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So-called average subsystem entropies are defined by first taking partial traces over some pure state to define
density matrices, then calculating the subsystem entropies, and finally averaging over the pure states to define the
average subsystem entropies. These quantities are standard tools in quantum information theory, most typically
applied in bipartite systems. We shall first present some extensions to the usual bipartite analysis (including a
calculation of the average tangle and a bound on the average concurrence), follow this with some useful results for
tripartite systems, and finally extend the discussion to arbitrary multipartite systems. A particularly nice feature
of tripartite and multipartite analyses is that this framework allows one to introduce an “environment” to which
small subsystems can couple.
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I. INTRODUCTION

Entanglement in bipartite systems is completely charac-
terized in quantum theory, but there exist very many open
questions when one is seeking to quantify the entanglement
among three or more subsystems; the tripartite or multipartite
situations. In this article we shall focus mainly on the study of
entanglement entropy (and mutual entropy), as defined among
multiple subsystems when we impose the condition that the
total global system is in a pure state.

An extremely useful technique in this analysis is the
“average subsystem approach” championed by Page [1],
whereby we shall average over all possible pure states, using
this to define the average-subsystem entropies. The explicit
results and bounds we have found will allow us to understand
the degree of entanglement and the amount of entropy induced
in making the partition into multiple subsystems.

We consider a global system partitioned into two or more
subsystems, and assume the total Hilbert space factorizes as
follows: H = ⊗N

i=1 Hi . This does not mean that the states
are always separable, they can be entangled among each
other, or entangled with only some of the other subsystems
(provided that the Schmidt rank is greater than unity).1 For the
classification of entanglement of states in quantum information
theory it is usual to use the term k separable for states of an
N -partite system that satisfy

|�〉 =
k⊗

i=1

|φi〉, (1.1)

where k � N . The nonseparable states will be called entan-
gled.

*a.alonso.serrano@utf.mff.cuni.cz
†matt.visser@sms.vuw.ac.nz
1Warning: for mathematicians, separable is a technical term that

effectively means the Hilbert space is either finite dimensional or at
worst has denumerable dimensionality. For physicists, separable is a
statement that a particular element of the Hilbert space can be written
in factorizable form. This conflict in usage is unfortunately standard.

In order to fully quantify entanglement among different
subsystems, in a N = 2 bipartite system it is enough (when the
total system is in a pure state) to consider the von Neumann
(entanglement) entropy between the two subsystems, but in
the case of N > 2 multipartite systems this quantity does
not provide us with a fully general measure of entanglement,
and there is no universally agreed upon standard quantity for
measuring multipartite entanglement [2–6].

Two of the quantities that have been used in the literature
are, for example, the concurrence or tangle, which serves to
partially quantify the entanglement in multipartite systems
[7,8]. But neither of these is really a fully satisfactory quan-
tifiable and universal measure of entanglement. For instance,
using the notion of partial trace to define ρA = trB{|ψ〉 〈ψ |},
concurrence is defined as [8]

C(ρA) =
√

2
(
1 − tr

{
ρ2

A

})
, (1.2)

and “tangle” is defined as the square of concurrence

τ = C2. (1.3)

(Concurrence and tangle are thus relatively easy to calculate.)
Is is interesting to note that concurrence and tangle are closely
related to Tsallis and Renyi entropies:

STsallis = 1 − tr(ρq)

q − 1
, SRenyi = ln tr(ρq)

1 − q
, (1.4)

and that the von Neumann entropy is a specific case of these
entropies

Svon Neumann = lim
q→1

STsallis = lim
q→1

SRenyi. (1.5)

It is easy to see from Eqs. (1.2) and (1.3) that tangle can be
expressed in terms of

τ = C2 = 2
[
1 − tr

(
ρ2

A

)] = 2STsallis(q = 2). (1.6)

The case q = 2 of Tsallis entropy is often called “quadratic
entropy”.

Other entanglement measures have been mooted, such as
negativity, discord, and entanglement of formation, but they
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are either trivial or more difficult to work with in the average
subsystem framework. For instance, the concept of negativity
is rather subtle. One has [8]

N (ρ) = 1
2 (||ρTA || − 1), (1.7)

involving a partial transpose with respect to the bipartite
subsystem decomposition. [If the density matrix is ρij,kl

then (ρTA )ij,kl = ρkj,il . Also note that ||X|| = tr{
√

X†X}.]
Calculating the negativity can often be relatively difficult,
though for pure states it simplifies to [9,10]

N (ρ) = 1
2 ([tr(

√
ρA)]2 − 1). (1.8)

Averaging over pure states

〈N (ρ)〉 = 1
2 (〈[tr(√ρA)]2〉 − 1). (1.9)

This is not trivial, but at least tractable [9–11].
Another interesting quantity is the quantum discord, al-

though this does not directly characterize the entanglement
itself, but instead measures the extent to which the correlation
are quantum as opposed to classical [12]. However, for pure
states the discord reduces to the entanglement entropy, and so
in the average subsystem framework we gain no extra usable
information from considering the quantum discord.

