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Weak-value amplification and optimal parameter estimation in the presence of correlated noise
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We analytically and numerically investigate the performance of weak-value amplification (WVA) and related
parameter estimation methods in the presence of temporally correlated noise. WVA is a special instance of
a general measurement strategy that involves sorting data into separate subsets based on the outcome of a
second “partitioning” measurement. Using a simplified correlated noise model that can be analyzed exactly
together with optimal statistical estimators, we compare WVA to a conventional measurement method. We find
that WVA indeed yields a much lower variance of the parameter of interest than the conventional technique
does, optimized in the absence of any partitioning measurements. In contrast, a statistically optimal analysis
that employs partitioning measurements, incorporating all partitioned results and their known correlations, is
found to yield an improvement—typically slight—over the noise reduction achieved by WVA. This result occurs
because the simple WVA technique is not tailored to any specific noise environment and therefore does not
make use of correlations between the different partitions. We also compare WVA to traditional background
subtraction, a familiar technique where measurement outcomes are partitioned to eliminate unknown offsets or
errors in calibration. Surprisingly, for the cases we consider, background subtraction turns out to be a special case
of the optimal partitioning approach, possessing a similar typically slight advantage over WVA. These results
give deeper insight into the role of partitioning measurements (with or without postselection) in enhancing
measurement precision, which some have found puzzling. They also resolve previously made conflicting claims
about the usefulness of weak-value amplification to precision measurement in the presence of correlated noise. We
finish by presenting numerical results to model a more realistic laboratory situation of time-decaying correlations,
showing that our conclusions hold for a wide range of statistical models.
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I. INTRODUCTION

Weak-value amplification (WVA) [1] is a technique that has
been used in a variety of experimental settings to permit the
precise measurement of small parameters [2–22]. Over the past
few years, WVA has been the subject of an ongoing debate over
whether or not it can provide an actual advantage in terms of
the resulting measurement precision [20,23–29]. Experimental
scenarios with temporally correlated noise are one area where
there have been claims about an advantage for WVA. In
this paper, we delineate the situations under which WVA
does, in fact, improve measurement precision in the presence
of correlated noise, and we compare it with competing
approaches. This investigation leads to interesting connections
between WVA and other techniques, such as background
subtraction and lock-in amplification, which elucidate the
technical advantages that have already been experimentally
observed.

Alongside arguments regarding the usefulness of WVA
to precision measurement, there has continued to be a great
deal of work extending and improving the basic technique of
WVA in other situations. Some recent advances in the field
include the incorporation of photon recycling of discarded
events [30–32], the observation that WVA can improve
measurement precision in cases with detector saturation [33],
the optimization of the shape of the meter probe [34], and a
generalized approach to probabilistic quantum metrology [35].

Of particular interest is weak-value amplification with en-
tanglement [29,36], squeezing [37], and the observation that
weak-value amplification can suppress systematic errors [38],
which is closely related to the present work. We refer the reader
to recent reviews for a wider overview of the field [39,40].

Weak-value amplification is an experimental technique that
involves two measurements. In the first, a system observable
is measured via a weak interaction with a measurement
apparatus. The effect of this weak interaction is to induce
a small shift in the pointer of the measurement apparatus.
The size of this shift is determined by the observable (which
is typically known) and the coupling strength, which we
are interested in estimating. In weak-value amplification this
coupling strength is usually very weak, so that very little
information is gained about the state being measured, and
the corresponding measurement disturbance is minimized.
The second measurement is a strong projective measurement
in a different basis on the system. Because the system and
measurement device are left weakly entangled by the first
measurement, there are interesting correlations between the
two systems. These correlations can be seen by repeating
the two-measurement procedure identically many times and
dividing the data set compiled from the outcomes of the first
measurement into partitions based on the results of the second
projective measurement, and then averaging the different
partition with different weights. In conventional WVA, the
weights are 0 and 1. This corresponds to discarding certain
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measurement outcomes based on the result of the second
projective measurement, and is called postselection. The
mean shift of the pointer conditioned upon the postselection
succeeding is proportional to the weak value. It is defined in
terms of the initial state of the system (|i〉), the state the system
is found to be in if the postselection succeeds, (|f 〉), and the
operator associated with the first measurement, A,

Aw ≡ 〈f |A|i〉
〈f |i〉 . (1)

The weak value can become quite large when the overlap of
the initial and final state becomes very small. This “amplifi-
cation” of what would be a small shift in our measurement
pointer seems to open up the possibility for improving the
measurement precision. The catch is that when the initial
and final state have small overlap, the postselection occurs
very rarely and so the retained data set becomes quite small.
The improvement in precision which might be expected from
an amplified signal is in fact often perfectly canceled by the
reduction in the size of the data set in experiments where
the measurements are uncorrelated. In spite of this fact, there
have been several experimental metrological works, such as
Refs. [2,3], which argued that WVA could offer an advantage in
specific experimental situations. These claims ignited a fierce
debate over proper resource counting and whether or not the
advantage reported was a feature of the experimental design
or of the technique itself. In this paper, we focus on the case
of additive correlated noise, and detail how WVA can yield an
advantage over other common experimental techniques.

