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Electron-spin filter and polarizer in a standing light wave
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We demonstrate the theoretical feasibility of spin-dependent diffraction and spin polarization of an electron in
two counterpropagating, circularly polarized laser beams. The spin dynamics appears in a two-photon process
of the Kapitza-Dirac effect in the Bragg regime. We show the spin dependence of the diffraction process by
comparison of the time evolution of spin-up and spin-down electrons in a relativistic quantum simulation. We
further discuss the spin properties of the scattering by studying an analytically approximated solution of the
time-evolution matrix. A classification scheme in terms of unitary or nonunitary propagation matrices is used for
establishing a generalized and spin-independent description of the spin properties in the diffraction process.
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I. INTRODUCTION

Diffraction of electrons in a standing wave of light as
proposed by Kapitza and Dirac [1] was demonstrated at the
beginning of the century [2,3], with analogs by diffracting into
multiple diffraction orders [4] or by using atoms [5,6]. The
Kapitza-Dirac effect has already been studied theoretically,
for example, in adiabatic switching [7] by using perturbation
theory [8–10], for spinless particles by using the Klein-Gordon
equation [11,12], for the case of a traveling wave in a dielectric
medium [13], and for a blazed, sawtooth-shaped grating [14].
See also [15] for an overview.

The question of whether the electron spin can be altered in
the diffraction process was posed after the observation of the
Kapitza-Dirac effect [16,17]. Subsequent theoretical consid-
erations confirmed that the electron spin can be manipulated
[18–21], and the dynamical evolution has been identified as
a rotation of the electron spin orientation [22–24]. A rotation
of the electron spin, however, does not imply a dependence of
the diffraction pattern on the initial spin configuration or spin
alignment in a certain direction (spin polarization) due to the
dynamics.

It is possible to produce polarized electron beams by
photoemission [25,26], strong-field ionization [27–34], and
nonlinear Compton scattering [35]. Also the spin has been
investigated in double Compton scattering in a constant
crossed field [36], and spin polarization in the magnetic
nodes of ultraintense lasers has been discussed recently [37].
Regarding spin-sensitive processes, spin-dependent diffraction
has been considered to appear at a phase grating formed
by microscopic coils [38] or in the near field of a periodic
magnetic nanostructure [39]. Also the possibility of a Stern-
Gerlach-like setup for free electrons is discussed in theory
[40–45].

Here, we demonstrate that spin-dependent diffraction is
possible in a standing light wave of circularly polarized light
for the case of a two-photon interaction. While setups with
two interacting photons correspond to the effect considered
by Kapitza and Dirac originally [1] and have been detected
in the experiment [2,3], three-photon scattering has also been
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discussed in bichromatic laser fields [46,47], in particular in
the context of spin effects [18,21,22]. In order to show spin-
dependent diffraction we explicitly propagate electrons with
different initial spin configurations and relate the different
outcomes to the initial condition.

Note that at the final stage of our research spin-dependent
diffraction has been discussed in the context of a three-photon
interaction in the Kapitza-Dirac effect [48,49]. The former
setup [48] makes use of an interferometric setup with linear
polarized laser beams, which combines three-photon and two-
photon Kapitza-Dirac scattering, while the latter setup [49]
solely considers three-photon scattering in laser fields with
a general polarization description. The effective three-photon
interaction is realized by employing a bichromatic standing
light wave as an external field. In contrast to that, we are
investigating Kapitza-Dirac scattering in a monochromatic,
standing light wave of circular polarization, in which the
electron is undergoing an effective two-photon interaction.

Our article is organized as follows: In Sec. II A we describe
the laser field, and in Sec. II B we introduce the notion of
relativistic quantum dynamics in momentum space. We present
a full simulation of the equations of motion in Sec. II C with
a Gaussian-shaped, temporal interaction of the electron with
the laser field, and we point out spin-dependent diffraction and
spin-polarization effects. In Sec. III we adapt an approximate
solution of the quantum dynamics [19] for a laser field
which propagates along the z axis. Based on this solution
we give an intuitive explanation for the origin of the described
spin-dependent diffraction in Sec. IV. Section V discusses
the spin properties of the analytic solution by starting with
general considerations of the degrees of freedoms of the 2 × 2
submatrix which is responsible for the propagation of the
electron spin. We further approximate the solution for different
time scales, i.e., at instant times in Sec. V A and after an eighth
of the period 2π/�S in Sec. V B, where �S is a characteristic
frequency of spin effects. For the latter case we investigate the
spin-dependent diffraction in Sec. V C and spin polarization
of the electron in Sec. V D by comparing the dynamics with
a more accurate analytic solution in Appendix B and the
numerical simulation of the quantum dynamics. In Sec. V E we
discuss the extremal cases of the spin-dependent diffraction.
We conclude in Sec. VI with outlining the implications of the
discussed spin dynamics.
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II. SIMULATION OF RELATIVISTIC QUANTUM
DYNAMICS

For the description of the process we solve the quantum
dynamics of the single-particle Dirac equation

ih̄�̇(x,t) =
[
c

(
− ih̄∇ − q

c
A(x,t)

)
· α + mc2β

]
�(x,t)

(1)
in momentum space by making use of a plane-wave expansion
of the wave function [18,22–24]. The constants in Eq. (1)
are the reduced Planck constant h̄, the electron rest mass m,
and the vacuum speed of light c. The αi of the vector α and
β are the Dirac matrices. In this article we use a dot above
a time-dependent variable to denote its time derivative, for
example, ∂�(x,t)/∂t = �̇(x,t).

A. The external electromagnetic field

We describe the vector field of two counterpropagating,
circularly polarized laser beams by

A(x,t) = 2Aw(t) cos(kz)[− sin(ωt)ex + cos(ωt)ey], (2)

with wave number k and frequency ω = ck. Equation (2) is a
solution of the Maxwell equations, provided that the envelope
function w(t) was constant in time. We model the temporal
interaction of the electron with the laser beam in our numerical
simulation by using the envelope function

w(t) = sin2

(
πt

τ

)
, (3)

in accordance with earlier studies [18,19,22–24,47,50]. The
parameter τ is the time period of the interaction, and the
simulation is evolved in the period between zero and τ , i.e.,
t ∈ [0,τ ].