Finally, another interesting measure of entanglement is
given by the “entanglement of formation”, which quantifies
the minimum cost of preparing a state in terms of EPR pairs.
It is given by

EF (ρ) := inf

{∑
i

piE(|ψi〉〈ψi |) : ρ =
∑

i

pi |ψi〉〈ψi |
}

,

(1.10)

where E(|ψ〉〈ψ |) = S(trB{|ψ〉〈ψ |}). This is also related to
the concept of “entanglement cost”. However, in the average
subsystem framework the state ρ is by assumption a pure
state ρ = |ψ〉〈ψ |, and the entanglement of formation therefore
trivializes to the usual von Neumann entropy EF (ρ) →
S(ρA) = S(trB{|ψ〉〈ψ |}). So in the average subsystem frame-
work we gain no extra usable information from considering
the entanglement of formation.

It is also interesting to calculate the mutual information
among different pairs of subsystems, or pairs of collections
of subsystems, but note that this quantity is not really an
entanglement measure because it merely considers the cor-
relations between systems (that is, the decrease of uncertainty
in one subsystem when we measure the other one). What is
however clear is that if the mutual information between any
two subsystems is zero, then there is no entanglement between
them.

II. AVERAGE SUBSYSTEM ENTROPIES

In bipartite systems, the average subsystem entropies asso-
ciated with the Hilbert space factorization HAB = HA ⊗ HB

are defined by a simple three-step process [1] as follows:
(1) Take partial traces of some pure state to define two

density matrices:

ρA = trB{|ψ〉〈ψ |}, ρB = trA{|ψ〉〈ψ |}. (2.1)

(2) Calculate the two subsystem entropies (which are equal
to each other):

SA = −tr{ρA ln ρA} = −tr{ρB ln ρB} = SB. (2.2)

(3) Average uniformly over the pure states |ψ〉 to define
average entropies:

〈SA〉 = 〈SB〉. (2.3)

By extension, in the context of a tripartite system the
obvious generalization is to consider HABC = HA ⊗ HB ⊗
HC and modify the three-step process as follows:

(1) Take partial traces of some pure state to define six density
matrices:

ρA = trBC{|ψ〉〈ψ |}, ρB = trAC{|ψ〉〈ψ |},
ρC = trAB{|ψ〉〈ψ |}, (2.4)

ρAB = trC{|ψ〉〈ψ |}, ρBC = trA{|ψ〉〈ψ |},
ρCA = trB{|ψ〉〈ψ |}. (2.5)

(2) Calculate six subsystem entropies (three of which are
pairwise equal):

SA = −tr{ρA ln ρA} = −tr{ρBC ln ρBC} = SBC, (2.6)

SB = −tr{ρB ln ρB} = −tr{ρCA ln ρCA} = SCA, (2.7)

SC = −tr{ρC ln ρC} = −tr{ρAB ln ρAB} = SAB. (2.8)

(3) Average uniformly over the pure states |ψ〉 to define
average entropies:

〈SA〉 = 〈SBC〉, 〈SB〉 = 〈SCA〉, 〈SC〉 = 〈SAB〉. (2.9)

In multipartite systems the basic ideas are the same, but the
algebra can quickly get messy; there are up to 2N − 2 nontrivial
ways of grouping the subsystems (the empty Hilbert space, and
the full Hilbert space, will be deemed “trivial”); more on this
multipartite construction below.

III. BIPARTITE ENTANGLEMENT

Returning to bipartite systems, in Ref. [1] Page established
a number of interesting results regarding these average
subsystem entropies. In particular, even before any averaging
is enforced,

SA = SB � ln min{nA,nB}, (3.1)

where nA = dim(HA), and nB = dim(HB). Page then consid-
ered the effect of taking a uniform average over all pure states
on HAB .

The central result of Ref. [1] is that the average subsystem
entropy is then extremely close to its maximum possible value.
(The “average subsystem” is very close to being “maximally
mixed”.) When combined with the exact result derived by Sen
in Ref. [13], wherein Sen provided a formal analytic proof of
a conjecture by Page, and the discussion below, this can be
strengthened to a strict lower bound on the subsystem entropy,
and in the “thermodynamic limit” can be strengthened to an
equality. Below we shall first present some extensions to the
usual bipartite analysis, follow this with some useful results for
tripartite systems, and finally extend the discussion to arbitrary
multipartite systems.
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A. Exact results

Page conjectured [1] and Sen proved [13] (under certain
mild technical assumptions, and with minor change of their
notation) that when measured in natural units (nats) [14,15],
the average dimensionless entropy of a subsystem is exactly
given by

SnA,nB
= 〈SA〉 = 〈SB〉 = HmM − HM − m − 1

2M
. (3.2)

Here

m = min{nA,nB}, M = max{nA,nB}, (3.3)

where Hn is the nth harmonic number Hn = ∑n
i=1

1
n

; see, for
instance, Ref. [16].