This topic was raised in 2011, when Feizpour, Xing, and
Steinberg (FXS) studied WVA in the presence of additive,
time-correlated, Gaussian random noise and claimed it yielded
an improvement in the signal-to-noise ratio of the measured
parameter over other common techniques [41].

In the scenario considered by FXS, measurements are per-
formed sequentially in time under equivalent circumstances,
but are not independent due to temporal correlations in the
noise. In contrast in WVA, postselection events naturally
occur more rarely, helping the postselected data set remain
uncorrelated. WVA is therefore robust to the detrimental
effects of time-decaying temporal correlations and, FXS claim,
superior to other approachs. More recently, however, others
have argued using Fisher Information methods that the WVA
method is inherently suboptimal because it involves discarding
a portion of the measurement outcomes [24]. Using the same
Fisher information based approach, WVA has since been
shown to be capable of capturing nearly all of the informa-
tion, becoming asymptotically optimal. The optimal limit is
possible to reach because the information contained in the
discarded measurement outcomes is a tiny fraction of the total
information (despite the discarded outcomes making up the
vast majority of the total number of outcomes) [20,27–29,42].
The case with correlated noise is more complex, however,
because the correlations within the postselected partition are
sensitive to controlled parameters like the probability of
postselection, and because there are correlations (and therefore
information) between the postselected and nonpostselected
partitions which must be considered. We will revisit the case
of correlated noise and show that while WVA is much better
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FIG. 1. We schematically represent the original data set being
partitioned by the postselection into two new data sets. The direct
measurement method (blue) requires only the original data set,
whereas the WVA measurement method (red) requires only one of
two partitions. In contrast to both of these approaches, the optimal
partitioning method (green) utilizes both partitioned sets of data.

than the conventional approach, in the temporally correlated
noise case it is (typically) slightly inferior to a statistical
analysis which optimally utilizes all partitioned outcomes and
the correlations between them. See Fig. 1, for a schematic
representation of the three measurement strategies. We will
also show that WVA and the optimal partitioning approach
are closely related to background subtraction and lock-in
amplification techniques which are well known.

This paper is organized as follows. In Sec. II, we introduce
the tools used in estimation theory: estimators; variance;
the Cramér-Rao Bound; our metric of choice, the Fisher
information; and a model for correlated Gaussian noise. In
Sec. III, we explore the Fisher information as an information
metric using a simple two-measurement-outcome example.
In Sec. IV, we give an eigenvalue analysis of the Fisher
information, and show that it may be expressed as a weighted
average of the eigenvalues of the covariance matrix. The
weak-value amplification effect is introduced in Sec. V. An
optimal partitioning measurement approach is introduced in
Sec. VI, which improves slightly on the advantage achieved
by WVA over the direct method by including all parti-
tions and the correlations between them. This physics is
illustrated in Sec. VII, where an exactly solvable model
is introduced, and the variance of all the estimation strategies
is given explicitly and compared. A numerical investigation of
these issues is presented in Sec. IX, where an experimentally
motivated correlated noise model is given, and analyzed. Our
conclusions are given in Sec. X.

II. PARAMETER ESTIMATION

Consider a common scenario in the natural sciences in
which the goal is the measurement of some unknown param-
eter. If the measurement is noisy, this can be accomplished
by performing the same measurement procedure many times
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under equivalent circumstances. Each measurement yields an
outcome, which is compiled into a data set. We represent
this data set as {si}, where i identifies the ith measurement,
i = 1,2, . . . ,N . Measurement outcomes can be scaled and
shifted so the measured signal si can be modeled as the
parameter of interest d and noise xi ,

si = d + xi, (2)

where xi are zero mean Gaussian random variables [41]. In
the most generic case, these variables may be correlated. For
example, this could occur if the source of noise possessed
temporal correlations which lasted for several measurements.
We define the correlation function Ci,j (x) = 〈xixj 〉—this is
also called the covariance matrix. Our task is to estimate the
unknown parameter d from the data set and our knowledge of
the covariance matrix. In this paper, we consider the covariance
matrix known, and the detailed knowledge able to be applied
to implement the optimal estimator of the unknown quantity
d. The extra resources required to estimate this matrix and
implement the optimal estimator are not considered [27], but
this would amount to completely characterizing the sources of
noise in our experiment. By choice of estimator, we simply
mean some algorithm which maps our data set to an estimate
of d. Taking the arithmetic average corresponds to the most
conventional and straightforward estimator. Because the noise
has zero mean, this estimator is unbiased, which means that in
the limit of N → ∞, the estimate of the parameter converges
to d. There are many other unbiased estimators which could be
constructed depending on how the measurement is designed
and implemented.