We point out that dynamics in standing light waves have
been studied by the investigation of classical trajectories [51],
by solving the Klein-Gordon equation [52,53], and by studying
nonlinear Compton scattering [54].

B. Equations of motion in momentum space

For the description of the relativistic wave function, we
introduce the bispinors

u+,α
n =

√
En + mc2

2En

(
χα

nckh̄σz

En+mc2 χ
α

)
, (4a)

u−,α
n =

√
En + mc2

2En

(
− nckh̄σz

En+mc2 χ
α

χα

)
(4b)

and the solutions of the free Dirac equation [18,22]

ψγ,α
n (x) =

√
k

2π
uγ,α

n einkz. (5)

Here, En is the relativistic energy momentum relation

En =
√

(mc2)2 + (nckh̄)2, (6)

and σx , σy , and σz are the three Pauli matrices. The two-
component objects χ↑ = (1,0)T , χ↓ = (0,1)T form a basis
in the spinor space of the Pauli equation. The functions (5)

are simultaneous eigenfunctions of the momentum operator,
the free Dirac Hamiltonian, and the Foldy-Wouthuysen spin
operator [55]. Correspondingly, the quantum numbers of the
eigenfunctions denote the momentum nkh̄, the sign of the
eigenenergy γ ∈ {+,−}, and the spin σ ∈ {↑ , ↓}.

The relativistic wave function of the electron

�(x,t) =
∑
n∈N,

α∈{↑,↓}

cα
n (t)ψ+,α

n + dα
n (t)ψ−,α

n (7)

is expanded in terms of the described eigenfunctions, where
the time evolution of the expansion coefficients cα

n (t) and dα
n (t)

is obtained by projecting the Dirac equation (1) at the plane
waves (5). We obtain a system of differential equations

ih̄ċα
n (t) = Enc

α
n (t) +

∑
n′∈N,

β∈{↑,↓}

[
V

+,α;+,β

n,n′ (t)cβ

n′(t)

+V
+,α;−,β

n,n′ (t)dβ

n′(t)
]
, (8a)

ih̄ḋα
n (t) = −End

α
n (t) +

∑
n′∈N,

β∈{↑,↓}

[
V

−,α;+,β

n,n′ (t)cβ

n′(t)

+V
−,α;−,β

n,n′ (t)dβ

n′(t)
]
, (8b)

with the interaction term

V
γ,ρ;γ ′,ρ ′
n,n′ (t) = q

c
Aw(t)(δn,n′−1 + δn,n′+1)

× uγ,ρ†
n [α1 sin(ωt) − α2 cos(ωt)]uγ ′,ρ ′

n . (9)

Note that, in the numerical simulation, the amplitude of
|cα

n (t)| and |dα
n (t)| drops exponentially for large |n|. Therefore,

we truncate the system of differential equations of the
expansion coefficients and set them to zero for |n| > 10.

C. The numerical simulation and its spin properties

We demonstrate the possibility of filtering and polarizing
the electron spin by a simulation of the eigensolution’s
expansion coefficients cσ

n (t) and dσ
n (t), shown in Fig. 1. The

electron spin initially points upwards in Figs. 1(a) and 1(b),
and it initially points downwards in Figs. 1(c) and 1(d).
Likewise, the initial electron is moving in the −z direction
with momentum h̄k = 7.8 keV/c in Figs. 1(a) and 1(c), and it
is moving with momentum h̄k in the z direction in Figs. 1(b)
and 1(d). One can see that spin-up electrons change their initial
occupation probabilities |c±1(0)|2 = 1 and |c∓1(0)|2 = 0 to the
final probabilities |c±1(τ )|2 = 0 and |c∓1(τ )|2 = 1, where

|cn(t)|2 = |c↑
n (t)|2 + |c↓

n (t)|2 (10)

is the probability of finding the electron with momentum nh̄k

in the z direction at time t . In contrast, spin-down electrons do
not exchange their occupation probabilities between the mo-
menta h̄k and −h̄k. This spin-dependent diffraction behavior
implies that it is possible to separate electrons according to
their spin state in the two-photon Kapitza-Dirac effect with
circularly polarized light.

Also, if the electron is initially moving upwards with
momentum h̄k, as in Figs. 1(b) and 1(d), then the final electron
will move downwards with electron spin pointing up or will
move upwards with electron spin pointing down. Similarly,
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FIG. 1. Simulated quantum dynamics. Shown are the absolute squares of the nonvanishing expansion coefficients of the wave function (7)
over the time t . For the initial condition we set the expansion coefficient (a) c

↑
−1(0), (b) c

↑
+1(0), (c) c

↓
−1(0), and (d) c

↓
+1(0) to 1, where all other

expansion coefficients cσ
n (0) and dσ

n (0) are set to zero at time t = 0. One can see that electrons with spin-up polarization are reversing their
momentum, while the electrons with spin-down polarization are not changing their momentum. This means that spin-dependent diffraction
is taking place. The laser peak intensity is 1.12 × 1022 W/cm2, with the wavelength λ = 0.159 nm in our simulation, in accordance with the
parameters used in [19].

an initially downwards-moving electron as in Figs. 1(a) and
1(c) will finally move upwards with spin pointing up or
move downwards with spin pointing down. This means that
the electron spin is polarized independent of its initial spin
configuration.

The described spin dynamics are sketched in Fig. 2 for
illustration.

