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One-dimensional spin- 1
2 systems are well-known candidates to study the quantum correlations between

particles. In condensed matter physics, studies often are restricted to first-neighbor particles. In this work,
we consider the one-dimensional XXZ model in a transverse magnetic field (TF) which is not integrable except
at specific points. Analytical expressions for quantum correlations (entanglement and quantum discord) between
spin pairs at any distance are obtained for both zero and finite temperature by using the analytical approach
proposed by Caux et al. [Phys. Rev. B 68, 134431 (2003)]. We compare the efficiency of the quantum discord
(QD) with respect to the entanglement in the detection of critical points as the neighboring spin pairs go farther
than the next-nearest neighbors. In the absence of the TF and at zero temperature, we show that the QD for spin
pairs farther than the second neighbors is able to capture the critical points while the pairwise entanglement is
absent. In contrast with the pairwise entanglement, two-site QD is effectively long range in the critical regimes
where it decays algebraically with the distance between pairs. We also show that the thermal QD between
neighbor spins possesses strong distinctive behavior at the critical point that can be seen at finite temperature
and, therefore, spotlights the critical point while the entanglement fails in this task.
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I. INTRODUCTION

Quantum phase transitions (QPTs) is one of the most
interesting research topics in condensed-matter physics. It is
a phase transition that theoretically occurs at absolute zero
temperature where quantum fluctuations play the dominant
role [1]. Due to suppression of the thermal fluctuations at zero
temperature, the ground state of the system is introduced as
the representative of the system which undergoes an abrupt
change at the critical point (CP) [2]. The ground state’s wave
function of a many-body system near a CP at zero temperature
is often nontrivial due to the long-range correlations among
the system’s constituents. Quantum correlations could be
responsible for these correlations [3] and, consequently, could
be useful for studying the QPT. Entanglement is a type of
quantum correlation first pointed out by Schrödinger in 1935
[4] as the characteristic feature of quantum mechanics. It
has been widely considered to be the main resource in most
quantum information processing tasks [5–8]. However, in the
past few years, it has been known that quantum correlations
exist which are not spotlighted by entanglement measures. This
is encompassed very efficiently in the formulation of so-called
quantum discord (QD) as a measure to represent the broadness
of quantum correlations [9,10]. Moreover, intimations exist
that QD is the resource responsible for the speed up in
deterministic quantum computation with one quantum bit
[11,12]. Entanglement and QD have been studied extensively
in a number of contexts, e.g., low-dimensional spin models
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[13–19], open quantum systems [20–24], biological systems
[25], and relativistic [26,27] systems. Recently, pairwise
QD and entanglement have been analyzed as a function of
distance between spins in the transverse field XY chain for
both zero- and finite-temperatures cases [18,28–30]. It has
been displayed that, at zero temperature, QD can capture
a QPT even for situations where entanglement is absent.
Furthermore, pairwise QD of two nearest-neighbor spins in
the XXZ model can also indicate the critical points for
finite temperatures [15,31]. Indeed, establishing finite quantum
correlations between distant parties is undoubtedly imperative
to implement several quantum information processing tasks
in many-body systems with short-range interactions. Along
this direction, it has been shown that QD length is enhanced
by introducing disorder in a spin chain while entanglement
length is not [32].

In this paper we study pairwise entanglement and QD
at both zero and finite temperatures in the one-dimensional
(1D) XXZ chain in the presence of a transverse magnetic
field which is not integrable except at specific points [33].
Our motivation is related to very recent studies of 1D many-
body quantum systems of trapped ions [34,35] where the
entanglement between pairwise spins in a one-dimensional
quantum system of trapped ions has been observed [34].
Moreover, it is experimentally reported that constructed arrays
of magnetic atoms on a surface can be designed to behave like
spin- 1

2 XXZ Heisenberg chains in a transverse magnetic field
(TF) [35]. Consequently, the quantum correlation between
different neighbor spins in the transverse field spin- 1