Writing n = nAnB for the total dimensionality, we note that
m � √

n and M � √
n, so that the average subsystem entropy

can also be written as

SnA,nB
= 〈SA〉 = 〈SB〉 = Hn − Hn/m − m(m − 1)

2n
, (3.4)

with m = min{nA,nB} � √
n. For example,

S1,nB
= 0, S2,nB

= H2nB−1 − HnB
,

S3,nB
= H3nB

− HnB
− 1

nB

, (3.5)

and for nB � 4 we have

S4,nB
= H4nB

− HnB
− 3

2nB

. (3.6)

That the harmonic numbers show up here should in retro-
spect perhaps not be so surprising. Even in a classical statistical
context the harmonic numbers arise in many situations where
one is extremizing the Shannon entropy, S = −∑n

i=1 pi ln pi ,
subject to external constraints. For example, the harmonic
numbers also show up in finite-space models for Zipf’s law,
where pi = 1/(iHn) and

∑n
i=1 pi = 1 [17]. These harmonic

numbers are well studied in mathematics. Note, for instance,
the standard mathematical asymptotic result [16]

Hn = γ + ln n + 1

2n
− 1

12n2
+ 1

120n4
− 1

256n6
+ O(n−8).

(3.7)

There is also an explicit bound [16]

Hn = γ + ln n + εn, where εn ∈
(

1

2(n + 1)
,

1

2n

)
. (3.8)

Here, in view of the nonoverlapping nature of the bounds on
εn, we know that εn is monotone decreasing. Stronger bounds
are known; for instance, the Franel bound

Hn = γ + ln n + 1

2n
− ε̂n

8n2
, where ε̂n ∈ (0,1), (3.9)

or the result

Hn = γ + ln n + 1

2n
− 1

12n2
+ ε̂n

120n4
, where ε̂n ∈ (0,1).

(3.10)

(Yet even stronger bounds on the harmonic numbers are
known, but would be overkill for current purposes.)

Sometimes it is sufficient to consider the less stringent
result [16]

Hn = ln n + ε̃n, where ε̃n ∈
(

1

n
, 1

)
. (3.11)

The purely mathematical explicit bound in Eq. (3.8), when
combined with the exact result derived by Sen in Ref. [13],
can be strengthened to a strict bound on the bipartite entropy

SnA,nB
= 〈SA〉 = 〈SB〉 ∈ (

ln m − 1
2 , ln m

)
. (3.12)

That is, the average subsystem entropy is always within 1
2 nat

(less than 1
2 ln 2 < 3

4 of a bit) of its maximum possible value.
Let us now formalize this statement.

Theorem:

SnA,nB
= ln m + 	m,M,

	m,M ∈
(

− m

2M
, − m − 1

2M

)
⊆

(
−1

2
,0

)
. (3.13)

(Page says something somewhat similar in Ref. [1] but only as
an estimate; this is now a rigorous bound. There is no obvious
way of cleanly improving this bound.)

Proof. To establish this bound, starting from the bound in
Eq. (3.8), we write

SnA,nB
= ln m + 	m,M,

with 	m,M = εmM − εM − m − 1

2M
. (3.14)

Now since εn is monotonically decreasing we certainly have

εmM − εM − m − 1

2M
� −m − 1

2M
. (3.15)

But we also have an absolute lower bound

εmM − εM − m − 1

2M
>

1

2(mM + 1)
− 1

2M
− m − 1

2M

= 1

2(mM + 1)
− m

2M

> − m

2M
> −1

2
. (3.16)

That is,

SnA,nB
= ln m + 	m,M,

with 	m,M ∈
(

− m

2M
, − m − 1

2M

)
⊂

(
−1

2
,0

)
. (3.17)

This is the result we were seeking. �

B. Symmetric average subsystem information

In terms of the (symmetric) average subsystem information
(as defined by Page in Ref. [1]), we now have

InA,nB
= Smax;nA,nB

− SnA,nB

= ln m − SnA,nB
= −	m,M. (3.18)

We then have the rigorous bounds

InA,nB
∈

(
m − 1

2M
,

m

2M

)
⊆

(
0,

1

2

)
. (3.19)

That is, the (symmetric) average subsystem information is
always less than 1

2 nat, which is less than 1
2 ln 2 < 3

4 of a bit; thus
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this (symmetric) definition of average subsystem information
leads to a very tight bound.