III. APPROXIMATE DESCRIPTION

A simplified picture of the spin dynamics in the considered
system can be given by an approximate analytic solution
of the relativistic quantum dynamics, which is described by
Erhard and Bauke [19]. The method makes use of a Foldy-
Wouthuysen transformation of the Dirac equation for obtaining
a nonrelativistic approximation [55,56]. The non-negligible
contributions of the transformation can be written in terms of
the Pauli equation plus a relativistic correction term

ih̄�̇(x,t) =
{

1

2m

[
−ih̄∇ − q

c
A(x,t)

]2
− qh̄

2mc
σ · B(x,t)

+ q2h̄

4m2c3
σ · [E(x,t) × A(x,t)]

}
�(x,t), (11)

where a constant mc2 contribution is neglected due to the
possible elimination by choosing a suitable gauge. The electric
and magnetic fields are related to the vector potential (2) by

E(x,t) = −1

c

∂ A(x,t)

∂t
, (12)

B(x,t) = ∇ × A(x,t). (13)

The approximation from Erhard and Bauke assumes a non-
varying field amplitude w(t) = 1, for which the electric and

magnetic fields evaluate to

E(x,t) = 2Ak cos(kz)[cos(ωt)ex + sin(ωt)ey], (14a)

B(x,t) = 2Ak sin(kz)[cos(ωt)ex + sin(ωt)ey]. (14b)

In another step [19], Eq. (11) can be solved with the Magnus
expansion [57,58], where terms which are negligibly small
and which are not growing linearly in time are neglected.
The relevant terms of the calculation appear in an exponential
representation of the time evolution and correspond to the wave
equation

ih̄�̇(x,t) =
[

1

2m
(−ih̄∇)2 + 2q2A2

mc2
cos2(kz)

− q2A2h̄k

m2c3
[sin2(kz) − cos2(kz)]σz

]
�(x,t).

(15)

One can exchange the relativistic wave function (7) of the
Dirac equation with the two-component wave function

�(x,t) =
∑

n

cn(t)einkz, (16)

with the two-component structure

cn(t) =
(

c
↑
n (t)

c
↓
n (t)

)
(17)

of the expansion coefficients for the case of the Foldy-
Wouthuysen transformed wave equation (11). Inserting the
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FIG. 2. Interacting setup of the laser and electron. Sketched with
yellow arrows are two counterpropagating, corotating, circularly
polarized laser beams from the top and bottom and a corresponding
yellow hyperboloid, which illustrates the resulting standing light
wave. Depicted in the top left and bottom right are incoming spin-up
and spin-down electrons, while in the bottom left and top right are
the outgoing electrons. The connecting lines of electrons indicate
that momenta of spin-up electrons are reversed, while momenta
of spin-down electrons remain unchanged by interaction with the
laser field. This property is consistent with the simulation in Fig. 1.
The diagram also coincides with the analytic expression (48) at
time parameter η = 8 × 2π , where η is defined in Eq. (37) (see
also Sec. V E).

wave function (16) into the relativistic Pauli equation (15) and
projecting on the plane-wave eigenfunctions χσ einkz yields

ih̄ċn(t) = n2h̄2k2

2m
cn(t) + q2A2

2mc2
[cn−2(t) + 2cn(t) + cn+2(t)]

+ q2A2h̄k

2m2c3
σz[cn−2(t) + cn+2(t)]. (18)

We restrict the system of differential equations to the electron
momenta −h̄k and h̄k, according to a similar description of
the Kapitza-Dirac effect in the so-called Bragg regime, which
is discussed by Batelaan [3,15,59], resulting in

iċ±1(t) = (�k + 2�R)c±1(t) + (�R1 + �Sσz)c∓1(t). (19)

Analogous to [19], we have introduced the abbreviations for
the kinetic energy

�k = h̄k2

2m
, (20)

the Rabi frequency of the Kapitza-Dirac effect

�R = q2A2

2mc2h̄
, (21)

and the frequency of spin-dependent effects

�S = �R

h̄k

mc
. (22)

With the choice of a suitable gauge, the term proportional to
(�k + 2�R) can be removed, yielding

iċ±1(t) = (�R1 + �Sσz)c∓1(t). (23)

By introducing the notion

c±1(t) = T (t)c±1(0) + R(t)c∓1(0) (24)

for the time evolution one can write the solution of the
differential equation (23) as

T (t) =
(

cos[(�R + �S)t] 0

0 cos[(�R − �S)t]

)
, (25a)

R(t) = −i

(
sin[(�R + �S)t] 0

0 sin[(�R − �S)t]

)
. (25b)

Here, the matrices R(t) and T (t) describe spin-dependent
initial to final quantum state scattering with and without
reversion of momentum, corresponding to reflection and
transmission.

Note that it is also possible to solve the system of
equations (23) by accounting for the momenta ±3h̄k, instead
of only ±1h̄k [19], as explained in Appendix B. One obtains
corrections to the solution (25) which are negligibly small for
the parameters in Fig. 1.

IV. EXPLANATION OF THE PHYSICAL PROCESS

One can intuitively understand the spin-dependent quantum
dynamics by looking at Eqs. (23) and (25). The spin-up
and spin-down components in Eq. (23) do not mix, and
consequently, the spin propagation matrices (25) are diagonal.
However, one can see that the Rabi-flopping frequency �R

of the spin-up component is enhanced by the small value �S ,
while the spin-down component is decreased by �S . Thus,
after several Rabi cycles elapse, there is a time at which the
Rabi cycle of a spin-up electron is complete but the Rabi cycle
of a spin-down electron is not or vice versa. This property can
also be observed in the numerical simulation in Fig. 1, in which
the spin-up electron oscillates through 16.5 cycles, while the
spin-down electron evolves only 16 cycles. As a result only
a spin-up electron will be in the diffracted state, while a
spin-down electron remains in its initial state, corresponding
to spin-dependent diffraction. In this sense, the spin effect
presented here is caused by stronger (weaker) interaction of
electrons with spin coaligned (counteraligned) to the spin
density of the laser beam.

V. PROPERTIES OF SPIN DYNAMICS

The matrices T (t) and R(t) in Eq. (25) can be represented
in the form [22]

Us(t) =
√

Peiχ

[
cos

(
ξ

2

)
1 − i sin

(
ξ

2

)
n · σ

]
. (26)

For the case of real parameters P , χ , ξ , and n (with n being
a unit vector) the term in the square brackets is an SU(2)
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rotation which rotates the electron spin. In this case P has the
meaning of the spin-independent diffraction probability. In
general the unit vector n can also be complex valued, such that
the representation (26) is parameterized by eight independent
parameters, corresponding to the eight degrees of freedom of
a complex-valued 2 × 2 matrix [60]. In this more general case
the term in the square brackets is no longer an SU(2) rotation,
and the parameter P loses its property as the spin-independent
diffraction probability because different spin configurations
will be diffracted with different probabilities.