We will discuss two different classes of measurement
design. The first class, which most conventional measurements
fall into, we term “direct.” Direct measurements only involve
measurements on the parameter of interest. The second class,
which we term “partitioning,” introduces a second measure-
ment that is used to sort the first measurement’s outcomes into
different partitions. Often, partitioning class measurements
possess some advantage versus direct measurements, because
they can exploit correlations between different partitions. The
simplest partitioning class measurement involves discarding
all data points which fail to meet some criterion assessed by the
second measurement. This is postselection. While others have
pointed out that instead of discarding outcomes, they should
be weighted and optimally analyzed, our assertion is just that
exploiting such correlations may have significant advantages,
and that while the actual throwing out of data per se can never
increase the amount of information available, there may be
regimes where some (perhaps most) of the advantage survives
even this procrustean approach.

Once the “measurement design” has been specified, the
space of available estimators is infinite. As the variance
associated with different estimators can vary wildly, the
“choice of estimator” is highly nontrivial. Conveniently, a
technique called maximum likelihood estimation [27] can
be used to identify the estimator with minimum variance in
the large data set limit. Furthermore, there is a mathematical
theorem [43] that bounds the minimum variance of an unbiased
estimator to be larger than the inverse Fisher information. This
allows us to forgo discussion of estimators entirely, skipping
directly to the calculation of the Fisher information, which

is defined as the inverse variance of the optimal estimator.
Find the Fisher information for a given measurement scenario,
invert it, and one will have found the minimum variance of any
unbiased estimator.

III. FISHER INFORMATION IN A TWO MEASUREMENT
OUTCOME EXAMPLE

It is instructive to consider a pedagogical example that will
clarify the meaning of the Fisher information, the importance
of the choice of estimator, and the significance of the
covariance matrix to this task. If we return to the scenario in the
previous section, but imagine collecting only two data points,
we will have a data set (s1,s2) with assumed knowledge of the
covariances and variances. As before, our goal is to estimate
the mean d. The covariance matrix, which is a 2 × 2 matrix, is

C(s) =
(

Var(s1) Cov(s1,s2)
Cov(s2,s1) Var(s2)

)
, (3)

where Var(s1), Var(s2) � 0, and Cov(s1,s2) = Cov(s2,s1)
are all real numbers. The Cauchy-Schwartz inequality
[Cov(s1,s2)2 < Var(s1)Var(s2)] guarantees both eigenvalues
be non-negative which also guarantees C to be positive
semidefinite. The Cov(s1,s2) itself can be positive or negative,
representing either positive or negative correlation between s1

and s2. Our goal is to estimate the expectation value of our
two data points while minimizing the variance of our estimate.
Were we to use the first data point alone to estimate the mean,
the variance would be Var(s1); similarly, use of the second data
point alone gives Var(s2). Instead, we can use a combination
of the two data points as our estimator, sest = αs1 + βs2,
where α and β are constant weighting factors. To keep this
estimator unbiased we require that α + β = 1. The variance
of our estimator sest is given by

Var(sest) = α2Var(s1) + β2Var(s2) + 2αβCov(s1,s2). (4)

We minimize the variance with respect to α, keeping
Var(s1),Var(s2),Cov(s1,s2) fixed. Doing so gives a minimum
variance of

Var(sest)min = Var(s1)Var(s2) − Cov(s1,s2)2

Var(s1) + Var(s2) − 2Cov(s1,s2)
, (5)

which is smaller than or equal to either Var(s1) or Var(s2) for
any allowed values of Var(s1),Var(s2),Cov(s1,s2). We note that
unlike uncorrelated random variables, the inverse variance is
not additive. If instead we took equal weighting of the two data
points, α = β = 1/2, this would give

Var(sest)equal = Cov(s1,s2)/2 + [Var(s1) + Var(s2)]/4. (6)

If the two outcomes are perfectly negatively correlated
[Cov(s1,s2) → −√

Var(s1)Var(s2)], then both the optimal and
the equal weighting estimators have zero variance. This can
be understood as resulting from anticorrelated fluctuations
canceling each other out, for example if s1 = d + x1, and s2 =
d − x1, a straightforward averaging of s1,s2 will result in the
perfect cancellation of the noise (x1). If the two outcomes are
perfectly positively correlated, but the variances are not equal
[Var(s1) �= Var(s2)], the optimal variance vanishes, whereas
the equal weighting variance limits to that of using just a
single outcome. This can be understood by considering the
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FIG. 2. Inverse Fisher information (minimum variance of s) vs x

and r , Eq. (9), plotted in units of
√

Var(s1)Var(s2).

case where s1 = d + 2x1, and s2 = d + x1. If our estimator is
sest = 2s2 − s1, we can eliminate the noise just like in the
anticorrelated case. When the variances are equal and the
correlations are positive, the optimal variance does not vanish
because the noise cannot be canceled without making the
estimator biased. In this case, the equal-weighting estimator
turns out to be optimal. We recall that the Fisher information
is equal to the inverse of the variance of the optimal estimator
in the large data limit. The Fisher information is defined for
smooth distributions as [43]