C. Asymmetric average subsystem information

In contrast, in the follow-up reference [18], Page defines
(redefines) the average subsystem information in an asymmet-
rical manner:

ĨnA,nB
= Smax;nA

− SnA,nB
= ln nA − SnA,nB

= ln(nA/m) + InA,nB
(3.20)

and

ĨnB ,nA
= Smax;nB

− SnA,nB
= ln nB − SnA,nB

= ln(nB/m) + InA,nB
. (3.21)

Then for the difference we always have

ĨnA,nB
− ĨnB ,nA

= ln(nA/nB), (3.22)

while for the average

ĪnA,nB
= 1

2

(
ĨnA,nB

+ ĨnB ,nA

) = ln(M) + InA,nB
. (3.23)

We note that the average ĪnA,nB
≈ ln M is symmetric, and,

since InA,nB
∈ (0, 1

2 ), it is utterly dominated by the dimension-
ality of the larger Hilbert space. In view of the very tight bound
on InA,nB

, this means that (to within 1
2 nat) for all practical

purposes we have

ĨnA,nB
≈ ln

(nA

m

)
= ln

(
nA

min{nA,nB}
)

(3.24)

and

ĨnB ,nA
≈ ln

(nB

m

)
= ln

(
nB

min{nA,nB}
)

. (3.25)

That is, the modified average subsystem information, ĨnA,nB
�=

ĨnB ,nA
, really says nothing much about the subsystem be-

yond specifying the dimensionalities of the two Hilbert
subspaces. (Specifically, Page’s asymmetric subsystem infor-
mation, ĨnA,nB

�= ĨnB ,nA
, contains at most 1

2 a nat of “useful”
information.)

D. Mutual information and other measures of entanglement

It should be emphasized that mutual information is certainly
not the same as what Page calls the subsystem information.
(See discussion above, and Refs. [1,18], for details.) In general
(using industry standard terminology) one has

IA:B = SA + SB − SAB. (3.26)

For the bipartite system considered by Page, where the total
system is in a pure state, one has SA = SB and SAB = 0, so
yielding the particularly simple result

IA:B = 2SA = 2SB. (3.27)

More specifically, after applying the “average subsystem”
argument

〈IA:B〉 = 2〈SA〉 = 2〈SB〉 ≈ 2 ln min{nA,nB}. (3.28)

While at first glance this seems uninteresting, when combined
with Page’s asymmetric subsystem information this leads to

〈ĨA,B〉 + 〈ĨB,A〉 + 〈IA:B〉 ≈ ln

(
nA

min{nA,nB}
)

+ ln

(
nB

min{nA,nB}
)

+ 2 ln min{nA,nB}, (3.29)

from which we obtain the approximate sum rule

〈ĨA,B〉 + 〈ĨB,A〉 + 〈ÎA:B〉 ≈ ln (nAnB) ≈ ln nAB. (3.30)

Here this approximation is now valid to within 3
2 nat.

In counterpoint, while in bipartite systems the entanglement
is well determined in terms of the von Neumann entropy, it
is possible also to bound the concurrence, and to actually
calculate the average tangle. Let n = nAnB , while m =
min{nA,nB} and M = max{nA,nB}, so n = mM . Then it is
known that [1,19]

〈tr(ρ2
A)〉 = nA + nB

n + 1
= nA + nB

nAnB + 1

= m + M

n + 1
= m + M

mM + 1
. (3.31)

Thus the averaged tangle is given by

〈τ 〉 = 2

(
1 − m + M

mM + 1

)
= 2(m − 1)(M − 1)

mM + 1
. (3.32)

Now note that for the concurrence 〈C〉2 � 〈C2〉 = 〈τ 〉, so we
certainly have the bound

〈C〉 �
√

2(m − 1)(M − 1)

mM + 1
. (3.33)

E. Thermodynamic limit—bipartite

The usual classical thermodynamic limit is the infinite
volume limit, and the closest one can get to this notion
in a quantum von Neumann context is to let one Hilbert
space factor become arbitrarily large, while the other remains
fixed. (Specifically let m = min{nA,nB} be held fixed, while
M = max{nA,nB} → ∞.) In that limit the smaller average
subsystem achieves maximum entropy (maximal mixing). We
can state this more formally as follows.

