Auguisiak et al.’s universal entanglement witness scheme for two-qubit states [Phys. Rev. A 77, 030301 (2008)],
we provide a universal entanglement detection scheme for two-qubit states in a measurement-device-independent
way. We also provide a set of universal witness operators for detecting NPT-ness (negative under partial transpose)
of two-qudit states in a measurement-device-independent way. We conjecture that no such universal entanglement
witness scheme exists for PPT (positive under partial transpose) entangled states. We also analyze the robustness
of some of the experimental schemes—for detecting entanglement in a measurement-device-independent way—
under the influence of noise in the inputs (from the referee) as well as in the measurement operator.
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I. INTRODUCTION

Entanglement is known to be a resource for quantum
information processing, like quantum cryptography [1], tele-
portation [2], quantum metrology [3], channel capacity [4,5],
etc. Moreover, it helps to speed up computation sometimes
[6] over the existing classical algorithms. Also, understanding
entanglement is necessary to reveal the various nonclassical
nature of the physical world. Entanglement in quantum theory
correlates two parties in such a way that at the individual
levels, they loose their independent state vector descriptions.
Mathematically, two systems A (the quantum system pos-
sessed by Alice) and B (the quantum system possessed by
Bob) are separable iff their joint state ρ can be expressed as∑

j αjρA
(j ) ⊗ ρB

(j ) which acts on the Hilbert space HAB =
HA ⊗ HB, where

∑
j αj = 1 and 0 � αj � 1 ∀j, ρA

(j ) and
ρB

(j ) are density matrices acting on HA and HB, respectively.
If the joint state can’t be written in the above form, we call
them entangled [7].

Deciding whether an unknown state of a given bipartite
quantum system is entangled or separable, remains a chal-
lenging problem [8–10] right from the initial stage of quantum
information theory. People tried to see the presence of entan-
glement in a state experimentally through some Bell-inequality
violation, but there are entangled states which do not violate
any such inequality [11]. Given any entangled state ρAB, it
is (in principle) possible to find out an entanglement witness
(EW) operator W , whose measurement can distinguish the
given entangled state from all possible separable states of the
system, and the measurement is, in principle, implementable
experimentally, using local measurement settings, (possibly)
supported by classical communication. It may be recalled
that an entanglement witness is a Hermitian operator W :
HA ⊗ HB → HA ⊗ HB such that there exists at least one
entangled state ρAB on HA ⊗ HB, for which Tr[WρAB] <
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0 while Tr[WσAB] ≥ 0 for all separable states σAB on
HA ⊗ HB. So W witnesses the entanglement in the state ρAB.
But Tr[WσAB] ≥ 0 does not necessarily imply that σAB is
separable [12]. In general, W depends on the the form of
entangled state ρAB, and hence it does not have a universal
character. Thus a state-independent witness operator is a
desired one for most practical purposes.

The conventional entanglement detection strategies are
based on local measurements to be performed on individual
subsystems A and B. In this case, both the local measuring
apparatuses should be necessarily perfect. In fact, if some
measurement results get lost or some overcounting occurs dur-
ing the measurement, it may lead to an erroneous conclusion
about entanglement of the state ρAB. In Ref. [13], the time
shift attack [14] has been used experimentally which causes
identification of a separable state as an entangled one. Such a
scenario can be avoided if one can witness entanglement in a
measurement-device-independent way, described below.

Recently, Branciard et al. [15] demonstrated implementa-
tion of any entanglement witness operator in a measurement-
device-independent (MDI) way using Buscemi’s work on the
semiquantum nonlocal game [16]. This scheme of Branciard
et al. [15] guarantees that no separable state will get detected
as an entangled one, irrespective of the kind of noise effects
present during the measurement (see [17]). But their scheme
depends on the form of the shared bipartite state, and hence,
their scheme lacks universality, that is, it may not be able
to detect entanglement in an arbitrary entangled state of the
bipartite system even though no separable state (known or
unknown) of the system will get detected as an entangled one
in the MDI scheme of Branciard et al. [15].

Augusiak et al. [18] showed the existence of a universal
entanglement witness operator that can detect entanglement
in any two-qubit state, depending on the Peres-Horodecki
PPT criteria [7,19]. But this does not address measurement-
device-independent implementation of the witness operator,
and, moreover, it is restricted to the two-qubit case only.

In this paper, we first show that this two-qubit universal
entanglement witness operator of Augusiak et al. [18] can be
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implemented in a measurement-device-independent way (see
also [19]). We then generalize this idea for higher dimensional
bipartite NPT states and find out a set of finite numbers
of universal witness operators for witnessing NPT-ness in
an unknown state of any given bipartite system. We also
argue here that resource-wise, our aforesaid NPT-ness witness
scheme is better than using tomography to identify the state.
We conjecture that no universal entanglement witness operator
can exist to detect entanglement in an unknown PPT state of
any given bipartite system of dimension greater than six. We
also point out that, in the aforesaid scheme of Branciard et al.’s
measurement-device-independent entanglement witness [15],
if some general type of noise is added with the inputs or with
the measurement operator, the referee will not face any prob-
lem in witnessing entanglement provided he knows the char-
acter of the noise (here we will provide analysis for a particular
type of noise and general treatment is given in Appendix 2).
In case the referee doesn’t know the character of noise, we
show how much robust the witnessing operation can be. Note
that such a noise analysis is particularly important in the
case of experimental verification of the measurement-device-
independent entanglement witness (MDIEW) scheme [15].

Our article is organized as follows. In Secs. I A and I B,
we, respectively, describe briefly the measurement-device-
independent (MDI) scheme of the entanglement witness (EW)
[15] and the witness operator for detecting entanglement
in an arbitrary two-qubit state [18]. Section II is devoted
to MDI implementation of the two-qubit universal EW of
Auguisiak et al. [18]. Section III describes the universal
witness for NPT-ness of two-qudit states. Section IV describes
the conjecture about the impossibility of the existence of a
universal witness operator for bipartite PPT-entangled states.
In Sec. V, we analyze the possible noise effects in the
experimental implementation scheme of Ref. [15]. We draw
the conclusion of our work in Sec. VI.

A. Measurement-device-independent scheme
of entanglement witness

This scheme starts as a cooperative game played between
two parties Alice (possessing the quantum system A) and
Bob (possessing the quantum system B), who receive states
τs (of a quantum system A0) and ωt (of a quantum system
B0), respectively, as inputs from a referee, who then ask them
to produce outputs a and b, respectively. Here dim(HA0 ) =
dim(HA)= dA and dim(HB0 ) = dim(HB) = dB, and for our
analysis, we consider dA = dB = d. During the game, Alice
and Bob aren’t allowed to communicate anyway, but before
starting the game, they have to decide upon their strategies
where they may share a priori a bipartite state ρAB. If the state
ρAB is entangled they can always achieve an average pay-off
which is more than the case when ρAB is a separable state.
So, from the average pay-off values, the referee can conclude
whether the corresponding shared state was entangled or
separable (after knowing the maximum average payoff for all
possible separable states). To produce outcomes of the game,
each party has to perform local joint projective measurement
on their individual inputs (from the referee) and their individual
subsystems of the shared state (see Fig. 1 for details).

FIG. 1. Alice and Bob perform Bell state measurement on the
states of the joint systemsA0A andBB0, respectively. Blue arrows are
lossless quantum channels for sending input states to Alice and Bob.
Red arrows correspond to the lossless classical channels for receiving
the outputs. Green ellipses indicate joint Bell state measurement
performed by the players.

The authors of [15] described the aforesaid projective
measurement in the maximally entangled state,

|�〉A0A = |�〉BB0
= 1√

d

d−1∑
j=0

|jj〉 ∈ Cd ⊗ Cd ,

with probability of output (a,b) = (1,1) for the given quantum
input pair (τs,ωt ) being PρAB (1,1|s,t) = Tr((|�〉A0A 〈�| ⊗
|�〉BB0

〈�|)(τs ⊗ ρAB ⊗ ωt )), and showed that if the average

payoff function is �(ρAB) = ∑
s,t β̃stPρAB (1,1|s,t) then

I (ρAB) := max{�(σAB)} − �(ρAB)

= max
σAB

{∑
s,t

β̃stPσAB (1,1|s,t)
}

−
∑
s,t

β̃stPρAB (1,1|s,t)

=
∑
s,t

βstPρAB (1,1|s,t), (1)

where the maximization is performed over all possible separa-
ble states σAB of the bipartite system, and βst is the linear
function of β̃st for all s,t . The outcome (1,1) is nothing
but the successful projection of the state τs ⊗ ρAB ⊗ ωt on
the operator |�〉A0A 〈�| ⊗ |�〉BB0

〈�|, and βst is the linear
function of the pay-off value corresponding to the input state
pair (τs,ωt ).