I = −
∫

ds1 . . . dsnP (s1,s2, . . . sn|d)
∂2

∂d2
ln P, (7)

where P = P (s1,s2, . . . sn|d) is the probability distribution of
{s1, . . . sn} given a fixed value of d. In our model, it is taken as
a multidimensional Gaussian distribution with mean d1 and
covariance matrix Cij . From Ref. [27] the Fisher information
about the mean for Gaussian correlated noise is given by

I =
N∑
i,j

[C−1]i,j , (8)

and the Fisher information for N = 2 is simply the minimized
variance we found previously,

I = Var(s1) + Var(s2) − 2Cov(s1,s2)

Var(s1)Var(s2) − Cov(s1,s2)2
= Var(s)−1

min. (9)

It is convenient to introduce two parameters, an asymmetry
parameter, x = Var(s1)/Var(s2) ∈ [0,∞), and a relative corre-
lation parameter, r = Cov(s1,s2)/

√
Var(s1)Var(s2) ∈ [−1,1].

Dividing the inverse Fisher information by
√

Var(s1)Var(s2)
gives a function that depends only on r and x. We plot the
inverse Fisher information in this case in Fig. 2, noting the
asymmetry in both r and x which we will now explore.

We note that (9) indicates that negative values of Cov(s1,s2)
(or r) typically have higher Fisher information than positive
values; that is, anticorrelation is more informative than
correlation. In Figs. 3–5, we plot the variance of sest versus

1

FIG. 3. Variance of the estimator s vs α, Eq. (4). We choose
50% correlated outcomes (r = 1/2), and plot for different values of
asymmetry (x).

α for different values of x and r . The minimum value of
the estimator corresponds to the inverse Fisher information
for that choice of covariance matrix. These figures highlight
how the information that can be extracted from a probability
distribution depends in a complicated way on the parameters of
that distribution even in the simplest (two-dimensional) cases.
Importantly, they show that while anticorrelations typically
increase the available information, positive correlations can in
certain circumstances also boost the amount of information
that is available.

In what follows, we will show that due to the properties of
the Covariance matrix the Fisher information can be expressed
simply in terms of the eigenvalues and eigenvectors of C.
This will pave the way for an exactly solvable noise model,
which we will use to address the questions raised in Sec. I by
comparing the Fisher information of the various measurement
strategies. Finally, we will present a numerical investigation
where the conclusions reached with the exactly solvable noise
model are shown to hold in experimentally realistic scenarios.

FIG. 4. Variance of the estimator sest vs α, Eq. (4). We choose
maximally correlated outcomes (r = 1), and plot for different values
of asymmetry (x).
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FIG. 5. Variance of the estimator sest vs α, Eq. (4) We choose the
symmetric case (x = 1), and plot for different values of correlation
between the outcomes (r).

IV. EIGENVALUE ANALYSIS OF THE FISHER
INFORMATION

We recall that the covariance matrix C is a symmetric,
positive, semidefinite matrix. Therefore, we can make an
orthogonal decomposition of it as follows:

C = ODOT , (10)

where O is an orthogonal matrix, OT is its transpose, and D

is a diagonal matrix with eigenvalues σ 2
j > 0 for all j , since it

is positive definite. We do not consider σj = 0 for any j since
that corresponds to a deterministic outcome, which then gives
infinite information (or zero variance). It is then easy to see
that the inverse of C is given by

C−1 = OD−1OT , (11)

by direct calculation, where D−1 is a diagonal matrix with
elements σ−2

j > 0 for all j .
Substituting that decomposition to Eq. (8) gives

I =
∑
i,j

∑
k

Oi,kσ
−2
k OT

k,j =
∑

k

σ−2
k

∑
i

Oi,k

∑
j

Oj,k.

(12)

We define a vector v with components, vk = ∑
i Oi,k . This

then gives

I =
∑

k

σ−2
k v2

k . (13)

Next we note that the O matrix is orthogonal, and therefore
OOT =I , the identity matrix. Summing over both indices we
obtain ∑

i,j,k

Oi,kO
T
k,j =

∑
k

v2
k =

∑
i,j

δi,k = N. (14)

Since the sum of the squares of the v vector components must
be N by orthogonality, we define a weight vector w, whose
elements are wi = v2

i /N , so that the sum of the weights is 1.
With this definition, the Fisher information is

I = N
∑

k

σ−2
k wk. (15)

Thus, the Fisher information is given by the weighted average
of the eigenvalues of the covariance matrix, with the weights
related to the eigenvectors of covariance matrix.