Theorem:

lim
M→∞

SnA,nB
= lim

M→∞
〈SA〉 = lim

M→∞
〈SB〉 = ln m. (3.34)

Proof. We note the standard mathematical result

lim
M→∞

HmM − HM = ln m. (3.35)

But then

lim
M→∞

SnA,nB
= lim

M→∞

{
HmM − HM − m − 1

2M

}
= ln m,

(3.36)

as claimed. �
Thus, in the thermodynamic limit of the average subsys-

tem approach, the finite-dimensional subsystem is always
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maximally entangled with the infinite-dimensional subsystem.
It is also possible to calculate the averaged tangle in this
thermodynamic M → ∞ limit, finding that

lim
M→∞

〈τ 〉 = 2(m − 1)

m
= 2

(
1 − 1

m

)
. (3.37)

Specifically, the “tangle deficit,” the deviation from maximal
tangle, is

	τ = lim
M→∞

〈τ 〉 − 〈τ 〉 = 2

(
1 − 1

m

)
− 2(m − 1)(M − 1)

mM + 1

= 2(m2 − 1)

m(mM + 1)
� 2

M
. (3.38)

So the “average tangle” is always within 2
M

nat of maximal
mixing. Similarly, in the thermodynamic limit the average
concurrence is bounded by

lim
M→∞

〈C〉 �
√

2

(
1 − 1

m

)
. (3.39)

F. Wrap up

While the mathematical validity of the bipartite analysis is
unassailable, in certain circumstances the physical relevance
of the input assumptions can be questionable. In particular, the
fact that the total system is always taken to be a pure state is
not always entirely physically appropriate, which is one reason
why we now turn to a tripartite analysis.

We emphasize this point: consideration of a global pure
state can be very useful for some physical systems, but in
some cases we cannot simply divide those systems into only
two isolated subsystems. It might then be necessary to consider
some overall encompassing environment, or to consider more
than two subsystems into which the (total) Hilbert space is
to be factorized, thereby making the system separable in that
more subtle sense.

IV. TRIPARTITE ENTANGLEMENT

Let us now consider a tripartite system, to be modeled by the
Hilbert space HABC = HA ⊗ HB ⊗ HC . Let us first see how
far we can get without making any averaging assumptions.
Take the entire universe to be in a pure state, so at all times
SABC = 0 and the subsystem entropies satisfy

SA = SBC, SB = SAC, SC = SAB. (4.1)

For the average entanglement entropy, we now have

〈SA〉 = 〈SBC〉 ≈ ln min{nA,nBnC}, (4.2)

〈SB〉 = 〈SCA〉 ≈ ln min{nB,nCnA}, (4.3)

〈SC〉 = 〈SAB〉 ≈ ln min{nC,nAnB}, (4.4)

with all three of these approximations holding to within 1
2 a

nat. This now allows us to write

〈SA + SB + SC〉 ≈ min{ln nA, ln nB + ln nC}
+ min{ln nB, ln nC + ln nA}
+ min{ln nC, ln nA + ln nB}. (4.5)

For convenience, temporarily permute {A,B,C} so that nA �
nB � nC . Then we have

〈SA + SB + SC〉 ≈ ln nA + ln nB

+ min{ln nC, ln nA + ln nB}, (4.6)

which implies

〈SA + SB + SC〉 ≈ ln nA + ln nB

+ min{ln nC, ln n − ln nC}, (4.7)

whence we deduce

〈SA + SB + SC〉 ≈ ln n + min{0, ln n − 2 ln nC}. (4.8)

Undoing the permutation we see

〈SA + SB + SC〉 ≈ ln n + min {0, ln n

− 2 max{ln nA, ln nB, ln nC}}. (4.9)

This approximation for the sum of subsystem entropies is re-
lated to the existence of bounds on variable-length compound
jumps [20].

A. “Rest of the universe”—the environment

Now suppose one subsystem is much larger than the other
two. Specifically let subsystem C denote the environment (the
“rest of the universe”), while subsystems A and B are free to
interact with each other (and, for now, are free to interact with
the environment). Specifically let us assume that nC � nAnB .
This implies both nC � nA and nC � nB , which furthermore
implies both nBnC � nA and nCnA � nB . So in this situation

〈SA〉 = 〈SBC〉 ≈ ln nA, 〈SB〉 = 〈SCA〉 ≈ ln nB,

〈SC〉 = 〈SAB〉 ≈ ln{nAnB}. (4.10)

That is, 〈SC〉 is not the total entropy of the rest of the universe,
it is merely the extent to which the rest of the universe is
entangled with the AB subsystem.

B. Mutual information

For the tripartite ABC system we are advocating here the
situation is more interesting than for the bipartite AB system.
For the tripartite system SAB = SC (and SA �= SB in general)
so

IA:B = SA + SB − SAB = SA + SB − SC. (4.11)

Now averaging over the pure states in ABC, we have

〈IA:B〉 = SnA,nBnC
+ SnB,nAnC

− SnC,nAnB
. (4.12)

So in the situation where C is a suitably large environment,
nC � nAnB as discussed above, and using the harmonic
numbers Hn as introduced above, we have the exact result

〈IA:B〉 =
[
HnAnBnC

− HnAnC
− nA − 1

2nBnC

]

+
[
HnAnBnC

− HnBnC
− nB − 1

2nBnC

]

−
[
HnAnBnC

− HnC
− nAnB − 1

2nC

]
. (4.13)
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Then after a little simplification