The aim here is to use the signature of I (ρAB) for witnessing
entanglement in ρAB. In particular, Branciard et al. [15]
showed I (ρAB) to be proportional to Tr[WρAB] by expressing
the witness operator W as

W =
∑
s,t

βst τ
T
s ⊗ ωT

t , (2)

which, in principle, is possible in this case as the inputs τs (to
Alice) and ωt (to Bob)—supplied by the referee—are sufficient
enough in number to span the linear space of all Hermitian
operators on HAB ≡ HA ⊗ HB. The referee can determine
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the values of the coefficients βst accordingly prior to the game,
and hence, he or she can identify whether the shared state is
entangled or separable from the sign of I (ρAB).

In this scenario, accuracy in preparation of the input states τs

and ωt as well as ρAB must be trusted. In Ref. [15], it is proved
that no noise introduced in the local measurement operators
can lower the bound I (ρAB) � 0 for separable ρAB, and hence,
in this scheme, no separable state will ever be identified
as an entangled one. In this sense the scheme of Ref. [15]
is measurement-device independent. Thus, in the aforesaid
MDIEW scheme, one avoids erroneous measurement settings
for measuring the witness operator W by measuring just
the maximally entangled state |�〉. And even if this later
measurement is erroneous, by the very construction of the
MDIEW scheme of Branciard et al. [15], no separable state
gets detected as entangled, although some entangled states will
not get detected as entangled.

B. Detecting entanglement in an unknown two-qubit state

In this subsection, we briefly describe the universal entan-
glement witness scheme of Augusiak et al. [18] for witnessing
entanglement in arbitrary two-qubit states.

In the case of witnessing entanglement in an unknown two-
qubit state [18], instead of sharing a single copy of the state,
the players need to share four identical copies of the state at a
time. This is so because the signature of det(ρTB

AB) (= product
of eigenvalues of ρ

TB
AB = Tr[Wρ⊗4

AB] = λ1λ2λ3λ4) completely
determines whether the two-qubit state ρAB is entangled or
separable. Here λi’s are eigenvalues of ρ

TB
AB and W is a fixed

Hermitian operator acting on H⊗4
A ⊗ H⊗4

B (with dimHA =
dimHB = 2). From the Newton-Girard formula [20], we have:
λ1λ2λ3λ4 =

1

24

(
1 − 6

4∑
i=1

λ4
i + 8

4∑
i=1

λ3
i + 3

( 4∑
i=1

λ2
i

)2

− 6
4∑

i=1

λ2
i

)
.

To formulate this in terms of an operator, we first use the
swap operator V (k), defined as

V (k)(|ϕ1〉A1B1
⊗ |ϕ2〉A2B2

⊗ . . . . |ϕk〉AkBk
)

= |ϕk〉A1B1
⊗ |ϕ1〉A2B2

⊗ . . . . |ϕ(k−1)〉AkBk
, (3)

and it has the property that Tr(V (k)ρ⊗k) = Tr(ρk) [18,21,22] for
any Hermitian matrix ρ acting on HA ⊗ HB. V (k) is not Her-
mitian except for k = 2. So, to make it an observable, in place
of V (k), 1

2 (V (k) + V (k)†) will be used for future analysis. V (k) :
HAB

⊗k → HAB
⊗k can be decomposed as a tensor product

of two local operators V (k) = Ṽ (k) ⊗ Ṽ (k)whereṼ (k) : Hj1 ⊗
Hj2 ⊗ . . . ⊗ Hjk

→ Hj1 ⊗ Hj2 ⊗ . . . ⊗ Hjk
is given by

Ṽ (k)(|ϕ1〉j1
⊗ |ϕ2〉j2

⊗ . . . . . . ⊗ |ϕk〉jk
)

= |ϕk〉j1
⊗ |ϕ1〉j2

⊗ . . . . . . ⊗ |ϕ(k−1)〉jk
. (4)

Note here that Hji
≡ Hj for all i = 1,2, . . . ,k and j = A,B.

As the swap operator V (k) is a real matrix with respect to a
fixed basis (for our case it is the computational basis), used for

the whole analysis, we see that

Tr
((

ρ
TB
AB
)k)

=
∑

j

(λj )k = Tr
(
V (k)(ρTB

AB
)⊗k)

is a real number.

So, Tr
(
V (k)(ρTB

AB
)⊗k)

= Tr
(
V (k)†(ρTB

AB
)⊗k)

= 1
2 Tr
(
(V (k) + V (k)†)

(
ρ

TB
AB
)⊗k)

= 1
2 Tr
(
(V (k) + V (k)†)TBρ⊗k

AB
)

= 1
2 Tr
(
[Ṽ (k) ⊗ Ṽ (k) + Ṽ (k)† ⊗ Ṽ (k)†]TBρ⊗k

AB
)

= 1
2 Tr
(
[Ṽ (k) ⊗ Ṽ (k)T + Ṽ (k)T ⊗ Ṽ (k)]ρ⊗k

AB
)
, (5)

using the fact that Ṽ (k)† = Ṽ (k)T , as Ṽ (k) is a real matrix with
respect to the computational basis.

Then, the aforesaid Hermitian operator W , witnessing
entanglement in an arbitrary two-qubit state, is given by

W univ = 1
24I256×256 − 1

8 (Ṽ (4) ⊗ Ṽ (4)T + Ṽ (4)T ⊗ Ṽ (4))

+ 1
6I4×4 ⊗ (Ṽ (3) ⊗ Ṽ (3)T + Ṽ (3)T ⊗ Ṽ (3))

+ 1
8V (2) ⊗ V (2) − 1

4I16×16 ⊗ V (2), (6)

and our I (ρAB) of Eq. (1) turns out to be proportional to
Tr(W univρ⊗4

AB) = det(ρTB
AB) (see Sec. II for details).

The aforesaid operator W univ doesn’t depend on the two-
qubit shared state, and hence, entanglement in an unknown
two-qubit state ρAB can be detected by looking into the
signature of Tr(W univρ⊗4

AB). In this sense, it’s a universal
entanglement witness operator.

II. MDI IMPLEMENTATION OF TWO-QUBIT
UNIVERSAL EW

Recent work by Bartkiewicz et al. in [23] demonstrated
a physical implementation of the aforesaid universal entan-
glement witness operator (6), using two-photon polarized
states. But that has not been done in a measurement-device-
independent way. Authors of Refs. [24] and [25], address
entanglement detection of arbitrary two-qubit states in the
MDI way, but their approaches take care of error in Bell
state measurement by optimizing the possible entanglement
witness operators which can detect entanglement in the
arbitrarily given state—by taking into account the erroneous
measurement statistics themselves. The extra cost for this
occurs due to measurements of one or both of the observables
corresponding to the supplied states τs and ωt in some
known states of A or/and B. In the following, although we
are going to consider the partial Bell state measurements
(BSM) {|�+〉 〈�+| ,I − |�+〉 〈�+|} of both Alice and Bob
to be perfect while witnessing entanglement in an arbitrary
two-qubit state in an MDI way, one can, in principle, allow
imperfection in BSM in our scheme and thereby calibrate
(i.e., find out) exactly the corresponding noisy BSM using
some known states (of Alice and Bob separately), and then
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follow the same procedure as described below (see also
Appendixes 2 and 3)—after (possibly) suitably modifying the
supplied states τs and ωt .

Our main result of this section can be stated as follows.
Theorem 1. Witnessing entanglement in an arbitrary two-

qubit state, given four copies of the state at a time, can be
realized in a measurement-device-independent way.