According to the Cramér-Rao inequality (CRI), the variance
of any unbiased estimator dest must be greater than the inverse
Fisher information [43],

Var[dest] � I−1. (16)

Let us see if this is true in the case of the simple estimator
dest = (1/N)

∑
j sj . The variance is given by

Var[dest] = (1/N2)
∑
i,j

Ci,j . (17)

We can make a similar analysis as above, C = ODOT , to find

Var[d̂] = (1/N2)
∑
i,j,k

σ 2
k Oi,kOj,k. (18)

We can rewrite this as

Var[dest] = (1/N)
∑

k

σ 2
k wk. (19)

The CRI can be restated in this case as the inequality∑
i

wiσ
2
i

∑
j

wjσ
−2
j � 1. (20)

This relation can be proved directly with the Cauchy-Schwarz
inequality. We define a vector u1 of dimension N with
elements u1,i = √

wiσi , and another vector u2 of the
same dimension, with elements u2,i = √

wiσ
−1
i . The

Cauchy-Schwarz inequality,

|u1 · u2| � ||u1|| ||u2||, (21)

applied to these vectors gives
∑

i wiσi/σi = 1 for the
left-hand side of (21), since wi are weighting factors, and
(
∑

i wiσ
2
i

∑
j wjσ

−2
j )1/2 for the right-hand side of (21). If a

square root of a quantity is greater than 1, that quantity is
greater than 1 as well, establishing the desired relation (20).

We note that a sufficient condition on C to make the simple
estimator efficient is that C’s rows (or columns) all sum to the
same number. This is equivalent to the statement that C has
an eigenvector e1 = (1,1, . . . ,1)T . By construction, all other
eigenvectors are orthogonal to this one, so the vector v will
have components 0, except for the first entry. Therefore, the
weighting factors are given by wj = (1,0,0, . . . 0). This gives
the variance (19) Var[dest] = σ 2

1 /N , which saturates the CRB,
as seen from Eq. (15). In this case, σ 2

1 is just the sum of
any row or column of C. As we will see in Sec. VII this result
will facilitate calculating the Fisher information for our simple
correlated noise model.

V. INCLUDING THE WEAK-VALUE AMPLIFICATION
EFFECT

Let us now consider the weak-value case. In a weak-value-
type metrology experiment, a system is weakly coupled to a
meter via an interaction whose coupling strength we would
like to determine. We are interested in the case where the
weak value gets large, which occurs when the initial and
final states are nearly orthogonal. Experimental observations
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of weak-value amplification must, therefore, involve choosing
the initial and final state to be orthogonal. When this occurs,
and when the coupling parameter d is small, one may still get a
large pointer shift, which in turn suggests the technique might
be useful as a way to measure the value of otherwise small
coupling constants d.

The interaction term can be written as the product of some
system observable A and an operator on the pointer that we
call P. The interaction Hamiltonian is therefore

HI = d(t) P · A, (22)

where d(t) is a function with compact support near the time
of measurement. Usually, the interaction is approximated as
happening very quickly, for example: d(t) = d δ(t), where
d is the interaction strength. The pointer operator is termed
P, because the effect of HI is to generate translations in
the conjugate variable (∝ d A) consequently interpreted as
a pointer position [44]. For the measurement to be considered
“weak” the pointer shift must be much less than the uncertainty,
(σ ), in the position of the pointer, d 〈A〉 � σ . In the standard
weak-value approach, the system is pre- and postselected to be
in state |i〉 and |f 〉. For an M-dimensional system, there are
M simultaneously possible outcomes for a given projective
measurement, with the probability of a given outcome |f 〉
given by γ = |〈f |i〉|2. While it is possible that in general
there may be information in the probability of the selection
[28,45–47], in the usual approach, à la Aharonov, the proba-
bility of selection is independent of the parameter of interest,
and all of the available information is in the meter deflections
[1,28]. If the average deflection in the absence of a second
selective measurement is given by d 〈i|A|i〉 = d〈A〉, then in
the weak limit, the Fisher information about d is multiplied
by a factor of 〈A〉2 [see Eqs. (7) and (8)]. In contrast, in the
presence of the second selective measurement, the deflection
is given by Awd, where

Aw ≡ 〈f |A|i〉
〈f |i〉 , (23)

is defined as the weak value. We note that the weak value can
be imaginary and that it is not bounded by the eigenspectrum
of the operator A. If the probability of postselection is made
very small, the weak value can become very large, hence the
term amplification. In this work, we focus on real weak values;
see Refs. [20,27,48] for a discussion of imaginary weak-value
amplification.

If we make a weak-value amplification-type experiment,
with postselection of probability γ , the resulting data set {si}
contains on average only γN data points (where we recall
that N was the number of data points in the nonpostselected
measurement). Whereas before we would rescale the meter
deflection by the expectation value A in order to isolate the
parameter of interest (d), we now have to account for the
amplification effect. Our signal is boosted from d 〈A〉 to d Aw

and the correlation matrix changes to C ′, and is now a smaller
approximately γN × γN matrix. The Fisher information is
given by [27]

Iwv = A2
w

∑
i,j

[C ′−1]i,j . (24)

We can now treat this case like we did in the previous section.
We have a new covariance matrix C ′ with which we can
make a similar decomposition, C ′ = O ′D′O ′T . The dimension
is reduced by a factor of ≈ γ . We make exactly the same
treatment as before, calling σ ′2

j the eigenvalues of C ′, and w′
j

the new weights.
The Fisher information is now given by

Iwv = A2
w(γN )