〈IA:B〉 = HnAnBnC
+ HnC

− HnAnC
− HnBnC

+ (nA − 1)(nB − 1)(nAnB + nA + nB)

2nAnBnC

. (4.14)

It is now relatively easy to see that

〈IA:B〉 � 1
2 . (4.15)

So in the tripartite ABC system the average mutual infor-
mation between the two “small” subsystems A and B, never
exceeds 1

2 nat. More formally we have the following.
Theorem: Provided nAnB � nC we have

〈IA:B〉 � nAnB

2nC

� 1

2
. (4.16)

Proof. We start from

〈IA:B〉 = HnAnBnC
+ HnC

− HnAnC
− HnBnC

+ (nA − 1)(nB − 1)(nAnB + nA + nB)

2nAnBnC

(4.17)

and again use

Hn = γ + ln n + εn, where εn ∈
(

1

2(n + 1)
,

1

2n

)
. (4.18)

Then the ln’s and γ ’s cancel and

〈IA:B〉 = εnAnBnC
+ εnC

− εnAnC
− εnBnC

+ (nA − 1)(nB − 1)(nAnB + nA + nB)

2nAnBnC

. (4.19)

But then

〈IA:B〉 � 1

2nAnBnC

+ 1

2nC

+ (nA − 1)(nB − 1)(nAnB + nA + nB)

2nAnBnC

. (4.20)

That is

〈IA:B〉 � n2
An2

B − n2
A − n2

B + nA + nB + 1

2nAnBnC

. (4.21)

We can rewrite this as

〈IA:B〉 � n2
An2

B

2nAnBnC

− n2
A + n2

B − nA − nB − 1

2nAnBnC

, (4.22)

that is

〈IA:B〉 � nAnB

2nC

− n2
A + n2

B − nA − nB − 1

2nAnBnC

, (4.23)

whence

〈IA:B〉 � nAnB

2nC

− nA(nA − 1) + nB(nB − 1) − 1

2nAnBnC

. (4.24)

Now consider the following two cases
(i) If either nA > 1 or nB > 1, then we have nA(nA − 1) +

nB(nB − 1) − 1 > 0, and so certainly

〈IA:B〉 � nAnB

2nC

� 1

2
. (4.25)

(ii) If both nA = 1 and nB = 1, then we go back to the
exact result of Eq. (4.17) and note that 〈IA:B〉 → HnC

+ HnC
−

HnC
− HnC

+ 0 = 0.
In either case we certainly have

〈IA:B〉 � nAnB

2nC

� 1

2
. (4.26)

So the average mutual information between the two small
subsystems A and B in the tripartite pure-state ABC system
never exceeds 1

2 nat (as long as the subsystem C is dominant
in the sense that nAnB � nC). �

Note that the mutual information is a measure of the
uncertainty remaining in one subsystem when the other one is
measured, and can be defined for both classical and quantum
systems. Entanglement however is a purely quantum concept,
and so it cannot be completely characterized by the mutual
information. It is important to remember that in pure bipartite
systems the entanglement is directly characterized by the
von Neumann entropy, but not so in tripartite (multipartite)
systems [21].

Indeed, it is not entirely clear how to formulate a specific
and practical measure of the entanglement in multipartite
systems that are high-dimensional (greater than dimension
two). None of the quantities explained above seem fully
adequate to this case, but what can certainly be said is this:
the measure of global correlations (that is, the mutual entropy)
is very small, so it is expected that the entanglement between
systems will be also very small. We will check this specifically
in the case of thermodynamic limit.

What, in counterpoint, can we say about 〈IA:C〉 and 〈IB:C〉,
the mutual information between A or B with the environment
C? We note that as long as ABC is a pure state we have (even
before averaging)

IA:C = SA + SC − SAC = SA + SC − SB,

IB:C = SB + SC − SBC = SB + SC − SA. (4.27)

But we already know that after averaging

〈SA〉 + 〈SB〉 ≈ 〈SC〉 (to within 1 nat). (4.28)

So we see

〈IA:C〉 ≈ 2〈SA〉, 〈IB:C〉 ≈ 2〈SB〉 (to within 1 nat). (4.29)

So these particular mutual information scenarios do not yield
any extra useful insight.

We can also lump two of the subsystems together, and
calculate the mutual bipartite information, obtaining as in the
previous case that (even before averaging)

IA:(BC) = 2SA, IB:(CA) = 2SB,

IC:(AB) = 2SC = 2SAB, (4.30)

thereby verifying that (overall) we have a completely entangled
system.