Proof. We consider the game described by Fig. 1 which
starts with two inputs (one for Alice and one for Bob) and
a single copy of a shared state ρAB, while our universal
measurement scheme for witnessing entanglement needs four
identical copies of shared state ρAB at each run of the
experiment, and the witness operator W univ is a 256 × 256
matrix. Thus, the Hilbert space of the shared state is [C2]⊗4 ⊗
[C2]⊗4 ≡ C16 ⊗ C16 instead of C2 ⊗ C2. As a result of that,
both τs and ωt must be density matrices on C16.

We now take the witness operator W univ of Eq. (6) in the
form,

W univ =
∑
s,t

βst

(
τT
s ⊗ ωT

t

)
, (7)

where the input states τs and ωt are expandable in the
appropriate Gell-Mann matrix basis as

τT
s =

��.Tr
(
τT
s

��)
16

=
∑

i

�ip
(s)
i ,

ωT
t =

��.Tr
(
ωT

t
��)

16
=
∑

j

�jq
(t)
j , (8)

where �� is the vector of all the 16 × 16 generalized Gell-Mann
matrices �i [26], the first component being the identity matrix.
Also p

(s)
i and q

(t)
j are known real coefficients.

From the above relation (7) and using the actual form of
the universal witness operator (6), the referee can calculate the
quantities,

Tr(W univ(�i ⊗ �j )) = (16)2
∑
s,t

βstp
(s)
i q

(t)
j , (9)

which will give rise to a set of (256)2 numbers of linear
equations for all i,j, from which the referee can calculate
the coefficients βst in Eq. (7). Also, instead of using a two-
qubit Bell state projector |φ+〉 〈φ+| = 1

2

∑1
i,j=0 |ii〉 〈jj | or its

local unitarily equivalent form as a measurement operator,
each party should use a Bell state projector |�+〉 〈�+| =
1

16

∑15
i,j=0 |ii〉 〈jj | of two 16-dimensional systems as the

measurement operator or its local unitarily equivalent form,
for each party. Then the negativity of

I (ρAB) = det
(
ρ

TB
AB
)

= Tr[W univ(ρA1B1 ⊗ ρA2B2 ⊗ ρA3B3 ⊗ ρA4B4 )]

=
∑
s,t

βstTr
[
(|�+〉A0:A1A2A3A4

〈�+|⊗|�+〉B0:B1B2B3B4
〈�+|)

× (
τ (A0)
s ⊗ ρA1B1 ⊗ ρA2B2 ⊗ ρA3B3 ⊗ ρA4B4 ⊗ ω

(B0)
t

)]
(10)

confirms the presence of entanglement of the shared state in
an MDI way.

Now, in order to solve the set of (256)2 linear equa-
tions given in (9), one needs to calculate the quantities
Tr[W univ(�i ⊗ �j )]. By using the expression (6), this amounts
to calculating the “local” quantities Tr[I16×16�i], Tr[Ṽ (4)�i],
Tr[Ṽ (4)T �i], Tr[(I2×2 ⊗ Ṽ (3))�i], Tr[(I2×2 ⊗ Ṽ (3)T )�i], and
the “global” quantity Tr[V (2)�i], and thereby calculating the
appropriate linear combination of their associated products—
in respect to the right-hand-side expression of Eq. (6). For
explicit expressions of the operators Ṽ (4), Ṽ (3), and V (2) in the
computational basis, please see Appendix 1. �

III. UNIVERSAL WITNESS FOR NPT-NESS OF
TWO-QUDIT STATES IN MDI WAY

Any two-qudit density matrix ρAB whose partial transpo-
sition (denoted by ρ

TB
AB) has at least one negative eigenvalue,

is called an NPT state. Any bipartite state having NPT is
necessarily entangled [27]. Let us look at the characteristic
equation for the matrix ρ

TB
AB :

det
(
ρ

TB
AB − λId2×d2

) = 0,

which is of the form,
d2∑
i=0

(−1)d
2−iad2−iλ

i = 0, (11)

where the coefficients a0,a1,a2, . . . .,ad2 are given in terms of
the eigenvalues λ1,λ2,λ3, . . . ,λd2 of ρ

TB
AB as follows:

a0 = 1,a1 =
d2∑
i=1

λi,a2 =
d2∑

i,j=1;i>j

λiλj ,

a3 =
d2∑

i,j,k=1;i>j>k

λiλjλk, . . . . . . ,ad2 =
d2∏
i=1

λi.

As ρ
TB
AB is Hermitian, λ’s are all real, and thereby ai’s are all

real. If ai � 0 for all i, we have ρ
TB
AB � 0. Otherwise, ρAB has

NPT. Now, we determine whether the aforesaid characteristic
equation has any negative root. We have written above each of
the coefficients a0,a1,a2, . . . ,ad2 as a polynomial in terms of
the eigenvalues of ρ

TB
AB using the Newton-Girard formulas [20].

In fact, we have a1 = 1 because partial transposition operation
is trace preserving;

a2 = 1

2

⎛
⎝1 −

d2∑
i=1

λ2
i

⎞
⎠ = Tr

(
W2ρ

⊗2
AB
)
, with

W2 = 1

2
[Id4×d4 − V (2)]; (12)

a3 = 1

6

⎛
⎝1 − 3

d2∑
i=1

λ2
i + 2

d2∑
i=1

λ3
i

⎞
⎠ = Tr

(
W3ρ

⊗3
AB
)
,

with W3 = 1

6
[Id6×d6 − 3Id2×d2 ⊗ V (2)

+ Ṽ (3) ⊗ Ṽ (3)T + Ṽ (3)T ⊗ Ṽ (3)]; (13)
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a4 =

1

24

⎛
⎜⎝1 − 6

d2∑
i=1

λ2
i + 3

⎛
⎝ d2∑

i=1

λ2
i

⎞
⎠

2

+ 8
d2∑
i=1

λ3
i − 6

d2∑
i=1

λ4
i

⎞
⎟⎠

= Tr
(
W4ρ

⊗4
AB
)
, (14)

where W4 has a similar expression as that of W univ in Eq. (6);
so on and so forth.

We now argue about measurement-device-independent
detection of NPT-ness of an unknown two-qudit state. Our
argument starts from finding the signatures of the coefficients
ai for i � 2. In the most favorable case, a2 may turn out
to be negative and thereby ρAB has NPT. So, supply of two
copies of the shared state ρAB at a time is enough to determine
NPT-ness while both the inputs τs and ωt are density matrices
on the Hilbert space (Cd )⊗2. But, for the general case, the
players have to share “i” number of copies of the state ρAB
whenever the referee wants to know the sign of the coefficient
ai . Also, the dimension of the input states (τs and ωt—to be
supplied by the referee) should increase accordingly. In the
worst case, we have to go up to the signature of the coefficient
ad2 for which we need d2 copies of ρAB, and τs and ωt will be
density matrices acting on the Hilbert space (Cd )⊗d2

. As, for
any PPT state ρAB, all of λ1,λ2,λ3, . . . ,λd2 are non-negative,
all the coefficients a2,a3, . . . ,ad2 are non-negative there. So,
the operators, W2,W3, . . . ,Wd2 indeed work as witnessing
NPT-ness of the state ρAB, and it gives rise to the following
result.

Theorem 2. NPT-ness of an arbitrary two-qudit state can
be witnessed by performing measurement on a finite number
of copies of that state at a time in a measurement-device-
independent way.

Proof. As none of the aforesaid witness operators
W2,W3, . . . ,Wd2 depend on the shared state ρAB, we can use
the scheme, similar to that described in Sec. II, to implement
the measurement of these operators in a measurement-device-
independent way. �

A notable point is that, in the two-qubit case, under partial
transposition, the shared density matrix can have only one
negative eigenvalue and all other eigenvalues are positive
definite, if the state is entangled [18]. Thus in the case of
two qubits, the sign of the coefficient a4 is enough to decide
the NPT-ness, and thereby entanglement of the state—as done
in Sec. II. We don’t need to check the signs of the coefficients
a2,a3. But for higher dimensions, that is not the case.