We want to demonstrate this property for the time propa-
gation (25). The solution of (25) consists of a fast dynamical
part of the scale �R and a slow dynamical part of the scale �S ,
which one can see from the expansion of the trigonometric
functions

cos [(�R ± �S)t] = cos �Rt cos �St ∓ sin �Rt sin �St,

sin [(�R ± �S)t] = sin �Rt cos �St ± cos �Rt sin �St.

(27)

A. Instant Rabi oscillations

We note that �S is smaller than �R by a factor of h̄k/(mc),
i.e., �R = 65.4�S for the parameters used in the simulation
of Fig. 1. Therefore, for times t � 2π/�S , the sin(�St) term
can be neglected, and the cos(�St) term can be set to one in
Eq. (27), resulting in

T (t) ≈
(

cos �Rt 0

0 cos �Rt

)
(28a)

and

R(t) ≈ −i

(
sin �Rt 0

0 sin �Rt

)
. (28b)

The matrix (26) can approximate T (t) and R(t) by setting

ξ = 0, P = cos2 �Rt for T (t), (29a)

ξ = 0, P = sin2 �Rt for R(t), (29b)

corresponding to spin-independent Rabi oscillations in the
Kapitza-Dirac effect [15].

B. After an eighth of period 2π/�S

The dynamics change when the product �St reaches
fractions of the period 2π . An interesting value is an eighth of
the period 2π/�S , which also corresponds to the final quantum
state configuration of the simulation in Fig. 1, as explained in
Sec. V E. For further investigations we introduce the shifted
time

t ′ = t − π

4�S

. (30)

The functions cos �St and sin �St evaluate to 1/
√

2 for |t ′| �
2π/�S in the trigonometric expansion (27), resulting in the

nonvanishing matrix elements

T11(t) ≈ [cos(�Rt ′ + ϕ0) − sin(�Rt ′ + ϕ0)]/
√

2,

T22(t) ≈ [cos(�Rt ′ + ϕ0) + sin(�Rt ′ + ϕ0)]/
√

2,

R11(t) ≈ −i[sin(�Rt ′ + ϕ0) + cos(�Rt ′ + ϕ0)]/
√

2,

R22(t) ≈ −i[sin(�Rt ′ + ϕ0) − cos(�Rt ′ + ϕ0)]/
√

2, (31)

where we introduce the abbreviation

ϕ0 = π

4

�R

�S

. (32)

The matrices (31) can be expressed in terms of the spin
approximation Us(t) in Eq. (26) by using the parameters

P = 1/2, χ = 0, n = (0,0, − i)T , (33a)

ξ = 2�Rt ′ + 2ϕ0 for T (t) (33b)

and

P = 1/2, χ = 3π/2, n = (0,0, − i)T , (33c)

ξ = 2�Rt ′ + 2ϕ0 − π for R(t). (33d)

The matrix in the square brackets in Eq. (26) is no longer an
SU(2) matrix, for the set of parameters in Eq. (33) because the
vector n is imaginary-valued now. It implies that the diffraction
probability depends on the electron’s spin configuration, where
spin-dependent diffraction is characterized as a nonunitary
propagation matrix of the electron spin.

For investigating the spin properties of the diffraction
process, it is suitable to shift the time (30) further by the small
value π/(4�R). Therefore, we introduce the shifted time

t ′′ = t − π

4�R

− π

4�S

. (34)

Inserting this shifted time in the arguments of the trigonometric
functions (25) yields

�Rt + �St = �Rt ′′ + ϕ0 + �S

(
t ′′ + π

4�R

)
+ π

2
, (35a)

�Rt − �St = �Rt ′′ + ϕ0 − �S

(
t ′′ + π

4�R

)
. (35b)

The term �S[t ′′ + π/(4�R)] is negligibly small for times
|t ′′| � 2π/�S and can be omitted, such that the matrices T (t)
and R(t) in (25) can be written as

T (t) ≈
(− sin η 0

0 cos η

)
, R(t) ≈ −i

(
cos η 0

0 sin η

)
,

(36)

where the argument of the trigonometric functions is abbrevi-
ated with

η = �Rt ′′ + ϕ0. (37)

The parametrization of Us(t) for Eq. (36) is analogous to
Eq. (33), where only ξ needs to be exchanged and to be
expressed in terms of t ′′, yielding

ξ = 2�Rt ′′ + 2ϕ0 + π/2, (38a)
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FIG. 3. Bloch vector in our setup. Shown is the expectation value
of the quantum state (39) with respect to the vector σ of the Pauli
matrices, which is the Bloch vector, which points in the direction (θ,ϕ)
in spherical coordinates. The change in the vector’s z component due
to the laser-electron interaction in Fig. 5 is indicated by the red (dark
gray) arrows. The dashed line shows an additional reversion of the
Bloch vector’s x-y component, implied by Eq. (44).

instead of Eq. (33b) for R(t), and

ξ = 2�Rt ′′ + 2ϕ0 − π/2, (38b)

instead of Eq. (33d) for T (t).

C. Spin-dependent diffraction

For illustration of the spin properties of the spin propagation
matrices T (t) and R(t) in Eq. (36) we assume the quantum state

c−1(0) =
(

cos θ
2

sin θ
2 eiϕ

)
, c+1(0) = 0 (39)

for the initial configuration of the electron. This corresponds
to an electron which moves with momentum −h̄k in the z di-
rection. The Bloch state parametrization of c−1(0) corresponds
to the Bloch vector as sketched in Fig. 3. Inserting the initial
state and the matrices (36) into the time evolution (24) results
in the final quantum states

c+1(t) =
( −i cos η cos θ

2

−i sin η sin θ
2 eiϕ

)
(40a)

for the diffracted electron wave function and

c−1(t) =
(− sin η cos θ

2

cos η sin θ
2 eiϕ

)
(40b)

for the undiffracted electron wave function. Consequently, one
can compute the probabilities

|c±1(t)|2 = 1
2 (1 ± cos θ cos 2η) (41)

of finding the electron moving in the positive or negative z

direction. Equation (41) implies a time-dependence of the
diffraction probability by the time parameter η and also a
dependence on the original azimuthal spin orientation θ . We
plot the diffraction probability |c+1(t)|2 in Fig. 4(a). The
chosen period of time from 2250 ω/(2π ) until 2550 ω/(2π )
corresponds to the one Rabi period 2π/�R , starting and