γN∑
k

σ ′−2
k w′

k, (25)

where the weights w′
k are normalized. In order to account for

the effect of the weak-value amplification, we will later give a
detailed model for the precise form the weak values take on.
For the moment, we estimate A2

w = 〈A〉2/γ , as is true in many
weak-value implementation experiments. If that is so, we have

Iwv = N〈A〉2
∑

k

σ ′−2
k w′

k. (26)

We note that the amplification factor has canceled the factor of
γ which arose due to the reduced size of the new covariance
matrix. Comparing this relation to (15), accounting for the
multiplication of the Fisher information with 〈A〉2, we see that
both scale as N , and the main change to the Fisher information
is how the correlations are affected by the postselection.
If the randomly postselected events have the same type of
correlations as the nonpostselected case, then the Fisher
information is comparable—it is still a weighted average of
(a smaller number of) inverse eigenvalues. If the correlations
are reduced because retained measurements are further sep-
arated in time reducing temporal correlations, for example,
then the Fisher information could be larger and WVA would
possess an advantage over the direct measurement approach.
We will soon see that this is indeed the case.

VI. OPTIMAL PARTITIONING MEASUREMENT

We next consider improving on the weak-value amplifi-
cation scheme by incorporating the discarded measurement
results in our estimation strategy. This involves optimally
implementing a partitioning measurement so that all output
channels and resulting correlations are used. We will refer
to this as an optimal partitioning class measurement (OPM),
which we can compare to the simpler WVA case.

For an M-dimensional system, there are M possible
outcomes of the second projective measurement on the system,
|f1〉,|f2〉, . . . ,|fM〉. For each of those possibilities, there is
a weak value, so Aw,fj

, j = 1, . . . ,M . The distribution of
events is assumed to be a multivariable Gaussian distribution
P ({sj }|d), with mean μ = Awd and covariance matrix C.
Here, we define a vector of weak values, Aw, associated with
each outcome with elements Aw,fj

, where j = 1, . . . M . We
will now focus on the M = 2 case.

Given N measurement outcomes, the selection tags γN

of the outcomes with one postselection associated with the
final state |f 〉, and the remaining (1 − γ )N outcomes with the
postselection associated with the final state |f⊥〉. We reorder
the outcomes and label them i = 1, . . . γN ; γN + 1, . . . N .
This will not typically be the temporal ordering. However,
the first selection is associated with the weak-value Aw,
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and the second with A⊥
w . We write the covariance matrix

in 2 × 2 block form (this can be generalized for multiple
partitionings in the higher dimensional case). The probability
distribution is a multivariable Gaussian distribution. It has
mean μ = (Awd 1γN ,A⊥

wd 1(1−γ )N )T , where 1x is a vector
of x 1s. The covariance matrix in block form is

C =
(

C11 C12

C21 C22

)
, (27)

where C11 (of dimension γN × γN ), and C22 [of dimension
(1 − γ )N × (1 − γ )N ] are the covariance matrices associated
with the two selections, and C12 = CT

21 is the correlation matrix
between the selected outcomes, which has dimension γN ×
(1 − γ )N or (1 − γ )N × γN .

The Fisher information for such a situation is given by [43]

I = ∂dμ
T · C−1 · ∂dμ (28)

= I1 + I2 + I3 (29)

= A2
w

∑
ij

([C−1]11)ij + (A⊥
w)2

∑
ij

([C−1]22)ij

+AwA⊥
w

⎛
⎝∑

ij

([C−1]12)ij +
∑
i ′j ′

([C−1]21)i ′j ′

⎞
⎠, (30)

where the sums run over the appropriate ranges. It is important
to note that [C−1]kl , where k,l = 1,2 refers to the block-matrix
form of the inverse of the entire C matrix, not the inverses of
each of the subblocks. Just as in the simple example of the

2 × 2 covariance matrix, the total information exceeds using
either selection state alone, however, there may be cases where
all the information is in one of the selection states, and the
other may be discarded without any loss in variance. We will
see such an example in the next section.

It is also of interest to find the optimal estimators in this case,
using maximum likelihood methods. Each event is filtered
according to the selection state, and is associated with a mean
of that weak value times d. The covariance matrix is assumed
to have the same values as before (with a mean meter shift of
Awd or A⊥

wd) in the weak measurement limit, but the indices
are relabeled to put the matrix into block form, associated with
each weak value.