As discussed in the end of the first paragraph of Sec. II,
Theorem 2 holds under the assumption that the BSM can be
done perfectly. In case it is not possible, one can calibrate
the noisy BSM by using it on some known states and thereby
use this (calibrated) BSM—taking help of suitably chosen
supplied states τs and ωt .

A. Comparison between our MDI scheme and the
conventional quantum state tomography

In recent works [28,29], it has been shown that, in the
optimal scenario, the total number of different measurement
settings required to check whether an arbitrary state of a
given bipartite system is entangled or not matches with the

total number of different measurement settings required for
quantum state tomography—if the measurement settings are
restricted to single usage of the state at a time. As, in our
aforesaid discussion on universal witnessing in an MDI way,
we have used measurements on multiple copies of the state,
such a matching may not occur. In fact, in this section, we
will argue that our method of universal MDI (i) entanglement
witnessing scheme for two qubits, and (ii) NPT-ness witness
scheme for two qudits are better—resource wise—compared
to quantum state tomography (assuming that the BSM can be
done perfectly).

In quantum state tomography, for a two-qudit system, we
surely require d4 − 1 number of different measurement set-
tings, as the number of coefficients in any basis representation
(like generalized Gell-Mann matrices �n [30]) are d4 − 1, in
general:

ρd2×d2 = 1

d2

⎡
⎣I ⊗ I +

d4−1∑
n=1

rn�n

⎤
⎦. (15)

The coefficients rn ∈ R, can be obtained from the expectation
values of the observables �n : rn = Tr[ρd2×d2�n]. Therefore,
for each coefficient, a single copy of the state has to be
used. In order to reconstruct the state, we need to know
exact values of the coefficients; their signs only won’t provide
us sufficient information. The erroneous numerical values of
these coefficients lead to an estimated state, generally different
from ρd2×d2 . It may be noted here that it is possible to perform
quantum state tomography of any two-qudit state ρAB in
an MDI way by supplying one of a given set of (linearly
independent) d4 − 1 no. of two-qudit states σ

(1)
A1B1

, σ
(2)
A1B1

,

. . . , σ
(d4−1)
A1B1

, and thereby performing measurement of the

projector |�+〉AA1BB1
〈�+| on one of the states σ

(1)
A1B1

⊗
ρAB, σ

(2)
A1B1

⊗ ρAB, . . ., σ
(d4−1)
A1B1

⊗ ρAB. Here |�+〉AA1BB1
=

1
d

∑d
i,j=1 |ij〉AA1

⊗ |ij〉BB1
. In fact, it will also be possible

to perform measurement in the maximally entangled states
|�+〉AA1

and |�+〉BB1
separately. Once again, it is assumed

here that measurement of |�+〉 can be done perfectly. In
case that is not possible, one can calibrate the corresponding
erroneous measurement by performing it on some known
states, and thereby use the calibrated measurement for the MDI
purpose—by suitably choosing the supplied states τs and ωt .
Even in this latter case, the required number of measurement
settings is much less than the one required for the usual state
tomography (see Appendix 4). �

In case of tomography of two-qubit states we require
measuring 15 parameters, so we need at least 15 measurement
settings globally. But in our case (of witnessing entanglement
universally), without going into any MDI scheme, to measure
a2 in Eq. (12), we have to measure the expectation value of a
single observable V (2) only on two copies of ρAB. For a3 in
Eq. (13), we need to measure expectation values of two ob-
servables Id2×d2 ⊗ V (2),Ṽ (3) ⊗ Ṽ (3)T + Ṽ (3)T ⊗ Ṽ (3) on three
copies of ρAB. Similarly for a4, we have four observables to
measure. But as for the two-qubit case the sign of a4 is the
deciding factor for entanglement, we need four measurement
settings. So, we need here fewer numbers of measurement
settings compared to the case of state tomography, at the cost
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of using n copies of the state to determine the coefficient an

(for n = 2,3,4, . . .).
In the case of a two-qudit state tomography, we require

at least d4 − 1 measurement settings. But for our NPT-ness
witness scheme in an MDI way, the required number of
measurement settings is much less than that.

IV. WITNESSING ENTANGLEMENT IN AN ARBITRARY
PPT STATE OF A GIVEN BIPARTITE SYSTEM

Existence of PPT entangled states ρAB (so-called PPT
bound entangled states) is well known whenever dim(HA) ×
dim(HB) > 6. Evidently our scheme of universal NPT-ness
witness, as described in Sec. III, does not work here to detect
entanglement of any such state. Below we try to argue that a
universal entanglement witness operator cannot exist to single
out entanglement in any PPT state of a given bipartite system,
through some conjectures.

Conjecture I. If dim(HA) × dim(HB) > 6, there cannot
exist one (or a finitely many) universal entanglement witness
operator(s) detecting entanglement in an arbitrary PPT state
ρAB, and which can be realized in an MDI way.

The reason behind this conjecture is another conjecture
(following).

Conjecture II. There cannot exist a universal EW (or, a
finitely many EW operators) for all PPT entangled states of
any given bipartite system.

Let us try to provide some geometrical argument which
potentially may give rise to Conjecture II.

Let DAB,SAB,PAB, respectively, be the set of all density
matrices, separable density matrices, and density matrices
which are positive semidefinite under partial transposition
(PPT) onHAB; P̃AB be the set of all entangled density matrices
(PPTE) inPAB.SAB andPAB are both convex sets. It is obvious
that, SAB ⊂ PAB ⊂ DAB and PAB − SAB = P̃AB. Note that
P̃AB is not convex. For max{dim(HA),dim(HB)} = 3 together
with min{dim(HA),dim(HB)} = 2, PAB = SAB. Let P̃ ′AB be
the set of all the states formed by the convex combination of
states in P̃AB.

Edge state. ρAB ∈ P̃AB is an edge state iff the state
(ρAB + pσAB)/(1 + p) ∈ SAB for all p ∈ (0,1] and for all
σAB ∈ SAB. Edge states lie near the boundary of SAB and
exist for dim(HA),dim(HB) � 3.

It is well known that [31,32] there always exist at least
two edge states ρ

(α)
AB,ρ

(β)
AB ∈ P̃AB such that their convex

combination, pρ
(α)
AB + (1 − p)ρ(β)

AB = σAB ∈ SAB for 0 < p <

1. Hence for, dim(HA),dim(HB) � 3, P̃ ′AB ∩ SAB �= φ (null
set). This is the case when we consider only a single copy
of the state. Figure 2 depicts existence of these edge states in
region (II) near the common boundary of (II) and (III).

From Fig. 2 it is clear (at least pictorially) that there cannot
exist a Hermitian operator W : Cd ⊗ Cd → Cd ⊗ Cd such
that Tr[WρAB] < 0 for all ρAB ∈ P̃AB while Tr[WσAB] � 0
for all σAB ∈ SAB. So, in the single copy case, no such
universal witness operator W exists to witness entanglement
in all ρAB ∈ P̃AB.

Now, the question is—as in the case of qubits—is it possible
to have a (or a finite number of) universal witness operator(s)
W univ which can detect entanglement in any PPT state ρAB

FIG. 2. Distribution of density matrix spaces acting on the Hilbert
space HA ⊗ HB. [(I) + (II) + (III) + (IV)] ≡ DAB, the set of all
density matrices. (I) ≡ DAB − PAB is the set of all NPT states, PAB
is the set of all states having PPT. (II) ≡ P̃AB, the set of all PPT
entangled states, [(III) + (IV)] ≡ SAB, is the set of all separable
states, [(II) + (III)] ≡ P̃ ′

AB is the set of a convex combination of PPT
entangled states. Region (III) clearly depicts the non-empty-ness of
(P̃ ′

AB
⋂

SAB). This holds due to the fact that P̃AB is a nonconvex
subset of the convex set PAB .

of two qudits in case n copies of the state are supplied with
n � 2?

We conjecture below that such a W univ does not exist.
In this direction let’s consider DAnBn

to be the set of
all density matrices on HA

⊗n ⊗ HB
⊗n.S ′

AB
(n) be the set

formed by the convex combinations of the states σ⊗n
AB , where

σAB ∈ SAB, and let P̃ ′(n)
AB be the set formed by the convex

combinations of the states ρ⊗n
AB, where ρAB ∈ P̃AB. If SAnBn

be the set of all separable states onHA
⊗n ⊗ HB

⊗n, it is evident
that S ′

AB
(n) ⊆ SAnBn

and it is most likely that SAnBn
∩ P̃ ′(n)

AB �=
φ (null set) for all n with dim(HA),dim(HB) � 3, because of
the existence of edge states on HA

⊗n ⊗ HB
⊗n.

