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Optimization by a quantum reinforcement algorithm
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A reinforcement algorithm solves a classical optimization problem by introducing a feedback to the system,
which slowly changes the energy landscape and converges the algorithm to an optimal solution in the configuration
space. Here, we use this strategy to concentrate (localize) the wave function of a quantum particle, which
explores the configuration space of the problem, preferentially on an optimal configuration. We examine the
method by solving numerically the equations governing the evolution of the system, which are similar to the
nonlinear Schrödinger equations, for small problem sizes. In particular, we observe that reinforcement increases
the minimal energy gap of the system in a quantum annealing algorithm. Our numerical simulations and the
latter observation show that such kind of quantum feedback might be helpful in solving a computationally hard
optimization problem by a quantum reinforcement algorithm.

DOI: 10.1103/PhysRevA.96.052307

I. INTRODUCTION

Reinforcement is a very useful technique in machine
learning and optimization algorithms for the study of com-
putationally hard optimization problems [1,2]. The main idea
is based on rewarding good decisions or modifying the energy
landscape in a way that leads the algorithm to an optimal
solution. This is usually done by introducing an appropriate
feedback to the system, which depends on the information
provided by the algorithm, to guide the optimization process.
In this paper, we study a quantum reinforcement algorithm,
which employs a continuous-time quantum random walk to
explore the configuration space of an optimization problem.
We show that such kind of quantum feedback can converge
the quantum particle towards a solution by a preferential
localization of the wave function in the solution space.

Consider the problem of finding a solution to a classical
optimization problem, identified by a probability distribution
over the configuration space of the problem variables. We
assume that the probability distribution is nonzero only for
(a possibly large number of) configurations in the subspace
of solutions. Then a decimation algorithm to find a solution
works by fixing the value of a randomly chosen variable
according to the marginal probability of that variable. The
algorithm continues until the value of every variable is
fixed. The marginal probabilities at each step are obtained
by an approximate sampling algorithm, e.g., Monte Carlo,
conditioned on the values of the already decimated variables.
Instead of fixing the variables one by one, a reinforcement
optimization algorithm modifies smoothly the joint probability
distribution of the variables by changing slowly the values of
some external local fields acting on the variables [3]. These
local fields use the estimated marginal probabilities of the
variables to concentrate the joint probability distribution more
and more on a single configuration in the solution space.

On the other hand, a quantum algorithm exploits the
computational power of a quantum system to solve a
computationally difficult problem [4–7]. Quantum random

*aramezanpour@gmail.com

walks [8–13] and adiabatic quantum computation [14,15]
are important examples of quantum approaches to universal
computations [16,17]. Specifically, we should mention recent
efforts in constructing effective shortcuts to adiabaticity [18–
20], nonunitary evolution of quantum random walks and non-
Hermitian quantum annealing [21,22], and investigations of
quantum annealing with nonstoquastic Hamiltonians [23–25].
Another related study is the quantum reinforcement learning
algorithm [26], which is a quantum implementation of the
reinforcement learning algorithm.

The wave function of a quantum particle in the complex
energy landscape of an optimization problem can undergo
a localization transition, which may limit the efficiency of
a quantum annealing algorithm [27,28]. Here, we propose a
quantum reinforcement algorithm, which works by concen-
trating the wave function preferentially on the subspace of
optimal configurations. The algorithm exploits the information
provided by the instantaneous wave function of the system, or
expectation values of some local observables, to steer the evo-
lution of the quantum system. In addition, we show that such a
quantum reinforcement can increase the minimum energy gap
that the system encounters in a quantum annealing algorithm.

It is known that a nonlinear quantum mechanic can be
exploited by a quantum computer to solve a computationally
hard problem in a polynomial time [29]; this does not
mean that quantum mechanics is nonlinear in nature, or
any nonlinearity in the time evolution of the quantum
system is computationally beneficial. Here, we show that
a kind of nonlinear quantum evolution inspired from the
classical reinforcement algorithms can be used to increase the
energy gap and speedup the computation compared with the
conventional quantum annealing algorithm.

II. MAIN DEFINITIONS

We consider the classical optimization problem of minimiz-
ing an energy function E(σ ) of N binary spins σi = ±1. To be
specific, as the benchmark we take a (fully connected) random
spin model, with E(σ ) = −∑

i<j Jij σiσj . The couplings Jij

are independent Gaussian random variables of mean zero and
variance 1/N . The scaling is chosen to have an extensive
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energy of order N . This model is known as the Sherrignton-
Kirkpatrick (SK) model [30],

We shall use a continuous-time quantum random walk to
explore the space of spin configurations σ = {σ1, . . . ,σN }.
The space is a hypercube of 2N sites corresponding to the total
number of spin configurations. The Hamiltonian of the particle
in the energy landscape of the classical optimization problem
is given by