We can find the optimal estimator by solving for the
value of d that maximizes the log likelihood, lnP ({sj }|d) =
−(s − Awd)T · C−1 · (s − Awd) + const with respect to the
parameter d [27]. The maximum likelihood estimator is given
by

dest =
AT

w · C−1 · s
AT

w · C−1 · Aw

, (31)

where s is a vector of outcomes.
For the special case of two selection states, with weak values

Aw and A⊥
w , so Aw = (Aw 1γN ,A⊥

w 1(1−γ )N ), we assume that
each selection has outcomes 1, . . . γN , and γN + 1, . . . N .
The inverse covariance matrix takes the form of a 2 × 2
block matrix. We further break the vector of outcomes in
two, corresponding to each selection label, s = (s1,s2). To
give an explicit expression, we express the estimator as a ratio,
dest = N /D, in which the numerator N is given by

N = (Aw 1γN ,A⊥
w 1(1−γ )N )

(
[C−1]11 [C−1]12

[C−1]21 [C−1]22

)(
s1

s2

)
, (32)

= Aw

γN∑
i=1

⎛
⎝ γN∑

j=1

([C−1]11)ij s1,j +
N∑

j=γN+1

([C−1]12)ij s2,j

⎞
⎠ + A⊥

w

N∑
i=γN+1

⎛
⎝ γN∑

j=1

([C−1]21)ij s1,j +
N∑

j=γN+1

([C−1]22)ij s2,j

⎞
⎠, (33)

and the denominator D is the Fisher information, (30).

VII. EXACTLY SOLVABLE MODEL

A. Direct case

We now consider a simplified model for correlated noise,
in which the covariance matrix corresponds to a combination
of uncorrelated noise in time (a) and perfectly correlated noise
(c). The N × N covariance matrix C is then a sum of a diagonal
matrix and a matrix of identical elements,

Cij = aδij + c, (34)

where the constant term in Eq. (34) reflects a shift common to
all elements of the data set (e.g., a systematic error), which is
drawn from a zero-mean Gaussian distribution with a variance
of c.

Equation (34) has a simple eigensystem, because the
characteristic equation for the eigenvalues, det(C − σ 2I ) = 0,
may be solved by substituting σ 2 = cσ ′2 + a, and noting

that σ ′2 solves for the eigenvalues of the matrix of all 1s.
The latter matrix has one eigenvalue of N , and the rest 0.
The first normalized eigenvector is e1 = (1,1, . . . ,1)/

√
N ,

corresponding to the N eigenvalue, and the other N − 1
eigenvectors corresponding to the 0 eigenvalue are constructed
orthogonal to e1.

This result indicates that the eigenvalues of C are

σ 2
j = (Nc + a,a,a, . . . ,a), (35)

with the same eigenvectors mentioned above. The positive
semidefinite condition requires that c � −a/N . We can now
apply the procedure outlined above by writing the orthogonal
matrix formed from the orthonormal eigenvectors as

O = (e1,e2, . . . ,eN ). (36)

The vector vk = ∑
i Oi,k = ∑

i(ek)i may be computed for this
model by using the orthonormality conditions of the vectors
ej . This is because the sum runs down the column of each unit
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basis vector. Using the properties∑
i

(e1)i =
√

N, e1 · ej =
∑

i

(ej )i = 0, (37)

for every unit vector with j �= 1, we find

v = (
√

N,0,0, . . . ,0), w = (1,0,0, . . . 0), (38)

for this model. Noting that Eq. (14) is correct, we find that the
Fisher information (15) with the shifted mean is

Ic = 〈A〉2 N

Nc + a
. (39)

We can compare this to the case of uncorrelated noise, in which

C̃ij = (a + c)δij , (40)

and where the Fisher information is

Iuc = 〈A〉2 N

c + a
. (41)

We see that the effect of the correlations is to contribute to the
denominator such that in the limit of N → ∞ the information
(39) saturates at 1/c.

It is interesting to compare this result with the equal
weighting estimator, Eq. (17). Since there is only one nonzero
weight, the result is

〈A〉2Var[d̂] = 1

N2

∑
ij

(aδij + c) = a

N
+ c = 〈A〉2I−1.

(42)

We see in this case, the improved estimation strategy does
not help reduce the variance beyond simply averaging the
data. This result is easily predicted from the structure of the
covariance matrix as previously shown. As c → −a/N , the
information diverges, or the variance vanishes. On the other
hand if the correlations are positive (c > 0), the information
is invariably reduced. This reduction is easily understood as
being the result of an unknown offset (c) which is not reduced
by increasing the number of measurements (N ) (in the limit
of N → ∞, the variance limits to c rather than zero, see also
Ref. [38]).

B. Weak-value case

We can apply the same model as above to the Fisher
information in the weak-value case. In this case, along with the
measurement of the parameter of interest, a second partitioning
measurement is performed, which divides the first set of
measurements into a retained and a discarded partition. As
we saw before d〈A〉 → Awd. However, with this particular
noise model, the covariance matrix is exactly the same as in
the nonpostselected case (because every event has correlation c

with every other event, and autocorrelation a). Consequently,
we can just apply the above results to Eq. (24) to find the
postselected Fisher information to be

Iwv = A2
w

γN

a + γNc
. (43)

Replacing A2
w = 〈A〉2/γ , the postselection probability cancels

in the numerator, and we find the same Fisher information (39),

but with the effective change of

c → γ c. (44)

That is, postselection reduces the size of the correlation.
However, the resulting advantage depends on the kind of
noise: If c < 0, the postselection increases the variance,
whereas if c > 0, the postselection reduces the variance of
the optimal estimator. The latter is in accordance with the
findings of Ref. [41] for this model. We note that, as before,
there is no difference between the optimal estimator and the
equal-weighting estimator.