Conjecture III. S ′
AB

(n) ∩ P̃ ′(n)
AB �= φ for all n with

dim(HA),dim(HB) � 3.

Figure 2 depicts Conjecture III to be true with n = 1.

Conjecture III implies that there always exist at least two
states ρ

(α)
AB,ρ

(β)
AB ∈ P̃AB such that a convex combination of their

n number of copies belongs to S ′
AB

(n) for all n � 1 (see Fig. 3):

p
(
ρ

(α)
AB
)⊗n + (1 − p)

(
ρ

(β)
AB
)⊗n =

∑
r

pr

(
σ

(r)
AB
)⊗n

. (16)

Validity of Conjecture III implies nonexistence of any
Hermitian operator,

WAnBn
: HA

⊗n ⊗ HB
⊗n → HA

⊗n ⊗ HB
⊗n,

for which Tr[WAnBn
(ρAB)⊗n] < 0 for some ρAB ∈ P̃AB to-

gether with Tr[WAnBn
(σAB)⊗n] � 0 for all σAB ∈ SAB—

irrespective of the choice of n.

Thus, validity of Conjecture III implies that there cannot
exist a universal EW (or finitely many EWs) which can detect
entanglement in all the PPT entangled states of the bipartite
system A + B whenever d � 3.

This automatically implies the validity of Conjecture II.
It appears to be quite difficult to verify Conjecture III
directly. One may try to verify whether for some given states
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FIG. 3. Distribution of density matrix spaces acting on the Hilbert
space HA

⊗n ⊗ HB
⊗n. [(I)

⋃
(II)

⋃
(III)

⋃
(IV)

⋃
(V)] ≡ DAnBn

,

the set of all density matrices. (II)≡ SAnBn
be the set of all separable

states, (III) ≡ S ′
AB

(n) is the set of convex combinations of all states

like σ⊗n
AB , where σAB ∈ SAB . (IV) ≡ P̃ ′(n)

AB be the convex combination
of all the states like ρ⊗n

AB, where ρAB ∈ P̃AB. (V) contains convex
combination of all the states like ρ⊗n

AB, where ρAB ∈ DAB − P̃AB, the
set of all NPT states at the single copy level. We conjecture about the
non-empty-ness of the intersection (III)

⋂
(IV), and the empty-ness

of (III)
⋂

(V).

ρα
AB ∈ P̃AB, there exists a separable state σAB ∈ HA

⊗n ⊗
HB

⊗n such that

Tr

[
O
∑

α

pα

(
ρ

(α)
AB
)⊗n

]
= Tr[OσAB],

for a complete set of linearly independent observables O :
HA

⊗n ⊗ HB
⊗n → HA

⊗n ⊗ HB
⊗n. Even verification of this

one may turn out to be difficult.
This difficulty seems to arise from the well-known fact

that the separability problem (that is, to find out whether an
arbitrary state of a given bipartite quantum system is entangled
or separable) is NP-hard [33,34]. See also [35].

V. NOISE ANALYSIS FOR REAL EXPERIMENTS

Recently, a few experimental works [13,36] have been
done to implement the aforesaid MDI protocol to witness the
entanglement in two particular classes of two-qubit states.

We now analyze the effect of possible noises in the
Bell-state-measurement (BSM) part of both the aforesaid
experimental setups. Here we introduce three kinds of possible
noise (see Fig. 4).

(1) Photon loss in polarizing beam splitter (PBS). We model
here the photon loss in a PBS through the action of a white
noise—as described below.

(2) Error in the angle of rotation in half wave plate
(HWP). HWP rotates the polarization axis of the light vector
(which carries the information about the projected state by

FIG. 4. Bell-state projection 1
2 (|HH 〉 + V V )(〈HH | + 〈V V |)

measurement via coincidence counts. Photon propagations are de-
noted by red arrows. PBS, polarizing beam splitter; HWP, half wave
plate; D, single-photon detector.

the measurement operator) with respect to its direction of the
propagation of light ray by the angle equals two times of the
angle (θ ) between the fast axis of HWP and the polarization
axis. So, if the angle of rotation is improper, we can take it as
2θ + η, where η is the error in BSM.

(3) Detection inefficiencies in diode photon-detector parts.
For detection inefficiency, the probability of detection gets
reduced by a factor ξA in Alice’s side and a factor ξB in Bob’s
side such that 0 � ξA,ξB � 1 and the probability of detection
in BSM becomes ξP (1,1|τs,ωt ), where ξ = ξAξB.

For our discussion, we choose the Bell state projector
|�+〉 〈�+| as the measurement operator (in BSM), where
|�+〉 = 1√

2
(|HH 〉 + |V V 〉) with the consideration that the

horizontally polarized state is |H 〉 = (1 0)T ≡ |0〉 and ver-
tically polarized state is |V 〉 = (0 1)T ≡ |1〉 .

Under additive white noise (a special case), our actual
measurement operator will be μ |�+〉 〈�+| + 1−μ

4 I, where μ

is the corresponding visibility.
We assume the direction of propagation of photon to be

along the y axis (denoted by red rays in Figs. 4 and 5), where
the reference coordinate frames are fixed at every HWP. Thus,
if the angle of rotation for the polarization axis (shown in
Fig. 5) of one player and that coming from the referee are,
respectively, 2g1 and 2g2 then, the rotated Bell state is given
by

e−ig1σy ⊗ e−ig2σy |�+〉
= cos(g2 − g1) |�+〉 + sin(g2 − g1) |�−〉 , (17)

where |�−〉 = 1√
2
(|HV 〉 − |V H 〉). So, if g2 − g1 ∈ {0, ±

π, ± 2π, ± 3π, ± 4π} then |�+〉 〈�+| will remain the same
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FIG. 5. Light ray passing through the half wave plate. The
polarization axis, rotates by angle 2θ with respect to the direction
of propagation. θ is the angle between the polarization axis of the
incident ray and the fast axis of the HWP. The fast axis of the HWP
lies in the xz plane.

and there is no error in the HWP. Therefore, after passing
through the noisy PBS and HWP, our noisy Bell state projector
|�+〉 〈�+| will become the following noisy one:

P = μ cos2(g2 − g1) |�+〉 〈�+|
+μ cos(g2 − g1) sin(g2 − g1)(|�−〉 〈�+| + |�+〉 〈�−|)
+μ sin2(g2 − g1) |�−〉 〈�−| + 1 − μ

4
I. (18)

Let’s take g2 − g1 = �. Then the noisy projection operator
shared between A and a part coming from the referee A0 is
given by

PA0A = μ1 cos2(�1) |�+〉 〈�+|
+μ1 cos(�1) sin(�1)(|�−〉 〈�+| + |�+〉 〈�−|)
+μ1 sin2(�1) |�−〉 〈�−| + 1 − μ1

4
I. (19)

Similarly for B and B0 we have

PBB0 = μ2 cos2(�2) |�+〉 〈�+|
+μ2 cos(�2) sin(�2)(|�−〉 〈�+| + |�+〉 〈�−|)
+μ2 sin2(�2) |�−〉 〈�−| + 1 − μ2

4
I. (20)

Here, μ1 and μ2 are the visibilities of the PBS’s of the
A side and B side, respectively, in the noisy measurement of
|�+〉 ,�1, and �2 are the corresponding errors in the rotational
angle in HWP in the A side and B side, respectively.

So, our desired (modified) quantity will be

Imod(ρAB)

=
∑
s,t

βst ξ Tr
[(

PA0A ⊗ PBB0

)
(τs ⊗ ρAB ⊗ ωt )

]

= ξ

[
μ1μ2 cos2(�1) cos2(�2) + μ1(1 − μ2)

4
cos2(�1)

+ μ2(1 − μ1)

4
cos2(�2) + (1 − μ1)(1 − μ2)

16

]
× I (ρAB) + additional term. (21)

TABLE I. Input states used in Ref. [36] for Alice’s and Bob’s
sides and their corresponding Bloch vectors.