H =
∑

σ

E(σ )|σ 〉〈σ |−
∑

σ

N∑
i=1

�(|σ−i〉〈σ | + |σ 〉〈σ−i |). (1)

The parameter � determines the strength of tunneling from
|σ 〉 to a neighboring state |σ−i〉. Here |σ−i〉 denotes the
spin state, which is different from |σ 〉 only at site i. In
terms of the quantum spin variables (Pauli matrices), the
above Hamiltonian reads as H = −∑

i<j Jij σ
z
i σ z

j − ∑
i �σ x

i .
Additionally, the basis states |σ 〉 are the N -spin states with
definite σ z

i values, that is σ z
i |σ 〉 = σi |σ 〉. Starting from an

initial state |ψ(0)〉, time evolution of the system is governed by
the Schrödinger equation, î d

dt
|ψ(t)〉 = H |ψ(t)〉 with h̄ = 1.

III. QUANTUM REINFORCEMENT ALGORITHM

The goal here is to find a solution to the classical optimiza-
tion problem by following the time evolution of a quantum
system. A quantum annealing (QA) algorithm [14] starts from
the ground state of Hx ≡ −∑

i �σ x
i and changes slowly the

Hamiltonian to Hc ≡ −∑
i<j Jij σ

z
i σ z

j . The adiabatic theorem
then ensures that in the absence of level crossing, the system
follows the instantaneous ground state of the time-dependent
Hamiltonian HQA(t) = s(t)Hc + [1 − s(t)]Hx . The annealing
parameter s(t) changes slowly from zero at t = 0, to one at
t = T . For instance, in a linear annealing schedule s(t) = t/T .

In a quantum reinforcement (QR) algorithm, we add a
reinforcement term to the Hamiltonian, which favors the spin
states of higher probability. More precisely, the Hamiltonian
is HQR(t) = Hc + Hx + Hr (t), where the reinforcement term
reads as follows:

Hr (t) ≡ −r(t)
∑

σ

|ψ(σ ; t)|2|σ 〉〈σ |. (2)

The reinforcement parameter r(t) is zero at the beginning and
grows slowly in magnitude with time. In a linear reinforcement
schedule we take r(t) = (t/T )2Nr0. In other words, as the time
passes, the on-site energy at state |σ 〉 decreases with an amount
that is proportional to the probability of finding the walker
at that site |ψ(σ ; t)|2. This probability could be exponentially
small at the beginning of the process. That is why here we scale
the reinforcement parameter with 2N . To have an extensive
Hamiltonian for N → ∞, one can also change the scaling
with time such that r(t) ∝ N at the end of the process, where
the wave function is of order one.

For comparison with the QA algorithm, we also study a
reinforced quantum annealing (rQA), where

HrQA(t) ≡ s(t)[Hc + Hr (t)] + [1 − s(t)]Hx. (3)

This allows us to examine the effect of reinforcement on the
behavior of the quantum annealing algorithm. The reinforce-
ment parameter here is a constant r(t) = Nr0. So, the time

dependence of Hr (t) is determined by ψ(σ ; t), which can
safely be replaced by the instantaneous ground state of the
system for an adiabatic process.

To obtain a local version of the above algorithms,
we first replace the |ψ(σ ; t)|2 with ln |ψ(σ ; t)|2, which
is an increasing function of the probability distribution.
Note that we can always write |ψ(σ ; t)|2 = exp(

∑
i Kiσi +∑

i<j Kijσiσj + · · · )/Z, taking into account all the possible
multispin interactions; Z is the normalization constant. The
coupling parameters Ki,Kij , . . . in principle can be deter-
mined from the expectation values 〈σ z

i 〉,〈σ z
i σ z

j 〉, . . . . A local
quantum reinforcement (lQR) algorithm then is obtained by
approximating the wave function with a product state,

H local
r (t) ≡ −r(t)

∑
σ

∑
i

Kiσi |σ 〉〈σ |. (4)

The reinforcement fields Ki depend on the average spin val-
ues mi = ∑

σ σi |ψ(σ ; t)|2 through Ki = 1
2 ln[(1 + mi)/(1 −

mi)]. Here we increase the reinforcement parameter with
time as r(t) = r0t . More accurate approximations of the wave
function and the local quantum reinforcement algorithm can
be obtained by considering the two-spin and the higher-order
interactions in the expansion.