FIG. 4. Spin-dependent diffraction probability. The diffraction
probability (10) of finding an electron with initial state (39) at final
momentum h̄k is plotted over time. The initial quantum state is
evolved in time (a) by the approximation (36), (b) by the more accurate
approximation (B16), and (c) by a numerical solution according to the
differential equations (8). One can see that the diffraction probability
depends on the initial spin configuration of the electron, where θ = 0
corresponds to spin up and θ = π corresponds to spin down.

ending approximately at the parameter values η ≈ 7.5 and
η ≈ 8.5, respectively. In Fig. 4(b) we also plot the diffraction
probability of the time propagation (B16) of the quantum state
(39) for comparison. Equation (B16) is the most accurate
available analytic approximation [19]. Furthermore, we plot
the numerically simulated time evolution of the quantum state
(39) by using the relativistic equations of motion (8) and the
commonly used envelope function [18,19,22–24,47,50]

w(t) =

⎧⎪⎨
⎪⎩

sin2 πt
2δτ

if 0 � t � δτ,

1 if δτ � t � τ − δτ,

sin2 π(τ−t)
2δτ

if τ − δτ � τ

(42)

in Fig. 4(c). Different simulations with different parameters τ

are carried out for each time t in Fig. 4(c), and the simulation
results |cn(τ )|2 at the end of every simulation are plotted. For
all simulations we set δτ = 10π/ω.

The nice agreement of Fig. 4(a) with Figs. 4(b) and 4(c)
indicates that the analytic solution (25) describes the spin
dynamics well in the chosen period of time. One can see a small
retardation of the numeric solution in Fig. 4(c) compared to the
analytic solutions in Figs. 4(a) and 4(b) of 7.7 laser cycles. This
retardation can be explained by the switch-on and switch-off
process of the external field, as discussed in Appendix A. In
fact, if one inserts δτ = 10π/ω in Eq. (A7), one obtains a
retardation of the scaled time by 6.3 laser cycles.

The quantum dynamics shown here differs fundamentally
from previous investigations [18,21–24] of the Kapitza-Dirac
effect in which the propagation of the electron spin could be
described by the matrix Us(t) in Eq. (26) with a real-valued
unit vector n. For example, if the vector n in the set of
the approximation parameters (33c) and (38b) had the value
(0,0, − 1)T , the final quantum state of the diffracted electron
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FIG. 5. Polarization of the electron spin. The z component of
the Bloch vector (45) is plotted over time. Like in Fig. 4, the initial
quantum state (39) is evolved in time (a) by the approximation (36),
(b) by the more accurate approximation (B16), and (c) by a numerical
solution according to the differential equations (8). One can observe
that 〈n(t)〉 points upwards and downwards periodically, implying that
the electron spin can be polarized.

would be

c+1(t) = − i√
2

(
cos θ

2 ei
ξ

2

sin θ
2 eiϕ−i

ξ

2

)
(43)

instead of (40a). Then, the diffraction probability would
have the time-independent and also spin-independent value
|c+1(t)|2 = 1/2. In contrast, the diffraction probability is time
and spin dependent in Fig. 4. This property can be used to
separate spin-up from spin-down electrons in the form of a
spin filter.

D. Polarization of the electron spin

The expectation value of the final quantum state (40a) with
respect to the Pauli spin matrices is

c+1(t)†σxc+1(t) = 1
2 sin θ sin 2η cos ϕ, (44a)

c+1(t)†σyc+1(t) = 1
2 sin θ sin 2η sin ϕ, (44b)

c+1(t)†σzc+1(t) = 1
2 (cos θ + cos 2η). (44c)

This can be normalized by the diffraction probability
|c+1(t)|2 of Eq. (41) and results in the Bloch vector

〈n(t)〉 = c+1(t)†σc+1(t)

|c+1(t)|2 (45)

of the electron spin of the diffracted electron. The z component
of the Bloch vector (45) is plotted in Fig. 5(a). We also plot
the z component of the Bloch vector resulting from the time
propagation (B16) of the initial quantum state (39) in Fig. 5(b),
which is similar to Fig. 4(b). Also the z component of the
Bloch vector from the numerical propagation of the relativistic
equations of motion (8) is plotted in Fig. 5(c), according to the
same procedure as for Fig. 4(c).

The plots in Fig. 5 agree in a manner similar to what was
described for the plots in Fig. 4. This again emphasizes that

Eq. (25) is a suitable solution of the quantum dynamics in the
chosen time period and also confirms the identified retardation
(A7) due to the switch-on and switch-off process of the external
field.

In analogy to the diffraction probability, the shown dy-
namics of the spin direction of the electron is fundamentally
different from dynamics related to the real-valued unit vector
n in Eq. (26). For example, the Bloch vector

c+1(t)†σxc+1(t) = − 1
2 sin θ sin(ϕ − 2η), (46a)

c+1(t)†σyc+1(t) = 1
2 sin θ cos(ϕ − 2η), (46b)

c+1(t)†σzc+1(t) = 1
2 cos θ (46c)

of the assumed quantum state (43) rotates with angular velocity
−2�R around the z axis. In contrast, the z component of
the electron’s spin vector is periodically tilted upwards and
downwards in Fig. 5, as sketched by the red arrows in
Fig. 3. At certain times, for example, at t ≈ 2400 × 2π/ω

or t ≈ 2480 × 2π/ω, the electron always points upwards or
downwards, respectively, independent of its initial polarization
in the z direction. Therefore, it is possible to polarize an
initially unpolarized electron spin.

Still, the vector of spin expectation values (44) flips its
direction in the x-y plane with period π/�R . This flipping
is sketched for illustration as a dashed line in Fig. 3. Hence,
the spin-flipping dynamics in the x-y-plane goes along with
spin-polarizing and spin-filtering effects along the z direction,
in accordance with dynamics reported by Erhard and Bauke
[19], if one accounts for the choice of laser geometry.