Input states τs,ωt Bloch vectors �rs, �Rt

τ1 = ω1 = |H 〉 〈H | �r1 = �R1 =( 0, 0, 1)
τ2 = ω2 = |V 〉 〈V | �r2 = �R2 =( 0, 0,−1)
τ3 = ω3 = |D〉 〈D| �r3 = �R3 =( 1, 0, 0)
τ4 = ω4 = |D̄〉 〈D̄| �r4 = �R4 = (−1, 0, 0)
τ5 = ω5 = |L〉 〈L| �r5 = �R5 =( 0, 1, 0)
τ6 = ω6 = |R〉 〈R| �r6 = �R6 =( 0,−1, 0)

The additional term is given in Eqs. (A13) and (A15) of
Appendix 3.

Now, for simplicity, let us assume that μ1 = μ2 = μ and
�1 = �2 = �.

In the case of a two-qubit shared state ρAB, the input states
τs and ωt take the forms,

τs = I + �rs .�σ
2

, ωt = I + �Rt .�σ
2

,

ρAB = 1

4

(
I ⊗ I +

3∑
i=1

ai I ⊗ σi

+
3∑

i=1

bi σi ⊗ I +
3∑

i,j=1

cij σi ⊗ σj

)
,

with �rs = (xs,ys,zs) and �Rt = (xt ,yt ,zt ) ∈ R3,|�rs |,| �Rt |
� 1,(a1,a2,a3) ∈ R3,(b1,b2,b3) ∈ R3;

(cij )3
i,j=1is a real 3 × 3 matrix. (22)

The corresponding form of Imod(ρAB) is given in Eq. (A16) of
Appendix 3.

According to Ref. [36], the input states (τs’s and ωt ’s) are
given in Table I.

The corresponding payoffs (associated to Table I) are:

β11 = β22 = β33 = β44 = β55 = β66 = 1
3 ,

β12 = β21 = β34 = β43 = β56 = β65 = − 1
6 . (23)

Other βst are equal to zero.
The shared state is here ρAB = p |�−〉 〈�−| + 1−p

4 I
which is separable iff 0 � p � 1

3 . Thus, in Eq. (22), c11 =
c22 = c33 = −p, and ckl = 0 when k �= l; ak = bk = 0 ∀k,l ∈
{1,2,3}.

Using Eq. (23) and Table I we have∑
s,t

βst = 1,

∑
s,t

βstxsxt =
∑
s,t

βstysyt =
∑
s,t

βst zszt = 1,

∑
s,t

βstxsyt =
∑
s,t

βstxszt =
∑
s,t

βstysxt

=
∑
s,t

βstyszt =
∑
s,t

βst zsxt =
∑
s,t

βst zsyt = 0.

(24)
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Therefore, according to Eq. (21) [see Eq. (A16) in
Appendix 3 for details], we have

Imod(ρAB) = ξ

4
[1 − pμ2 − 2pμ2 cos(4�)]. (25)

For the allowed values of the noise parameters ξ,μ,�, we
have 0 � Imod(ρAB) � 1

3 . Hence, for these kinds of errors, no
separable state will ever be detected as an entangled one.

Reference [13] deals with the entangled state ρ = (1 −
r) |�−〉 〈�−| + r

2 (|HH 〉 〈HH | + |V V 〉 〈V V |) with 0 � r �
1. ρAB is separable iff 1

2 � r � 1. Here, for this case, c11 =
c22 = (r − 1) and c33 = 2r − 1. ckl = 0 when k �= l; ak =
bk = 0,∀k,l ∈ {1,2,3}.

Here we are going to use the data of Table II in the
Supplemental Material of Ref. [13]. In this case,∑

s,t

βst = 1,

∑
s,t

βstxsxt =
∑
s,t

βstysyt = 1,
∑
s,t

βst zszt = 1,

∑
s,t

βst zsxt =
∑
s,t

βst zsyt =
∑
s,t

βstxsyt

=
∑
s,t

βstxszt =
∑
s,t

βstysxt =
∑
s,t

βstyszt = 0.

(26)

Therefore, according to Eq. (21) [see Eq. (A16) in Appendix 3
for the details],

Imod(ρAB) = ξ

4
[(3r − 2)μ2 cos(4�) + μ2(r − 1) + 1]. (27)

For 1
2 � r � 1 and for allowed values of noise parameters

ξ,μ,�, we have 0 � Imod(ρAB) � 1
2 . So, as in the case

of Ref. [36], separable states will never get detected as
entangled. Thus we see the Bell state measurement in both
the experiments, reported in Refs. [13] and [36], does give
rise to MDIEW for the respective classes of states even if
we consider some specific form of noise in the measurement
setups—as should be the case for any MDIEW scheme.

VI. CONCLUSION

Using the prescription of Auguisiak et al. [18] for wit-
nessing entanglement in an unknown state of two qubits,
we have extended here the measurement-device-independent
entanglement witness scheme of Branciard et al. [15] to
a universal measurement-device-independent entanglement
witness scheme for two-qubit states, the caveat being that we
need four copies of the state at a time and the referee should
supply the input states from 16-dimensional Hilbert spaces of
Alice and Bob separately. In an aim to extend this result to
higher dimension, we provided here a measurement-device-
independent scheme for universally witnessing NPT-ness of
an unknown state of any given bipartite system—provided
many copies of the state are being supplied at a time. Of
course, this number of copies (as well as the number of
different measurement settings required) is much less than
what is required for state tomography. We conjectured that,

there doesn’t exist a single or a finitely many universal witness
operators for witnessing entanglement in an arbitrary PPT state
of a given bipartite system, a support for which comes from
the well-known result that the separability problem is NP-hard
[33,34]. Our noise analysis of the Bell state measurement
scenario in both the experimental demonstrations of MDIEW
[13,36] are in conformity with the MDI of EW of Branciard
et al. [15].

ACKNOWLEDGMENT

The authors would like to thank Sandeep K. Goyal and
Manik Banik for useful discussion on the present work.

APPENDIX

1. The explicit form of the operators appeared in Eq. (6)

By looking at the action of Ṽ (4) on an arbitrary state |ψA〉 =
(α |0〉1 + β1 |1〉 )A1

⊗ (α2 |0〉 + β2 |1〉 )A2⊗(α3 |0〉 + β3 |1〉 )A3
⊗ (α4 |0〉 + β4 |1〉 )A4

, one can figure
out that Ṽ (4) acts on HA1 ⊗ HA2 ⊗ HA3 ⊗ HA4 as

Ṽ (4) =
1∑

i,j,k,l=0

|l,i,j,k〉 〈i,j,k,l| . (A1)

On the other hand, by taking action of Ṽ (3) on |ψA〉 , we
get

Ṽ (3) =
1∑

i,j,k=0

|k,i,j 〉 〈i,j,k| , (A2)

which acts on HAi1
⊗ HAi2

⊗ HAi3
with i1,i2,i3 being three

distinct elements of {1,2,3,4}.
Similar expressions are valid for the corresponding opera-

tors acting on HB
⊗nwhere, n = 3,4.

Taking the action of V (2) ⊗ V (2) on a general state,

|ψAB〉 = (α1 |0〉 + β1 |1〉)A1 ⊗ (α′
1 |0〉 + β ′

1 |1〉)B1

⊗ (α2 |0〉 + β2 |1〉)A2 ⊗ (α′
2 |0〉 + β ′

2 |1〉)B2

⊗ (α3 |0〉 + β3 |1〉)A3 ⊗ (α′
3 |0〉 + β ′

3 |1〉)B3

⊗ (α4 |0〉 + β4 |1〉)A4 ⊗ (α′
4 |0〉 + β ′

4 |1〉)B4 ,

we get

V (2) =
1∑

i,j,k,l=0

|kl,ij〉 〈ij,kl| , (A3)

which acts on HAiBi
⊗ HAjBj

for any two different elements
i and j from {1,2,3,4}.