IV. RESULTS AND DISCUSSION

Figure 1 shows the success probability
∑

σ opt
|〈σ opt|ψ(t)〉|2

of the above algorithms for the SK model. The initial
state |ψ(0)〉 is the equal superposition of spin states |x〉 =

1√
2N

∑
σ |σ 〉, or the all-positive state |+〉 = | + + · · · +〉. In

each case we tried different values of the parameters to obtain
roughly the best performances. As expected for a quantum
random walk, the algorithms are sensitive to the initial state of
the system [11]. We see from the figure that the QR algorithms
can localize a considerable fraction of the wave function on the
optimal spin configurations. Nevertheless, the performance of
these algorithms degrades by increasing the number of spins
(for 3 < N < 9). We know that the success probability of the
QA algorithm decreases exponentially with N because of the
exponentially small energy gaps of the Hamiltonian [27]. On
the other hand, we know from Ref. [29] that nonlinear quantum
evolution could be helpful; therefore, it would be interesting
to see how the success probability of the QR algorithm scales
with the number of spins for larger systems.

Figure 1 also shows the percentile values of the success
probability for some independent realizations of the problem;
we see that there are always a finite fraction of the problem
instances for which the success probability of the QR algorithm
is nearly zero; we can indeed enhance the success probability
for these instances by slightly changing the algorithm param-
eters. In Fig. 2(a) we compare the success probability of the
QR algorithm with that of the QA algorithm for a number
of independent problem instances. We observe that the QR
algorithm displays large sample to sample fluctuations, with
very good or very bad performances compared to the QA
algorithm.

The good point with the QR algorithms is that we do not
need the ground state of the Hamiltonian to initialize these
algorithms. Therefore, one can restart the algorithm at any
stage of the evolution with an arbitrary wave function, or a spin
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FIG. 1. Success probability Popt of the algorithms for different number of spins (N ) in the SK model. (a)–(c) show the results obtained by
the quantum annealing (QA), quantum reinforcement (QR), and reinforced quantum annealing (rQA) algorithms. (d)–(f) compare the results
obtained by the QR algorithm for different initial conditions and the local quantum reinforcement (lQR) algorithm. (g)–(i) display the percentile
values of the success probability at the end of the process (t = T ). The initial states are indicated by (×) for the equal superposition of all
spin configurations, and (+) for the all-positive spin configuration. The data are results of 2000 independent realizations of the random spin
model. The statistical errors are about 0.01. For the QA(×) we used � = 0.3 (a), (b), (g), (h) and � = 0.5 (c), (i). For the QR(×) we used
� = 0.8,r0 = 1 (a), (g), � = 1.2,r0 = 1 (b), (h), � = 1.3,r0 = 0.5 (c), (f), (i), � = 1,r0 = 2.5 (d), and � = 1.5,r0 = 2.5 (e). For the rQA(×)
we used � = 0.5,r0 = 1 (a), � = 0.9,r0 = 1 (b), and � = 1.2,r0 = 1 (c). For the QR(+) we used � = 3,r0 = 3.5 (d), � = 2.5,r0 = 2.5 (e),
and � = 2.5,r0 = 2.0 (f). For the lQR(×) we used � = 3,r0 = 1 (d), � = 3.5,r0 = 0.5 (e), and � = 2.5,r0 = 0.2 (f).

configuration, which is sampled from the wave function of the
system at that moment (see also Refs. [31,32]). Figure 2(b)
gives the success probability of a two-stage QR algorithm
where the final wave function of the first stage is taken for the
initial state in the second stage of the algorithm. In this study
we used simple reinforcement schedules [r(t) ∝ t and �(t) =
const.], which is not necessarily the best way of exploiting
the reinforcement; in general, the reinforcement parameter
is expected to grow at the beginning and the tunneling may
diminish at the end of the process. Figure 2(b) shows also the
success probability of the one-stage QR algorithm for the case
in which the reinforcement parameter increases with time at
the beginning of the process and then goes to zero along with
the hopping parameter �. This is to demonstrate that we do
not need an exponentially large reinforcement when the wave
function is of order one.

To see what happens close to a level crossing, we consider a
two-level system with energy function E(σ ) = hσ , where σ =

±1. For the initial state we take |ψ(0)〉 = (|−〉 + |+〉)/√2. In
the QR algorithm, the evolution is governed by the following
Hamiltonian:

H
(2)
QR(t) =

(
h − r(t)|ψ(+; t)|2 −�

−� −h − r(t)|ψ(−; t)|2
)

.

(5)

Figure 3 shows the time dependence of the wave func-
tion and the effective (reinforced) energies E(σ ; t) ≡ hσ −
r(t)|ψ(σ ; t)|2. We see that the energy landscape is favoring
more and more the ground state of the system as the time
passes. Notice also the oscillations in the wave function and
the effective energies; these are reminiscent of the oscillations
that are observed in the amplitude amplification algorithm in
search problems [33].
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FIG. 2. Success probabilities PQR,PQA of the QR and QA
algorithms in the SK model. (a) PQR(T ) vs PQA(T ) at the end of the
process t = T for 2000 independent realizations of the problem. The
parameters and initial conditions are similar to the ones in Fig. 1(c).
(b) Comparing the percentile values of the success probability in
the one- and two-stage quantum reinforcement algorithms (QR1,
QR2) starting from the equal superposition of all the spin states.
The parameters in the two stages are r1(t) = 0.5(t/T )2N,�1 = 1.3
and r2(t) = r1(t) + 0.15,�2 = �1 with T = 5N for each stage. Here
ex-QR1 denotes the one-stage QR algorithm with parameters r(t) =
0.5(t/T )(1 − t/T )2N,�(t) = 2(1 − t/T ), which go to zero at the end
of the process. The data are results of 2000 independent realizations
of the random spin model.