C. Thermodynamic limit—tripartite

For the bipartite AB system, the whole point (usually) is
to keep the total dimensionality nAB fixed, while letting the
A and B subsystems trade dimensionality with each other.
For the tripartite ABC system, however, the environment C
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(the rest of the universe) is used to initially entangle the AB

subsystem with the rest of the universe, but then largely “comes
along for the ride” (as long as nC � nAnB). So there is no real
loss of generality in taking the limit nC → ∞. This does not
mean we are making any restrictive assumptions concerning
the actual thermodynamic entropy of the rest of the universe; it
is a much milder statement that the rest of the universe could in
principle have an arbitrarily high-dimensional Hilbert space.
Under these conditions we have (at all times) the following
limits:

lim
nC→∞〈SA〉 = ln nA, lim

nC→∞〈SB〉 = ln nB, (4.31)

which is the maximum entropy compatible with dimensional-
ity, and

lim
nC→∞〈SC〉 = ln(nAnB), (4.32)

which is the maximum entropy compatible with the total
system being a pure state. In this limit we therefore have the
equality

lim
nC→∞(〈SA〉 + 〈SB〉) = lim

nC→∞〈SC〉, (4.33)

an equality which (in this limit) reproduces the classical
thermodynamic arguments. An immediate consequence of this
result is

lim
nC→∞〈IA:B〉 = 0. (4.34)

That is, for an infinite dimensional environment C, the mutual
information between the subsystems A and B in a pure-state
ABC system is zero. The fact that things simplify so nicely for
an infinite dimensional environment should perhaps not be all
that surprising in view of the fact that even in purely classical
thermodynamics an infinite volume limit (infinite degrees of
freedom) is necessary for the existence of phase transitions.
In counterpoint, an infinite dimensional environment is also
necessary if for some reason one wishes to drive the Shannon
entropy to infinity [22]. On the other hand, it is well known
that when the mutual entropy is zero, the subsystems are
completely independent, that is, we can confirm that the
entanglement between these two subsystems is zero.

V. MULTIPARTITE ENTANGLEMENT

We now seek to further generalize these considerations
to explore a generic multipartite context. Many results carry
over (with minor increase in algebraic complexity) from the
bipartite and tripartite results.

A. Framework

For multipartite decompositions the basic idea is to write

H =
N⊗

i=1

Hi , ni = dim(Hi), n = dim(H), (5.1)

and then define partial traces

ρi = tr(all subspaces except Hi) ρ = tr{H/Hi }ρ, (5.2)

or even more generally

ρijk... = tr(all subspaces except Hi , Hj , Hk , . . . ) ρ

= tr{H/(Hi⊗Hj ⊗Hk⊗...)}ρ. (5.3)

The Page-Sen result [1,13] translates (at the most elementary
level) to the statement that for each individual i we have

〈S(ρi)〉 = Sni,n/ni
= HmiMi

− HMi
− mi − 1

2Mi

. (5.4)

Here in the obvious manner

mi = min{ni,n/ni}, Mi = max{ni,n/ni}, (5.5)

and where Hn is the nth harmonic number [16]. Note we
always have miMi = n, so that we can deduce

〈S(ρi)〉 = Sni ,n/ni
= Hn − Hn/mi

− mi(mi − 1)

2n
, (5.6)

with mi = min{ni,n/ni}.
More generally, we also have

〈S(ρijk...)〉 = Snijk...,n/nijk...

= Hmijk...Mijk...
− HMijk...

− mijk... − 1

2Mijk...

, (5.7)

where now we define

mijk... = min

{
nijk...,

n

nijk...

}
, Mijk... = max

{
nijk...,

n

nijk...

}
.

(5.8)

Again Mijk...mijk... = n so that

〈S(ρijk...)〉 = Snijk...,n/nijk...

= Hn − Hn/mijk...
− mijk...(mijk... − 1)

2n
, (5.9)

where mijk... is as defined above.

B. Bounds

One obvious comment, based on the bipartite analysis, is
that for any collection ijk... of subsystems with collective
dimensionality nijk... and mijk... = min {nijk...,n/nijk...} we
have the rigorous bound

〈S(ρijk...)〉 = Snijk...,n/nijk...
= ln(mijk...) + 	,

	 ∈
(

−1

2
,0

)
. (5.10)

So we see that any collection of these average subsystems
is close to being maximally mixed, in fact within 1

2 a nat of
maximal mixing.

C. Mutual information

The mutual information is in principle easy to deal with,
just algebraically messy.

Let us define three disjoint subsystems ABC as follows:

A : Hijk... = (Hi ⊗ Hj ⊗ Hk ⊗ ...),

B : Hpqr... = (Hp ⊗ Hq ⊗ Hr ⊗ ...), (5.11)
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where none of the indices overlap, and then define C by setting

C : H(ijk...pqr...)∗ = H/(Hijk... ⊗ Hpqr...). (5.12)

Then we can immediately apply the tripartite analysis to this
situation. In particular, as long as A and B are “small” and C

is “large” for the mutual information we certainly have

〈IA:B〉 = 〈I(ijk...):(pqr...)〉 � nijk...npqr...