2 XXZ

Heisenberg chains can be measured experimentally. Further-
more, in Ref. [36], XXZ chains were used to describe quantum
computers based on NMR and they can also be employed for
solid-state quantum computers [37,38].
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The main aim of this study is to search the behavior of the
entanglement and QD at zero and finite temperature for spin
pairs arbitrarily distant by using an analytical approach that
combines a Jordan–Wigner transformation with a mean-field
approximation [39]. To the best of our knowledge, such
contributions have not been explored in previous works and
can bring several new effects to the subject. We show that
the QD for spin pairs more distant than nearest neighbors
is able to characterize QPTs where pairwise entanglement is
absent. This behavior is rather different from the behavior of
two-spin entanglement, which is typically short range even
in the critical regimes. Furthermore, an analysis displays
that the entanglement and QD increase with magnetic field
and temperature for certain regions of parameter space. We
also show that the thermal QD is more robust than the
thermal entanglement as the distance between the spin pairs is
increased.

Then, it is constructive to review the main features of the
one-dimensional XXZ chain in the presence and absence of
a transverse magnetic field. The Hamiltonian of spin- 1

2 XXZ

Heisenberg chains in a TF is given by

H = J

N∑
n=1

[
Sx

nSx
n+1 + Sy

nS
y

n+1 + �Sz
nS

z
n+1

]
, (1)

where Sn is the spin- 1
2 operator of the nth site. J > 0

denotes the antiferromagnetic exchange coupling, and � is
the anisotropy parameter. The periodic boundary condition
is considered. Given the ground-state phase diagram of the
XXZ at zero temperature [40], the model has three phases.
In the limit � � 1, the interactions in the XY plane will be
ignored, thus the model should be in an antiferromagnetic
phase. On the other hand, in the limit � � −1, the model
should be in a ferromagnetic phase. In the intermediate region,
the system is in the gapless Luttinger liquid phase. These three
phases are separated by two critical points (CPs). At � = 1,
we have a continuous quantum phase transition (QPT) and, at
� = −1, we have a first-order transition. At zero temperature,
the quantum correlation between the first neighbor spins in
the XXZ model is studied [13]. It infers that the quantum
correlation between the first-neighbor spins is maximal at the
critical point � = 1 [41]. The critical point � = −1 is not
conformal and has recently attracted some attention [42–44].
It is shown that the finite-size corrections to the energy
per site nontrivially vanish in the ferromagnetic � → −1+
isotropic limit. The multipartite quantum nonlocality is also
investigated in this model [45]. At finite temperature, the
quantum correlations between the first-neighbor spins are
also investigated in this model [15,46]. It is inferred that
the quantum phase transitions have a decisive influence on
a system’s physical property not only for low temperatures,
but also for sufficiently high temperatures where quantum
fluctuations no longer dominate.

One of the striking effects is the dependence of the physical
properties of the 1D spin- 1

2 XXZ model on the direction of
the applied magnetic field. It is known that adding a transverse
magnetic field (h

∑N
n=1 Sx

n ) to the XXZ model breaks the
U(1) symmetry and the exact integrability is lost [47–49]. The
TF induces a gap in the region −1 < � � 1 and the ground
state has the long-range spin-flop order up to a critical TF.

In the region � > 1 (� � −1), by applying the TF, a phase
transition from the Néel (ferromagnetic) phase to a phase
with saturated magnetization along field occurs at a critical
TF. Moreover, a completely factorized [50] ground state may
occur at a specific value of the TF, hf = J

√
2(1 + �). It

was shown that the entanglement of the factorized state in
a TF is remarkably singled out by entanglement [51–53].
The experimental observations on the quasi-one-dimensional
spin- 1

2 antiferromagnet Cs2CoCl4 are a realization of the effect
of such a TF on the low-energy behavior of a 1D XXZ

model [54,55].
The paper is organized as follows: In the next section, we

introduce the model and express an analytical form for the
entanglement and the QD. In Sec. III, analytical results will be
presented. Finally, we conclude and summarize our results in
Sec. IV.