Next, we consider the two-level system with a reinforced
Hamiltonian

H
(2)
R =

(
h − r|ψ0(+)|2 −�

−� −h − r|ψ0(−)|2
)

, (6)

where ψ0(σ ) is the ground state. In Fig. 4(a) we see the energy
gap of the system for different values of the parameters. The
eigenvalues and eigenstates of the Hamiltonian have been
obtained numerically by an iterative algorithm. In Fig. 4(b), we
compare the energy gap of the above reinforced Hamiltonian
with that of a local reinforced Hamiltonian, where |ψ0(σ )|2
is replaced with Kσ . As before, the coupling is given by
K = 1

2 ln[(1 + m)/(1 − m)], where m = |ψ0(+)|2 − |ψ0(−)|2
is the magnetization. In the reinforced quantum annealing
(rQA), the Hamiltonian of the two-level system reads as
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FIG. 3. Time evolution of the two-level system in the quan-
tum reinforcement algorithm. (a) The probabilities |ψ(−; t)|2
and |ψ(+; t)|2, and (b) the effective energy E(σ ; t) = hσ −
r(t)|ψ(σ ; t)|2. The parameters are h = � = 1, and r(t) = 2(t/T )
with T = 5.

follows:

H
(2)
rQA(t)

=
(

(t/T )[h − r|ψ0(+; t)|2] −(1 − t/T )�
−(1 − t/T )� (t/T )[−h − r|ψ0(−; t)|2]

)
.

(7)

Figure 4(c) displays the time dependence of the energy gap
for the quantum annealing and the (local) reinforced quantum
annealing algorithms. As the figure shows, in both the cases
the reinforcement tends to increase the energy gap of the
two-level system.

In Fig. 5 we check the above observation for larger random
spin systems. Here, for the classical problem we take the
SK model with random fields, E(σ ) = −∑

i<j Jij σiσj −∑
i hiσi . The additional interactions with the external fields

ensure that the ground state is not degenerate. The fields hi

are independent Gaussian random variables of mean zero
and variance one. In the numerical simulations we assume
the system follows the instantaneous ground state of the
Hamiltonian HrQA(t). As the figure shows, the reinforcement
increases the energy gap and can be useful as another heuristic
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FIG. 4. (a) The energy gap of the two-level system �E(h) for
different values of � and r in the reinforced Hamiltonian H

(2)
R . (b)

Energy gap of the local reinforced Hamiltonian for given values of
� and r . (c) Time dependence of the energy gap �E(t) for given
values of h,�, and r in the quantum annealing (QA), reinforced
quantum annealing (rQA), and the local version of reinforced
quantum annealing (rQA-local).

algorithm to improve the efficiency of the conventional
quantum annealing algorithm.

V. CONCLUSION

In summary, our numerical simulations of random spin
systems show that quantum reinforcement algorithms might
be useful in solving a computationally expensive optimization
problem. Clearly, more studies are required to see how
this strategy works in larger problem sizes. In particular,
the local version of the quantum reinforcement algorithm
(introduced in Sec. III) can be studied by a quantum Monte
Carlo algorithm for simulation of an open quantum system at
sufficiently small temperatures, to examine the method for
larger systems. Another challenge lies in the experimental
realization of such quantum feedbacks in practice. Recent
advances in quantum control theory [34,35], e.g., the concept
of continuous measurement of a quantum system, could be
helpful in this direction. A naive approach is to approximate
the nonlinear evolution of the quantum system by a sequence of
estimations of the quantum state followed by linear evolutions
of the quantum state [36]. The reinforcement terms in the
Hamiltonian are updated only in the estimation stage, the time
evolution of the system is then controlled by the updated
Hamiltonian in the evolution stage. Specifically, in the case
of the local QR algorithm, we need to engineer a local
Hamiltonian with couplings that can be estimated from a
weak measurement of N commuting spin variables, perhaps
via interaction with some ancillary spins.
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(rQA) with r0 = 1. (a) The average energy gap �E(t) vs the evolution time, and (b) the percentile values of the minimum energy gap �Emin,
for a given number of spins N and �. (c) The average of the minimal energy gap encountered in the annealing process, and (d) the percentile
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