2. Inputs and measurement operators are noisy

Any apparatus is generally influenced by the ambient noise.
In Ref. [15], the players and the referee trust the preparation of
the input states τs’s and ωt ’s. So, the noise in τs and ωt (if any),
is supposed to be known by the referee (or, even by the players).
Some noise may affect the actual shared state ρAB, but as our
method works universally, we will consider the noise-induced
shared state as the actual state ρAB; entanglement of such a
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noise-induced state needs to be detected. Note that so far as
the set LAB (say) of input joint states ηA0B0 (say) of A0 and
B0—to be supplied by the referee to Alice and Bob—is known
a priori, the MDIEW will work equally well—irrespective of
whether ηA0B0 has entanglement or not. Thus the knowledge of
the set LAB and authenticity of the supplied states ηA0B0 from
LAB are assumed to be guaranteed a priori for the aforesaid
MDIEW scheme of Branciard et al. [15].

Even though both the players as well as the referee have trust
in the preparation of the input states τs and ωt , for experimental
purpose, these states may get affected by some unwanted noise
on which the experimenter may not have any control. In this
scenario, it is important to know how robust the MDIEW
scheme is in the presence of such a noise. In this direction,
a general d dimensional noise can be expressed as 1

d
�n. ��d×d

where ni and �i are the i th components of generalized Bloch
vector and Gell-Mann matrix in the d dimension, respectively,
�0 = Id×d [30]. If the visibility μ of the actual input state is
the same for all input states, and assume the visibility remains
constant throughout the experiment, then the players (Alice
and Bob) would receive the input states as

τ ′
s = μτs + (1 − μ)

d
�n1 · ��d×d

=
[

(1 − μ)

d
�n1 + μ

d
Tr(τs

��d×d )

]
· ��d×d , and ω′

t

=
[

(1 − μ)

d
�n2 + μ

d
Tr(ωt

��d×d )

]
· ��d×d ,

instead of τs and ωt , respectively. If the referee is not aware
about the noise mixed with the inputs, there will be mismatch
of the value of I (ρAB) from its actual value—the case when
the referee has information about the noise characteristics.

In the game, the form of W is known to the referee; he
calculates the payoff functions, βst according to the inputs
from the relation (2). If the referee uses τ ′

s and ω′
t as the inputs

instead of τs and ωt , his calculated value βst will be different
compared to the actual one that will give rise to the actual
value of I (ρAB).

The modified witness operator looks like

W ′ =
∑
s,t

βst τ
′T
s ⊗ ω

′T
t = μ2

d2

∑
s,t

βst τ
T
s ⊗ ωT

t

+ additional noise terms. (A4)

So, by knowing the amount of noise induced in the input states,
the referee can calculate the modified value of βst , which
comes from the linear equation generated by Tr[W ′(τ

′T
s ⊗

ω
′T
t )], for all s,t .

So, we can claim that if the referee knows about the
character of the noise in inputs, entanglement determination
shouldn’t be erroneous.

In general, the measurement operators can also be noisy,
and the character of the noise is not supposed to be known by
the referee nor by the players. But that noise can obviously
affect the final decision based on the value of I (ρAB). If
a general additive noise, 1

d2 �m · ��d2×d2 is added with the

maximally entangled projector 1
d

∑d
i,j=1 |ii〉 〈jj | , then with

the visibility ν of the original measurement operator, the actual
measurement operator appears as

ν

d

∑
i,j

|ii〉 〈jj | + (1 − ν)

d2
�m · ��d2×d2 ,

provided this is a positive operator, that is, for all |χ〉 we have

〈χ |
⎛
⎝ν

d

∑
i,j

|ii〉 〈jj | + (1 − ν)

d2
�m · ��d2×d2

⎞
⎠ |χ〉 � 0.

In the standard product basis {|i,j〉} of Cd ⊗ Cd , we can
write

��d2×d2 =
∑

a,b,p,q

〈a,b| �� |p,q〉 |a,b〉 〈p,q|

For notational convenience, in place of ρAB, we will be
using ρ here and also � for �d2×d2 . Then

Pρ(1,1|s,t) = Tr

[{(
ν

d

∑
i,j

|ii〉 〈jj | + (1 − ν)

d2
�m1 · ��

)
⊗
(

ν

d

∑
u,v

|uu〉 〈vv| + (1 − ν)

d2
�m2 · ��

)}(
τs ⊗ ρ ⊗ ωt

)]

= ν2

d2
Tr
[(

τT
s ⊗ ωT

t

)
ρ
]+ ν(1 − ν)

d3
Tr
[(

τT
s ⊗ TrB′ [( �m2 · ��)(I ⊗ ωt )]

)
ρ
]

+ ν(1 − ν)

d3
Tr
[(

TrA′[(τs ⊗ I)( �m1 · −→
� )] ⊗ ωT

t

)
ρ
]+ (1 − ν)2

d4
Tr
[(

TrA′ [(τs ⊗ I) �m1 · ��] ⊗ TrB′ [ �m2 · ��(I ⊗ ωt )]
)
ρ
]

≡ 1

d2
Tr
[(

τ
′′T
s ⊗ ω

′′T
t

)
ρ
]
. (A5)

If in (A5), �m1 · �� = �m2 · �� = Id2×d2 ⊗ Id2×d2 (which will be denoted here as I ⊗ I), and if we define �� = (I,��), then

τ
′′T
s ⊗ ω

′′T
t = ν2

d2
τT
s ⊗ ωT

t + ν(1 − ν)

d3
τT
s ⊗ trB0 [(I ⊗ I)(I ⊗ ωt )]

+ ν(1 − ν)

d3
trA0 [(τs ⊗ I)(I ⊗ I)] ⊗ ωT

t + (1 − ν)2

d4
trA0 [(τs ⊗ I)I ⊗ I] ⊗ TrB0 [I ⊗ I(I ⊗ ωt )]
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= ν2

d2
τT
s ⊗ ωT

t + ν(1 − ν)

d3
τT
s ⊗ I + ν(1 − ν)

d3
I ⊗ ωT

t + (1 − ν)2

d4
I ⊗ I

= 1

d4
I ⊗ I + ν

d4
(I ⊗ ��) · tr

(��ωT
t

)+ ν

d4
(�� ⊗ I) · tr

(��τT
s

)+ ν2

d4

(�� · tr
(��τT

s

))⊗ (�� · tr
(��ωT

t

))
= 1

d4

(
I + ν �� · tr

(��τT
s

))(
I + ν �� · tr

(��ωT
t

))
. (A6)

Thus this is just a shrinking operation of the generalized Bloch vector ��.
If the referee is unaware about the noise, then, there is deviation from the actual results. So, the referee will use the coefficients

βst to be the same as that obtained without any noise. In the presence of noise in inputs and the measurement operator, the witness
operator form becomes

∑
s,t

βst

[
ν2

d2

(
μτs + (1 − μ)

d
�n1 · ��d×d

)T

⊗
(

μωt + (1 − μ)

d
�n2 · ��d×d

)T

+ ν(1 − ν)

d3

(
μτs + (1 − μ)

d
�n1 · ��d×d

)T

⊗ trB0

[
( �m2 · ��)

(
I ⊗

(
μωt + (1 − μ)

d
�n2 · ��d×d

))]

+ ν(1 − ν)

d3
trA0

[((
μτs + (1 − μ)

d
�n1 · ��d×d

)
⊗ I

)
( �m1 · ��)

]
⊗
(

μωt + (1 − μ)

d
�n2 · ��d×d

)T

+ (1 − ν)2

d4

{
trA0

[((
μτs + (1 − μ)

d
�n1 · ��d×d

)
⊗ I

)
�m1 · ��

]
⊗ trB0

[
�m2 · ��

(
I ⊗

(
μωt + (1 − μ)

d
�n2 · ��d×d

))]}]
≡ W ′′(say). (A7)

Therefore, to get the correct result, in the expression of W , given by Eq. (2), instead of τT
s ⊗ ωT

t , the referee should use

τ
′′T
s ⊗ ω

′′T
t = ν2

d2
τT
s ⊗ ωT

t + ν(1 − ν)

d3
τT
s ⊗ TrB0 [( �m2 · ��)(I ⊗ ωt )]