II. QUANTUM CORRELATIONS

Initially, by performing a rotation of spins around the y axis
by π/2, the 1D spin- 1

2 XXZ in a transverse field is transformed
as [48]

H =
N∑

n=1

[
J�Sx

nSx
n+1 + J

(
Sy

nS
y

n+1 + Sz
nS

z
n+1

)] − h

N∑
n=1

Sz
n.

(2)

At second, by applying the Jordan–Wigner transformation

S+
n = a†

n(eiπ
∑

l<n a
†
l al ), S−

n = (e−iπ
∑

l<n a
†
l al )an, (3)

Sz
n = a†

nan − 1
2 , (4)

the Hamiltonian is mapped onto a Hamiltonian of a 1D
interacting fermionic system,

H = J (� − 1)

4

∑
n

(a†
na

†
n+1 + H.c.)

+ J (� + 1)

4

∑
n

(a†
nan+1 + H.c.)

+ J�
∑

n

[a†
nan(a†

n+1an+1 − 1)]

−h
∑

n

a†
nan. (5)

At third, by using Wick’s theorem, the fermion interaction term
is decomposed by some order parameters which are related to
the two-point correlation functions as

γ1 = 〈a†
nan〉,

γ2 = 〈a†
nan+1〉,

γ3 = 〈a†
na

†
n+1〉. (6)

By utilizing these order parameters and performing a Fourier
transformation as an = 1√

N

∑
k e−iknak , and also Bogoliubov

transformation

ak = cos (k)αk − i sin (k)α†
−k, (7)
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the diagonalized Hamiltonian is given by

Hf =
π∑

k=−π

ε(k)

(
α
†
kαk − 1

2

)
, (8)

where the energy spectrum is

ε(k) =
√

a(k)2 + b(k)2,

a(k) =
(

J (� + 1)

2
− 2γ2

)
cos (k) + (2γ1 − 1)J − h,

b(k) =
(

2Jγ3 + J (� − 1)

2

)
sin (k). (9)

One should note that the following equations should be
satisfied self-consistently:

γ1 = 1

2
− 1

π

∫ π

0
dk

a(k)

ε(k)

(
1

2
− f (k)

)
,

γ2 = − 1

π

∫ π

0
dk cos (k)

a(k)

ε(k)

(
1

2
− f (k)

)
, (10)

γ3 = − 1

2π

∫ π

0
dk sin (k)

b(k)

ε(k)

(
1

2
− f (k)

)
,

where the Fermi distribution function is f (k) = 1/(1 + eβε(k)),
β = 1

kBT
, and the Boltzmann constant is taken as kB = 1. The

concurrence between two spins at site i and j can be achieved
from the corresponding reduced density matrix ρij , which in
the standard basis is expressed as

ρi,j =

⎛
⎜⎜⎜⎝

〈P ↑
i P

↑
j 〉 〈P ↑

i S−
j 〉 〈S−

i P
↑
j 〉 〈S−

i S−
j 〉

〈P ↑
i S+

j 〉 〈P ↑
i P

↓
j 〉 〈S−

i S+
j 〉 〈S−

i P
↓
j 〉

〈S+
i P

↑
j 〉 〈S+

i S−
j 〉 〈P ↓

i P
↑
j 〉 〈P ↓

i S−
j 〉

〈S+
i S+

j 〉 〈S+
i P

↓
j 〉 〈P ↓

i S+
j 〉 〈P ↓

i P
↓
j 〉

⎞
⎟⎟⎟⎠,

where P ↑ = 1
2 + Sz, P ↓ = 1

2 − Sz. The brackets symbolize
the thermodynamic average values at zero and finite temper-
ature. In this literature, we introduce S± as S± = Sx ± iSy .
By applying the Jordan–Wigner transformation, the reduced

density matrix will be written as [56–59]

ρi,j =

⎛
⎜⎝

X+ 0 0 0
0 Y+ Z∗ 0
0 Z Y− 0
0 0 0 X−

⎞
⎟⎠,

where X+ = 〈ninj 〉(nj = a
†
j aj ), Y+ = 〈ni(1 − nj )〉, Y− =

〈nj (1 − ni)〉, Z = 〈a†
i aj 〉, and X− = 〈1 − ni − nj + ninj 〉.