2n(ijk...pqr...)∗

= n2
ijk...n

2
pqr...

2n
� 1

2
. (5.13)

So the average mutual information between any two small
collections of subsystems, A and B, in the multipartite pure-
state system never exceeds 1

2 nat as long as the subsystem
collection C is dominant in the sense that nijk...njkl... �
n(ijk...pqr...)∗ . More prosaically by small collections we mean
that, when considering the collections A, B, and C, the product
of the two total dimensions of the small collections is less
than or equal to the dimension of whatever is left over:
nAnB � nC = ntotal/(nAnB). That is, for small collections we
require n2

An2
B � ntotal. As promised the only slightly tricky

thing is keeping track of all the indices.
Note that this result is only applicable to pairs2 of small

collections of subsystems; pairs of large collections (and also
any small collection when compared with a large collection)
will have some degree of entanglement, often close to
maximal. Overall, the system is not separable at all.

D. Thermodynamic limit—multipartite

In the thermodynamic limit, letting n → ∞ while keeping
nijk... fixed, we see

lim
n→∞〈S(ρijk...)〉 = lim

n→∞ Snijk...,n/nijk...
= ln(nijk...). (5.14)

So we see that, in the thermodynamic limit, any collection
of these average subsystems is exactly maximally mixed, and
maximally entangled with the complementary collection of
average subsystems (not just close to maximal). Indeed in
the thermodynamic limit the mutual information between any
collection of (nonoverlapping) average subsystems vanishes:

lim
n→∞〈IA:B〉 = lim

n→∞〈I(ijk...):(pqr...)〉 = 0. (5.15)

As in the tripartite case, we can affirm that the entanglement
between pairs of small collections of subsystems is zero in the
thermodynamic limit. That is, we can always choose a pair
of small collections of subsystems of the overall entangled
system that will be completely unentangled.

VI. DISCUSSION

In this article we have studied so-called average subsystem
entropies [1,10,13,18,19] in bipartite, tripartite, and multi-
partite scenarios. This analysis takes the “universe” to be

2In Ref. [23] (and references therein) an interesting alternative
approach to multipartite entangled systems was developed, analyzing
bipartite measures for pure states averaged over all possible bipar-
titions of the system. This was done in order to characterize the
entanglement of the system by a single measure, with a view to
then studying the robustness of entanglement. This approach seems
orthogonal to the average subsystem approach discussed herein.

in a random pure state, splits the universe into subsystems
which are not pure (and so have nonzero subsystem entropies),
and averages over the pure states. This model for subsystem
entropies has been found to be a useful one in many different
contexts. The most common applications found in the literature
are for bipartite systems [1,10,13,18,19], where subsystem
entropies are typically within 1 nat of maximal mixing, but
we have argued herein that it is often more useful to look at
tripartite or even multipartite decompositions of the universe.
(Indeed multipartite decompositions have attracted and con-
tinue to attract considerable attention [3,4,6,12,21,24,25].)

Tripartite analyses are particularly useful in that they allow
one to introduce a notion of environment for the other two
subsystems to interact with. In the tri-partite context the
situation is cleanest when two subsystems are small compared
to the third (specifically, nAnB � nC). In this situation the
subsystems A and B (and even AB) are close to maximally
entangled with C, while the entanglement between A and B (as
measured by average mutual information) is utterly minimal
(less than 1 nat). The thermodynamic limit (nC → ∞, while
nAnB is held fixed) is particularly well behaved, with the
subsystems A and B (and even AB) maximally entangled with
C, while the entanglement between A and B (as measured by
average mutual information) is zero.

In the multipartite context it is convenient to lump the
individual subsystems into “collections” A, B, and C. As long
as two collections are small compared to the third, then the
tripartite analysis sketched above will still hold, including the
existence of the thermodynamic limit.

While we were originally inspired to consider these ideas
based on an analysis of the entropy budget in the Hawking
radiation process [26–28], and also in a cosmological context
[29,30], wherein it can be seen that the quantum consideration
of the rest of the universe can be crucial, absolutely nothing
in the current article specifically depends on the physics
of black holes or any cosmological model (neither general
relativity black holes nor analog black holes [31–40]; neither
experimental [41–52] nor theoretical [53–61]), and nothing
herein depends on any specific aspect of the Hawking
evaporation process—such as the distinction between event
and apparent horizons [62–65]. The use of bipartite, tripartite,
and multipartite decompositions of Hilbert spaces, and the
use of the average subsystem approach, are general tools of
quantum information theory, and we have tried to carefully
separate out the general features from the specific applications
[1–8,10,12,13]. Making this clean conceptual separation has
allowed us to completely sidestep the highly contentious
issues associated with the “information puzzle” [24,66–84]. Of
course there are implications for the information puzzle—see
specifically Refs. [26,27]—but we shall not touch on these
issues in the present article.
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