+ ν(1 − ν)

d3
TrA0 [(τs ⊗ I)( �m1 · ��)] ⊗ ωT

t + (1 − ν)2

d4
TrA0 [(τs ⊗ I) �m1 · ��] ⊗ TrB0 [ �m2 · ��(I ⊗ ωt )]. (A8)

By knowing the character of the noise mixed with the measurement operator, the referee can change the βst values and in this
way I (ρ) remains proportional to Tr(Wρ). If he doesn’t know that, then the error will be proportional to Tr[(W ′′ − W )ρ], where

W ′′ − W =
∑
s,t

βst

[
τ

′′T
s ⊗ ω

′′T
t − τT

s ⊗ ωT
t

]
, (A9)

and βst are calculated according to the Eq. (2).
With noisy input states and measurement operator, we have

I (ρ) = I (ν,μ, �m1, �m2,�n1,�n2,ρ) = I (1,1,�0,�0,�0,�0,ρ) + Tr

[
ρ

(
W ′′ −

∑
s,t,a,b

βab
st τ T

s ⊗ ωT
t

)]
. (A10)

So noise (both in preparation as well as measurement) can, in principle, degrade the quality of measurement-device-
independent implementation of the entanglement witness operator. Based upon reliability of the state preparations, noise in
the BSM can, in principle, be detected and thereby using the complete knowledge of such a noisy BSM, MDIEW is possible.

3. Expression for Imod(ρAB)

Our original witnessing function was

I (ρAB) =
∑
s,t

βstTr[(|�+〉 〈�+| ⊗ |�+〉 〈�+|)(τs ⊗ ρAB ⊗ ωt )], (A11)

while the modified form of that is (due to noise in BSM)

Imod(ρAB) =
∑
s,t

βst ξ Tr
[(

PA0A ⊗ PBB0

)
(τs ⊗ ρAB ⊗ ωt )

]
, (A12)
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where the modified measurement operator is given by

PA0A ⊗ PBB0 = μ1μ2 cos2(�1) cos2(�2) |�+〉 〈�+| ⊗ |�+〉 〈�+|
+μ1μ2 cos2(�1) cos(�2) sin(�2) |�+〉 〈�+| ⊗ (|�−〉 〈�+| + |�+〉 〈�−|)
+μ1μ2 cos2(�1) sin2(�2) |�+〉 〈�+| ⊗ |�−〉 〈�−| + μ1(1 − μ2)

4
cos2(�1) |�+〉 〈�+| ⊗ I

+μ1μ2 cos(�1) sin(�1) cos2(�2)(|�−〉 〈�+| + |�+〉 〈�−|) ⊗ |�+〉 〈�+| + μ1μ2 cos(�1) sin(�1) cos(�2)

× sin(�2)(|�−〉 〈�+| + |�+〉 〈�−|) ⊗ (|�−〉 〈�+| + |�+〉 〈�−|)
+μ1μ2 cos(�1) sin(�1) sin2(�2)(|�−〉 〈�+| + |�+〉 〈�−|) ⊗ |�−〉 〈�−|
+ μ1(1 − μ2)

4
cos(�1) sin(�1)(|�−〉 〈�+| + |�+〉 〈�−|) ⊗ I

+μ1μ2 sin2(�1) cos2(�2) |�−〉 〈�−| ⊗ |�+〉 〈�+|
+μ1μ2 sin2(�1) cos(�2) sin(�2) |�−〉 〈�−| ⊗ (|�−〉 〈�+| + |�+〉 〈�−|)
+μ1μ2 sin2(�1) sin2(�2) |�−〉 〈�−| ⊗ |�−〉 〈�−|
+ μ1(1 − μ2)

4
sin2(�1) |�−〉 〈�−| ⊗ I + (1 − μ1)μ2

4
cos2(�2)I ⊗ |�+〉 〈�+|

+ (1 − μ1)μ2

4
cos(�2) sin(�2)I ⊗ (|�−〉 〈�+| + |�+〉 〈�−|)

+ (1 − μ1)μ2

4
sin2(�2)I ⊗ |�−〉 〈�−| + (1 − μ1)(1 − μ2)

16
I ⊗ I. (A13)

In right-hand side of Eq. (A13), only four terms—first, fourth, thirteenth, and sixteenth summands—will contribute to the
projector |�+〉 〈�+| ⊗ |�+〉 〈�+|. These terms are as follows:

μ1μ2 cos2(�1) cos2(�2) |�+〉 〈�+| ⊗ |�+〉 〈�+| ,
μ1(1 − μ2)

4
cos2(�1) |�+〉 〈�+| ⊗ I,

(1 − μ1)μ2

4
cos2(�2)I ⊗ |�+〉 〈�+| , and (A14)

(1 − μ1)(1 − μ2)

16
I ⊗ I,

because I is mixture of four Bell states,

I = |�+〉 〈�+| + |�−〉 〈�−| + |�+〉 〈�+| + |�−〉 〈�−| .
Therefore, from Eqs. (A11)–(A13) we have

Imod(ρAB) = ξ

[
μ1μ2 cos2(�1) cos2(�2) + μ1(1 − μ2)

4
cos2(�1)

+ μ2(1 − μ1)

4
cos2(�2) + (1 − μ1)(1 − μ2)

16

]
I (ρAB) + additional term. (A15)

This additional term comes from all the terms in the right-hand side of Eq. (A13) except the above-mentioned four terms in
(A14).

Thus, both multiplicative and additive noises are present in the system.
Now, using Eqs. (22) and (A15), we have [for the choice μ1 = μ2 = μ and �1 = �2 = �,],

Imod(ρAB) = ξ

8

∑
s,t

βst [2a3μ sin(2�)xt + 2a1μ cos(2�)xt − 2a2μyt − 2a1μ sin(2�)zt

+ 2a3μ cos(2�)zt + 2b1μ(cos(2�)xs + sin(2�)zs) − 2b3μ(sin(2�)xs − cos(2�)zs)

− 2b2μys − 2c33μ
2 sin2(2�)xsxt + c13μ

2 sin(4�)xsxt − c31μ
2 sin(4�)xsxt

+ 2c11μ
2 cos2(2�)xsxt − 2c23μ

2 sin(2�)ysxt + 2c32μ
2 sin(2�)xsyt

− 2c21μ
2 cos(2�)ysxt − 2c12μ

2 cos(2�)xsyt + 2c13μ
2 sin2(2�)zsxt

+ 2c31μ
2 sin2(2�)xszt + c11μ

2 sin(4�)zsxt + c33μ
2 sin(4�)zsxt − c11μ

2 sin(4�)xszt

− c33μ
2 sin(4�)xszt + 2c31μ

2 cos2(2�)zsxt + 2c13μ
2 cos2(2�)xszt + 2c22μ

2ysyt

− 2c12μ
2 sin(2�)zsyt + 2c21μ

2 sin(2�)yszt − 2c32μ
2 cos(2�)zsyt − 2c23μ

2 cos(2�)yszt

− 2c11μ
2 sin2(2�)zszt + c13μ

2 sin(4�)zszt − c31μ
2 sin(4�)zszt + 2c33μ

2 cos2(2�)zszt + 2]. (A16)
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4. Noisy Bell state measurement for MDI tomography

Assume that the two-qubit BSM { |�+〉 〈�+| ,I4×4 − |�+〉 〈�+| } is noisy and it is of the form {(1 − ζ ) |�+〉 〈�+| + (1 −
ζ )I4×4,(1 − ζ )(I4×4 − |�+〉 〈�+|) + ζ |�+〉 〈�+| } with unknown ζ ∈ [0,1]. Now, for the referee’s input state τs = 1

2 (I2×2 +
�rs · �σ ) to Alice and a fixed state ϒ = 1

2 (I2×2 + �r · �σ ) of Alice (with �rs,�r ∈ R3 and |�rs |,|�r| � 1), from the observed value
� := Tr[{(1 − ζ ) |�+〉 〈�+| + (1 − ζ )I4×4} × {τs ⊗ ϒ}], one gets

ζ = 4� − (1 + rsxrx − rsyry + rszrz)

3 − (rsxrx − rsyry + rszrz)
.

Knowledge of ζ can now be used to get measurement statistics after performing the aforesaid noisy measurement.
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