Thus, the concurrence is transformed into

Ci,j = max{0,2(|Z| −
√

X+X−)}.
Now, to study the quantum discord (QD), we follow

Sarandy’s prescription [14]. The mutual information is given
as

I(ρi,j ) = S(ρi) + S(ρj ) +
3∑

α=0

λα log λα, (11)

where

S(ρi) = S(ρj ) = −
[(

1 + c3

2

)
log

(
1 + c3

2

)

+
(

1 − c3

2

)
log

(
1 − c3

2

)]
, (12)

λα is the eigenvalue of ρi,j , and new variables are related to
the elements of the density matrix as

c1 = 2Z, c2 = X+ + X− − Y+ − Y−,

c3 = X+ − X−. (13)

To investigate the classical correlations between pair spins
located at sites i and j , one should introduce a set of
projectors for a local measurement on part (j ) = B given by
{Bk′ = V 
k′V †} where {
k′ = |k′〉〈k′| : k′ = 0,1} is the set of
projectors on the computational basis |0〉 ≡ |↑〉 and |1〉 ≡ |↓〉
and V ∈ U(2). V is parametrized as

V =
(

cos θ
2 sin θ

2 e−iφ

sin θ
2 eiφ − cos θ

2

)
, (14)

Δ0 1 2 3 4 5
0

0.07

0.14

0.21

0.28

0.35

C Ci, i+1
Ci, i+2
Ci, i+3
Ci, i+4
Ci, i+5

(a) (b)

Δ=
1

Δ

−γ

=1.1

∝
γ

FIG. 1. (a) Entanglement of formation and (b) quantum discord between the first-, second-, third-, fourth-, and fifth-nearest neighbors as a
function of anisotropy at zero temperature and zero magnetic field. Inset shows scaling behavior of quantum discord at the critical point � = 1
in terms of distances between spins pair. Parameters are dimensionless.
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FIG. 2. The three-dimensional panorama of thermal (a) entanglement between first-nearest neighbors, (b) quantum discord between
first-nearest neighbors and (c) quantum discord between second-nearest-neighbor spin pairs at zero magnetic field. Parameters are dimensionless.

where 0 � θ � π and 0 � φ < 2π and they can be interpreted
as the azimuthal and polar angles of a qubit over the Bloch
sphere. After the measurement Bk′ , the physical state of the
system will change to one of the following states:

ρ0 =
⎛
⎝I

2
+

3∑
j=1

q0j Sj

⎞
⎠ ⊗ (

V 
0V
†), (15)

ρ1 =
⎛
⎝I

2
+

3∑
j=1

q1j Sj

⎞
⎠ ⊗ (

V 
1V
†), (16)

where

qk′1 = (−1)k
′
c1

[
sin θ cos φ

1 + (−1)k
′
c3 cos θ

]
,

qk′2 = tan φqk′1, (17)

qk′3 = (−1)k
′
[

c2 cos θ + (−1)k
′
c3

1 + (−1)k
′
c3 cos θ

]
.