E. Distinct spin separation

For η = πn, n ∈ N the approximate solution (36) implies
that spin-up electrons will be diffracted with momentum
reversal in the z direction with probability 1 and, likewise,
spin-down electrons will remain in their motional state with
probability 1. The reverse property, i.e., diffraction of spin-
down electrons with probability 1 and no diffraction of spin-up
electrons with probability 1, is reached for η = π/2 + πn,

n ∈ N.
Figures 4 and 5 suggest that Eq. (36) is a good approx-

imation for the value η = 8 × 2π . This is, indeed, the case
because one can compute

t ′′ = 16π − ϕ0

�R

≈ −0.18
2π

�R

(47)

for η = 8 × 2π . Then, the necessary condition |t ′′| � 2π/�S ,
which is the requirement that Eq. (36) is a good approximation,
is well fulfilled. In the case of η = 8 × 2π one obtains

T (t) =
(

0 0
0 1

)
, R(t) =

(−i 0
0 0

)
(48)

for the matrices (36). The action of T (t) and R(t) at the
initial conditions in Fig. 1 results in the corresponding final
configurations in all four panels of Fig. 1, as illustrated in
Fig. 2. In other words Eq. (48) displays the propagation matrix
of the quantum dynamics in Fig. 1 and its illustration in Fig. 2.
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Note that the time t in Eq. (48) is related to η by Eqs. (34)
and (37) and evaluates to

t = η

�R

+ π

4�R

= 2401
ω

2π
= 1.27 fs. (49)

This differs from the total interaction time τ of the dynamics
in Fig. 1, which is 6399 laser cycles, corresponding to 3.39 fs.
The reason is the usage of a plateau-shaped envelope function
(42) for the simulation in Figs. 4(c) and 5(c) compared to the
Gaussian-shaped envelope function (3) in Fig. 1. It is possible
to associate the different field envelopes by a substitution
technique which is discussed in Appendix A. We obtain
t̃(τ ) = 2400ω/(2π ) from Eq. (A6), which is fit to the time
in Eq. (49). This demonstrates that the considerations in
Appendix A are suitable for relating the quantum dynamics
of different time-dependent field amplitudes to each other.

The matrices T (t) and R(t) in Eq. (48) can be expressed
in terms of Us(t) in Eq. (26) by the parameters (33a)
with ξ = π/2 and (33c) with ξ = −π/2, respectively. For
any set of parameters, the matrices in Eq. (48) could be
approximated by Us(t) only if an imaginary-valued unit vector
n was used. In contrast, the spin dynamics as described in
Refs. [18,21–24] would require a real-valued unit vector n
for the parametrization in terms of Us(t). The real-valued unit
vector n implies that the absolute values of all eigenvalues of
Us(t) have the same value

√
P . For the imaginary unit vector

n in the representation of Us(t) the absolute values of the
eigenvalues are 0 and 1, like for the matrices T (t) and R(t) in
Eq. (48). In other words T (t) and R(t) are projection matrices
times a complex phase. This property differs fundamentally
from the unitary propagation of the electron spin in previous
descriptions of spin dynamics in the Kapitza-Dirac effect.

We point out that it is possible to identify similar properties
for the quantum state propagation of an electron in a phase
grating [38]. Also, spin-dependent electron scattering in a re-
cently proposed bichromatic interferometric beam splitter [48]
can be described in terms of a nonunitary spin propagation, as
well as spin-dependent electron diffraction in a Kapitza-Dirac
effect with three interacting photons of arbitrary polarization
[49], as we became aware at the final stage of our research.

VI. CONCLUSION

The effect which is described in this article allows for
the polarization and spin detection of free electrons due to
interaction with a standing, circularly polarized light wave
by effectively exchanging only two photons. Our results
are presented in the context of high-intensity x-ray laser
beams of novel facilities, for which the feasibility of electron
diffraction with spin effects with similar parameters has
already been discussed in an earlier investigation [18]. More
details on the experimental feasibility are also considered in
[48]. Furthermore, the experimental community has discussed
the implementation of spin-dependent electron scattering with
light in the optical regime [20], and a perturbative variant
is possible in terms of higher-order Compton scattering in
the high-energy regime [61–63]. We point out that the effect
takes place within a resonance peak of the diffraction process
(see [21,22]). A laser frequency uncertainty of 2.3 × 1018 Hz
would be located inside the half width of this resonance peak

of the considered two-photon interaction. This also implies
that a momentum uncertainty of the electron’s momentum
component in the laser propagation direction has to be below
1.5 keV/c, which can be concluded from the requirement
of energy and momentum conservation (see the discussion
in Secs. 8.5 and 2.2.4 in Ref. [60]). On the other hand,
simulations similar to Fig. 4(c) show that nonzero electron
momenta perpendicular to the laser propagation direction
have almost no influence on the diffraction probability as
long as this transverse momentum component is smaller than
0.1mc ≈ 51 keV. We also mention that the assumed external
potential of the laser field (2) does not account for a spatial
envelope in the context of the plane-wave ansatz in this
work. The effect of a space-dependent pulse envelope on
the spin-dependent diffraction dynamics is a remaining aspect
which should be studied in the future.

Our work has shown that the quantum dynamics is already
described properly by the Pauli equation with relativistic cor-
rections (11), which is consistent with the dynamics from the
Dirac equation (1). Nevertheless, the effect of spin-dependent
diffraction occurs only for weakly relativistic parameters
of the light wave’s frequency and its field amplitude. The
electron in the external field is treated in terms of the most
fundamental description in particle physics (Dirac equation in
external fields) compared to effective theories, for example, in
solid-state physics or quantum optics. Therefore, the effect of
spin-dependent diffraction could be a test bed for examining
relativistic quantum dynamics at the fundamental level if
the required external fields can be provided accurately in
experiment. At the current stage we do not expect significant
sensitivity to new physics from the effect, unless drastic
changes to the standard model are applied. However, further
studies are needed to make authentic statements on fundamen-
tal effects beyond the standard model in particle physics.