Then, by evaluating the von Neumann entropy from Eqs. (15)
and (16) and using that S(V 
0V

†) = 0, we obtain

S(ρk′) = −
(

1 + θk′

2

)
log

(
1 + θk′

2

)

+
(

1 − θk′

2

)
log

(
1 − θk′

2

)
, (18)

with θk′ = (
∑3

j=1 q2
k′j )1/2. Finally, the classical correlation for

the spin pair will be given by

C(ρi,j ) = max
{
B

i }

(
S(ρi) − S(ρ0) + S(ρ1)

2

− c3 cos θ
S(ρ0) − S(ρ1)

2

)
,

and the QD is determined as

QD = I(ρi,j ) − C(ρi,j ). (19)

III. RESULTS

In this section, we report the results of our numerical
simulations, which are based on an analytical approach of
the entanglement and the QD between spin pairs.

We begin our analysis by studying the behavior of entan-
glement and QD as a function of the anisotropy parameter in
the absence of the TF at zero temperature where the model
is integrable [33]. Quantum correlations (QCs) between the
first-, second-, third-, fourth-, and fifth-neighbor spins have
been depicted versus � in Figs. 1(a) and 1(b). As seen in
Fig. 1(a), only the first-neighboring spins are entangled in
the whole range of the anisotropy parameter � � 0 and are
maximal at the critical point �c = 1.0. One can clearly see in
Fig. 1(b) that the QD of the first-, second-, third-, fourth-, and
fifth-neighboring pairs is nonzero and, as expected, it decreases
with increasing distance between spin pairs. Also, the QD of
all the first-, second-, third-, fourth-, and fifth-neighboring
pairs reaches its maximum at the critical point �c = 1.0. A
more detailed analysis shows that the QD of spin pairs at the
critical point decays algebraically with distance between pairs

Δ
0.5 1 1.5

1.05

1.2

1.35

1.5

1.65

hE
c

(c)(b)(a)

FIG. 3. Three-dimensions of entanglement as a function of magnetic field and anisotropy � at zero temperature between the (a) first-
and (b) second-nearest-neighbor spins. (c) The critical entangled field as a function of anisotropy parameter �, at T = 0. Parameters are
dimensionless.
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FIG. 4. Three-dimensional view of quantum discord as a function of magnetic field and anisotropy � at zero temperature, between the
(a) first-, (b) second-, and (c) third-nearest-neighbors spins. Parameters are dimensionless.

QDi,j |c ∝ |i − j |−γ with γ = −1.1 [see inset of Fig. 1(b)].
This behavior reveals that there exist long-range quantum
correlations as quantified by quantum discord which decay
as a function of distance in short-range magnetic interaction
systems. This is in contrast with the short-ranged behavior of
the pairwise entanglement.

To show whether the thermal QD (TQD) of spin pairs is able
to pinpoint the critical point �c = 1 at finite temperature, we
plot the thermal entanglement and TQD versus the anisotropy
and temperature in Figs. 2(a)–2(c) for h = 0. The analysis
shows that, while the maximum of the low-temperature
thermal entanglement does not occur at the critical point
�c = 1, the phase-transition point can be signaled by the
maximum of the TQD of the spin pairs at low temperature, even
for spin pairs more distant than nearest neighbors [Fig. 2(c)].
The maximum value is the result of an optimal mixing of all
eigenstates in the system. Although the maximum value of
the low-temperature TQD decreases as the distance between
the spin pairs increases, the slope in the critical region
gets more visible for far neighbors [Fig. 2(c)]. Thus, the
low-temperature TQD between far neighbors can be used
to characterize the zero-temperature phase transition. These
results are qualitatively in agreement with the results of
Ref. [15], where the exact solution of the model is presented
by solving a set of nonlinear integral equations.

In addition, at high temperature, both entanglement and
QD between the first-neighbor spins reduce upon increasing
the temperature. As a result, the entanglement and the TQD
become zero at the critical temperatures T E

c (�) and T D
c (�), re-

spectively. More analysis shows that the critical temperatures,
T E,D

c (�), where quantum-classical phase transition occurs,
decrease by increasing the distance between spin pairs and
increase by enhancing the anisotropy parameter �. Moreover,
an increment of temperature decreases the TQD between
arbitrarily distant spin pairs and cannot create entanglement
between spin pairs farther than first-nearest neighbors.

The next step is to examine how the entanglement and QD
capture the QPT in the presence of a transverse field at both
zero and finite temperature. To this end, we have calculated the
entanglement and QD as a function of the TF and anisotropy
at zero and finite temperature. A three-dimensional view of
quantum entanglement between the first- and second-neighbor
spins has been depicted in Figs. 3(a) and 3(b) versus h and �

for T = 0.
As seen in Fig. 3(a), the entanglement between the first

spin pairs remains finite up to the factorized field [hf =
J
√

2(1 + �)] and it clearly vanishes as expected for a
factorized state where the ground state of the chain is exactly
separable. It should be mentioned that, in Refs. [51,53],
entanglement between the first-neighbor spins has been in-
vestigated through numerical approaches. It was shown that,
for finite lattice size, entanglement shows a steep recovery
beyond the factorized field and remains finite even in the
saturated region h > hc. As expected, all QCs should vanish in
the saturated region. Consequently, the mean-field analytical
approach shows more accurate result than the numerical
method used in Refs. [51,53].

As has been shown in Fig. 1(a), only the nearest-neighbor
spin pairs are entangled when the transverse magnetic field
is zero, while the QD exists between spin pairs arbitrarily
distant [Fig. 1(b)]. It is seen from Fig. 3(b) that the second-
neighbor spin pairs become entangled in the presence of the
transverse magnetic field for certain regions of parameter
space. The second-neighbor spin pairs remain disentangled
up to the desired critical entangled field, hE

c < hf . In other
words, there is a threshold transverse field hE

c above which the
second-neighbor spins become entangled at zero temperature.
The entanglement which is induced by an external magnetic
field is known as the “magnetic entanglement” and was
reported for longitudinal magnetic fields [13,28,59–61]. It is
worthwhile to mention that the phase transition at T = 0 is pin-
pointed by a global maximum of entanglement between both

FIG. 5. Three-dimensional panorama of the entanglement as a function of magnetic field and anisotropy � at T = 0.1, between the
(a) first- and (b) second-nearest-neighbors spins. (c) Three-dimensional view of the entanglement as a function of h and � between the
second-nearest-neighbors spins at T = 0.2. Parameters are dimensionless.
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FIG. 6. Three-dimensional view of quantum discord as a function of magnetic field and anisotropy � at T = 0.1, between the (a) first-,
(b) second-, and (c) third-nearest-neighbor spins. Parameters are dimensionless.

first- and second-neighbor spin pairs at the critical point
�c = 1. However, at zero temperature the TF is incapable
of creating the magnetic entanglement between spin pairs at
distances beyond the next-nearest neighbors. This behavior is
in contrast with the case of XXZ in a longitudinal magnetic
field [59].

To find more information about the magnetic entanglement
region, we calculated the critical entangled field for different
values of the anisotropy with the result shown in Fig. 3(c). As
expected, the magnetic field which can create entanglement
between particles should have minimum strength at the critical
point due to the divergence of correlation length. As seen,
the critical entangled field hE gives rise to the fingerprint of
the quantum phase transition by displaying a minimum at the
critical point �c = 1.0.

Additionally, a three-dimensional panorama of the QD
between the first-, second-, and third-neighbor spin pairs at
zero temperature is displayed in Figs. 4(a)–4(c) versus h

and �. As seen, the QD between the first-, second-, and
third-neighbor spins descends by the onset of the TF and
vanishes at h

(|i−j |)
QD (�). The QD is also reserved between the

third-neighbor spins in the presence of a magnetic field where
pairwise entanglement is absent. We can see that the QPT is
characterized by a global maximum of QD at the CP. Besides,
the QD shows a cusp at the CP upon increasing the distance
between the spin pairs [Fig. 4(c)]. This behavior intimates that
the first derivative of the QD between spin pairs beyond the
next-nearest-neighbor distance is discontinuous at �c = 1 and
its second derivative diverges at the CP.