Since the effect is also sensitive to the pulse amplitude
and pulse duration of the laser field, it could be useful for
beam diagnosis. Finally, we point out that the propagation of
the quantum state is described by a unitary transformation.
Therefore, the effect can be reversed, provided that a high-
fidelity experimental setup is available.
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APPENDIX A: THE EFFECT OF THE TIME-DEPENDENT
FIELD AMPLITUDE

Assume the constant field amplitude A is replaced by the
time-dependent amplitude Aw(t) in Eq. (23), with correspond-
ing time-dependent frequencies

�R(t) = �R w(t)2, �S(t) = �S w(t)2. (A1)
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Then w(t) just appears as a time-dependent prefactor of the
coefficients of the differential equation

iċ±1(t) = w(t)2(�R1 + �Sσz)c∓1(t). (A2)

We want to transform this equation into a formally equivalent
version of Eq. (23) with reparameterized coefficients c̃(t̃) of
scaled time

t̃(t) =
∫ t

0
w(s)2ds, (A3)

such that c(t) = c̃(t̃(t)). Such a scaled time corresponds to the
warped time parameter [60] or the action parameter [47]. The
new coefficients imply

ċn(t)= ∂

∂t
cn(t)= ∂

∂t
c̃n(t̃(t))= ∂t̃(t)

∂t

∂

∂t̃
c̃n(t̃) = w(t)2 ∂

∂t̃
c̃n(t̃)

(A4)

due to the inner derivative. Plugging this back into (A2)
results in

i
∂

∂t̃
c̃
(
t̃
) = (�R1 + �Sσz)c̃∓1

(
t̃
)
, (A5)

which is formally equivalent to Eq. (23), as desired. Integrating
the scaled time for the whole interaction time τ yields the time

t̃(τ ) =
∫ τ

0
w(s)2ds =

∫ τ

0
sin4

(
πs

τ

)
ds = 3

8
τ (A6)

for the Gaussian envelope function (3). For the plateau-shaped
envelope function (42) one obtains

t̃(τ ) =
∫ τ

0
w(s)2ds = τ − 5

4
δτ (A7)

in a similar calculation.

APPENDIX B: COMPARISON WITH A MORE ACCURATE SOLUTION

We want to compare the approximate solution (25) in Sec. III with the solution given in [19] which also accounts for the
electron momenta 3h̄ and −3h̄k. By performing an analog derivation, the differential equation (18) can first be written in matrix
notion as

i

⎛
⎜⎜⎜⎝

ċ−3

ċ−1

ċ+1

ċ+3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

9�k1 M 0 0

M �k1 M 0

0 M �k1 M

0 0 M 9�k1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c−3

c−1

c+1

c+3

⎞
⎟⎟⎟⎠, (B1)

with the spin-dependent coupling matrix

M = �R1 + �Sσz =
(

�R + �S 0

0 �R − �S

)
. (B2)

A constant from the ponderomotive potential, which causes a global phase with oscillation frequency 2�R , can be omitted by
the choice of a suitable gauge. As in Ref. [19], we use a computer algebra system and a simplification for expressions of the form

√
[8�k − (�R + �S)]2 + 4(�R + �S)2 = 8�k − �R − �S + (�R + �S)2

4�k

+ · · · (B3)

for the case of small frequencies �R � �k and �S � �k and therefore small numbers �R/�k and �S/�k . For the matrix in
Eq. (B1), we obtain the approximated eigenenergies

ε1 ≈ ε0 + �R + �S − �, (B4a)

ε2 ≈ ε0 − �R + �S + �, (B4b)

ε3 ≈ ε0 + �R − �S + �, (B4c)

ε4 ≈ ε0 − �R − �S − �, (B4d)

ε5 ≈ ε0 + 8�k − �, (B4e)

ε6 ≈ ε0 + 8�k + �, (B4f)

ε7 ≈ ε0 + 8�k + �, (B4g)

ε8 ≈ ε0 + 8�k − �, (B4h)

where we have introduced the frequency of an energy shift

ε0 = �k − �2
R + �2

S

8�k

(B5)

and the frequency of higher-order corrections of the quantum dynamics

� = �R�S

4�k

. (B6)
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The frequency ε0 will be omitted in the following calculation, as it causes an additional, time-dependent phase of the quantum
system (B1) which can be removed by the choice of a suitable gauge. The corresponding approximated eigenvectors of the
eigenvalues (B4) are

v1 =
(

1,0, − 8�k

�R + �S

+ 1 − �R + �S

8�k

,0, − 8�k

�R + �S

+ 1 − �R + �S

8�k

,0,1,0

)T

, (B7a)

v2 =
(

0, − 1,0,
8�k

�R − �S

+ 1 − −�R + �S

8�k

,0, − 8�k

�R − �S

− 1 + −�R + �S

8�k

,0,1

)T

, (B7b)

v3 =
(

0,1,0, − 8�k

�R − �S

+ 1 + −�R + �S

8�k

,0, − 8�k

�R − �S

+ 1 + −�R + �S

8�k

,0,1

)T

, (B7c)

v4 =
(

−1,0,
8�k

�R + �S

+ 1 + �R + �S

8�k

,0, − 8�k

�R + �S

− 1 − �R + �S

8�k

,0,1,0

)T

, (B7d)

v5 =
(

1,0,
�R + �S

8�k

,0,
�R + �S

8�k

,0,1,0

)T

, (B7e)

v6 =
(

0, − 1,0,
−�R + �S

8�k

,0, − −�R + �S

8�k

,0,1

)T

, (B7f)

v7 =
(

0,1,0,
�R − �S

8�k

,0,
�R − �S

8�k

,0,1

)T

, (B7g)

v8 =
(

−1,0,
�R + �S

8�k

,0, − �R + �S

8�k

,0,1,0

)T

. (B7h)

For the limit �k � �R > �S as used in [19], the eigenvectors are approximated by

(v1,v2,v3,v4,v5,v6,v7,v8) = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 −1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B8)

and normalized to 1 here. We are interested in the time evolution of the quantum states c+1(t) and c−1(t) and point out that the
first four approximated eigenvectors in Eq. (B8) form a closed subspace of these states. Within this subspace, the time evolution
of the vector of expansion coefficients

C(t) = (c↑
−1(t),c↓

−1(t),c↑
+(t),c↓

+1(t))T (B9)

has an equivalent expression for the time evolution (24) and can be written as C(t) = U (t)C(0) with the form of the propagator

U (t) =
(

T (t) R(t)
R(t) T (t)

)
. (B10)

The time evolution can be computed by making use of the matrix exponential

U (t) = V e−iDtV −1, (B11)

in which we use the eigenvector subspace matrix

V = V −1† = 1√
2

⎛
⎜⎜⎜⎜⎝

1 0 0 1

0 1 1 0

1 0 0 −1

0 −1 1 0

⎞
⎟⎟⎟⎟⎠ (B12)

and the corresponding diagonal matrix of eigenvalues D = diag(ε1,ε2,ε3,ε4). From the property U (t)†U (t) = id4 we note that

|T |2 + |R|2 = 1, (B13)

T †R + R†T = 0 (B14)
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hold, where id4 is the 4 × 4 identity matrix. Thus, R(t) and T (t) are reflection and transmission matrices.
An explicit expression of U (t) is

U (t) = 1

2

⎛
⎜⎜⎜⎜⎝

e−iε1t + e−iε4t 0 e−iε1t − e−iε4t 0

0 e−iε2t + e−iε3t 0 −e−iε2t + e−iε3t

e−iε1t − e−iε4t 0 e−iε1t + e−iε4t 0

0 −e−iε2t + e−iε3t 0 e−iε2t + e−iε3t

⎞
⎟⎟⎟⎟⎠, (B15)

from which one can read off the matrices

T (t) = diag{cos[(�R + �S)t]ei�t , cos[(�R − �S)t]e−i�t }, (B16a)

R(t) = diag{−i sin[(�R + �S)t]ei�t , − i sin[(�R − �S)t]e−i�t }. (B16b)

Note again that ε0 has been omitted here.
The frequency � scales with the fourth power of the field amplitude A, while �R and �S scale only with the square of A.

Therefore, for small fields the frequency � is smaller than �R and �S , which is the case for the parameters chosen in Fig. 1.
Thus, one may approximate

ei�t ≈ 1 + i�t ≈ 1 (B17)

on time scales which are much shorter than the period 2π/�. In this case, the matrices T (t) and R(t) in (B16) turn into the
simpler solution (25) in Sec. III.
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(2014).

052132-12

https://doi.org/10.1103/PhysRevLett.79.4517
https://doi.org/10.1103/PhysRevLett.79.4517
https://doi.org/10.1103/PhysRevLett.79.4517
https://doi.org/10.1103/PhysRevLett.79.4517
https://doi.org/10.1103/PhysRevLett.81.4772
https://doi.org/10.1103/PhysRevLett.81.4772
https://doi.org/10.1103/PhysRevLett.81.4772
https://doi.org/10.1103/PhysRevLett.81.4772
https://doi.org/10.1103/PhysRevLett.86.4508
https://doi.org/10.1103/PhysRevLett.86.4508
https://doi.org/10.1103/PhysRevLett.86.4508
https://doi.org/10.1103/PhysRevLett.86.4508
https://doi.org/10.1103/PhysRevLett.92.223601
https://doi.org/10.1103/PhysRevLett.92.223601
https://doi.org/10.1103/PhysRevLett.92.223601
https://doi.org/10.1103/PhysRevLett.92.223601
https://doi.org/10.1103/PhysRevA.91.062102
https://doi.org/10.1103/PhysRevA.91.062102
https://doi.org/10.1103/PhysRevA.91.062102
https://doi.org/10.1103/PhysRevA.91.062102
https://doi.org/10.1103/PhysRevLett.118.070403
https://doi.org/10.1103/PhysRevLett.118.070403
https://doi.org/10.1103/PhysRevLett.118.070403
https://doi.org/10.1103/PhysRevLett.118.070403
https://doi.org/10.1103/PhysRevA.95.042124
https://doi.org/10.1103/PhysRevA.95.042124
https://doi.org/10.1103/PhysRevA.95.042124
https://doi.org/10.1103/PhysRevA.95.042124
https://doi.org/10.1088/1742-6596/594/1/012015
https://doi.org/10.1088/1742-6596/594/1/012015
https://doi.org/10.1088/1742-6596/594/1/012015
https://doi.org/10.1088/1742-6596/594/1/012015
https://doi.org/10.1088/0741-3335/58/8/085005
https://doi.org/10.1088/0741-3335/58/8/085005
https://doi.org/10.1088/0741-3335/58/8/085005
https://doi.org/10.1088/0741-3335/58/8/085005
https://doi.org/10.1103/PhysRevD.94.125010
https://doi.org/10.1103/PhysRevD.94.125010
https://doi.org/10.1103/PhysRevD.94.125010
https://doi.org/10.1103/PhysRevD.94.125010
https://doi.org/10.1088/1612-2011/11/1/016001
https://doi.org/10.1088/1612-2011/11/1/016001
https://doi.org/10.1088/1612-2011/11/1/016001
https://doi.org/10.1088/1612-2011/11/1/016001
https://doi.org/10.1103/PhysRevA.94.062105
https://doi.org/10.1103/PhysRevA.94.062105
https://doi.org/10.1103/PhysRevA.94.062105
https://doi.org/10.1103/PhysRevA.94.062105
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/RevModPhys.65.733
https://doi.org/10.1103/RevModPhys.65.733
https://doi.org/10.1103/RevModPhys.65.733
https://doi.org/10.1103/RevModPhys.65.733
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1002/cpa.3160070404
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1016/j.physrep.2008.11.001
https://doi.org/10.1080/00107510010001220
https://doi.org/10.1080/00107510010001220
https://doi.org/10.1080/00107510010001220
https://doi.org/10.1080/00107510010001220
http://archiv.ub.uni-heidelberg.de/volltextserver/14049/
https://doi.org/10.1140/epjc/s2004-01861-x
https://doi.org/10.1140/epjc/s2004-01861-x
https://doi.org/10.1140/epjc/s2004-01861-x
https://doi.org/10.1140/epjc/s2004-01861-x
https://doi.org/10.1016/j.nimb.2011.10.024
https://doi.org/10.1016/j.nimb.2011.10.024
https://doi.org/10.1016/j.nimb.2011.10.024
https://doi.org/10.1016/j.nimb.2011.10.024
https://doi.org/10.1103/PhysRevA.90.052117
https://doi.org/10.1103/PhysRevA.90.052117
https://doi.org/10.1103/PhysRevA.90.052117
https://doi.org/10.1103/PhysRevA.90.052117