To investigate the effect of temperature, we plot the
entanglement between first- and second-nearest-neighbor
spins versus magnetic field and anisotropy at T = 0.1 in
Figs. 5(a)–5(b). One can clearly see that, at low temperature,
thermal entanglement behaves similar to the zero temperature
counterpart except that its maximum does not occur at the

critical point. Moreover, the entanglement decreases as tem-
perature increases and becomes disentangled gradually at high
temperature [see Fig. 5(c)]. Our analysis also shows that the
critical entangled field (hE

c ) is not a minimum in the presence of
temperature. In other words, thermal entanglement is not able
to detect the critical point even at low temperature. It can be
clearly seen that, from Figs. 6(a)–6(c), TQD is more resistant
to thermal effects than entanglement. At low temperature, the
QPT is still characterized by a global maximum of QD at the
CP while the cusp at the CP of TQD between far neighbors is
eliminated by thermal fluctuations. In contrast to the thermal
entanglement, TQD is still a better estimator of the QCP in the
presence of a transverse field.

To complement our studies about the transverse field
XXZ model we present the thermal behavior of the quantum
correlations in the presence of the TF. It is necessary to mention
that, in the saturation region, h > hc, adding temperature
creates neither the entanglement nor the QD. In Figs. 7(a)–7(c),
we plot the thermal entanglement and TQD as a function
of the magnetic field and temperature for the anisotropy
parameter � = 0.5. It is clear that there is a critical value
of the field, h(E,D)

c (�), beyond which entanglement and QD
disappear at zero temperature and decline at finite temperature,
h(E,D)

c (�,T ). We have found also a critical temperature
T (E,D)

c (h,�) after which entanglement and QD vanish, al-
though there is a range of field (near to the factorized field) over
which entanglement and QD can be increased by increasing
the temperature. Enhancing of entanglement and QD with
temperature in the presence of a magnetic field is a result of the
fact that the ground state tends to be less correlated than some
low-lying excited states. Thus, correlated excited states are
populated by increasing the temperature, in turn leading to the
net effect of an increasing of entanglement and QD. This effect
gets wiped out as the temperature gets too large. This behavior
is similar to the behavior of entanglement reported in Ref. [62].

FIG. 7. (a) Thermal entanglement of formation between first-neighbor spin pairs, (b) thermal quantum discord between first-neighbor
spin pairs, and (c) thermal quantum discord between third-neighbor spin pairs as a function of magnetic field and temperature for � = 0.5.
Parameters are dimensionless.
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IV. CONCLUSION

We have studied the pairwise quantum correlations mea-
sured by the entanglement and the quantum discord in
the thermodynamic limit of the nonintegrable XXZ spin-
1
2 chain in a transverse magnetic field at zero and finite
temperatures. We have obtained analytical expressions for
quantum correlations for spin pairs at any distance. We have
shown that the quantum discord between far neighbors is
able to mark the quantum phase transition, even for distances
where pairwise entanglement is absent. This is the results
of the longer range of quantum correlation as quantified by
quantum discord in comparison with the short-range behavior
of pairwise entanglement. Concerning the thermal effect onto
quantum correlations, we have shown that thermal quantum
discord between neighboring pairs displays a strong distinctive
behavior at the critical point that can be detected at finite
temperature. This significant property of thermal quantum

discord is an important tool that can be easily applied to
determine quantum critical points of the systems which
today’s technology makes it virtually impossible to achieve
the necessary T below which quantum fluctuations dominate.
Moreover, the thermal quantum discord behaves more robust
than the thermal entanglement as the temperature is increased.
We have also shown that the transverse magnetic field creates
the magnetic entanglement between the second-neighbor spins
in a narrow region under the factorized field. Remarkably,
we show that quantum correlations can be increased with
temperature in the presence of the magnetic field for certain
regions of parameter space.
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