We note that while γ can be made arbitrarily small, the
Fisher information is bounded by the necessity of sampling
some high-information content events, selected from the
covariance matrix elements a + c, giving the bound

Iwv � 〈A〉2 N

a + c
. (45)

This result represents an enormous suppression of the detri-
mental effects of noise accompanied by a significant reduction
in the size of the data set. The WVA technique is able to
recover the performance of the conventional method in the
uncorrelated noise limit by simply selecting a small enough
γ . If for some experimental reason, γ is bounded to be larger
than some minimum, γmin gives a practical limit to the noise
reduction (44).

C. Using the other selection: Optimal partitioning measurement

We now apply the results of Sec. VI to our model to see how
much the Fisher information may be improved by the optimal
partitioning method, which involves optimally weighting both
the “postselected” and the “postselection rejected” partitions
of the data set in order to estimate the parameter of interest.
Comparing this approach to the WVA strategy will tell us how
much information was discarded by the postselection step in
WVA. The Fisher information may be explicitly evaluated in
our exactly solvable model. This is because the exact inverse
of matrix (34) is given by

C−1
ij = (a + cN )δij − c

a2 + Nac
, (46)

as can be checked by direct calculation, CC−1 = I . It is
straightforward to see that summing over both indices in (46)
returns the Fisher information (39). The Fisher information
with weak-value amplification, Eq. (30) in this special case,
has the exact form

I = aN [γA2
w+(1 − γ )(A⊥

w)2]+cγ (1 − γ )N2(Aw−A⊥
w)2

a2 + Nac
.

(47)

In order to compare the different methods, we adopt the
standard model of the weak value, taken from [20]:

Aw = − cot(φ/2), A⊥
w = tan(φ/2), γ = sin2(φ/2), (48)

where φ/2 is the overlap angle between |f 〉 and |i〉, the pre-
and postselected states. This model leads to the simplification
of the three terms defined in (30) as

I1 = aN cos2(φ/2) + cN2 cos4(φ/2)

a2 + Nac
, (49)
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FIG. 6. Different contributions to the Fisher information in
Eq. (30) vs φ, in units of N/a, the uncorrelated Fisher information.
Term 1 (I1) is proportional to A2

w , term 2 (I2) is proportional
to (A⊥

w)2, and term three (I3) is proportional to AwA⊥
w . We take

N = 100, c/a = 0.5.

I2 = aN sin2(φ/2) + cN2 sin4(φ/2)

a2 + Nac
, (50)

I3 = 2cN2 sin2(φ/2) cos2(φ/2)

a2 + Nac
. (51)

The sum of these three terms is

Is = N

a
. (52)

Remarkably, the total Fisher information is now independent
of the value of φ, and is larger than the uncorrelated Fisher
information. Assuming c > 0, we recall that just using the
one selection state had the effect of reducing c → γ c. We see
here that adding in the other selection state and their correlation
allows us to eliminate the effect of c entirely. In Fig. 6, we show
the various contributions to the combined Fisher information
using both output selections. The Fisher information (30)
comes from the three terms from each subblock. We note that
if it is the case that c < 0, then it is clearly advantageous to
use the direct measurement scheme. In Table I we tabulate the

TABLE I. In this table, the Fisher Information is summarized in
the uncorrelated and correlated noise limits for the three different
strategies we consider: the direct approach, the weak value approach,
and the optimal partitioning approach. From the table, N is the
number of measurements carried out, (γN is the number of retained
measurements in the WVA approach), a is the variance of the white
noise, and c is the variance of the unknown systematic. From the
figure we can see OPM removes all effect of c, while WVA reduces
its effect by a factor of N, recovering exactly the variance achievable
in the absence of correlations.

Approach Uncorrelated noise Correlated noise

FI direct N

a+c

N

a+Nc

FI WVA N

a+c

N

a+c

FI OPM N

a+c

N

a

Fisher information (FI) of the three approaches we consider in
white- and slow-noise limits.

Summarizing the chart above, we have found that all
three approaches are identical in terms of measurement
performance in the uncorrelated noise limit. Whichever is
experimentally easier to implement, therefore, has the ad-
vantage. In the correlated noise limit, WVA has a clear
advantage over the direct approach, confirming the work of
Feizpour, Xing, and Steinberg [41]. What Feizpour et al. did
not consider, however, is that unlike in the white-noise limit,
once there are correlations between measurements, retaining
all partitions and the correlations between them becomes
advantageous. In fact, in the same regime where WVA has
a real quantitative advantage over the conventional approach,
it turns out to be slightly inferior to the optimal partitioning
method.

D. Limiting optimal estimators

We see from the above analysis that with the OPM
approach, the selection angle φ simply changes how the
information is distributed in the various outcomes. It is
instructive to focus on the form of the optimal estimators
(32) in the two extreme limits for our exactly solvable model:
γ � 1, the weak-value amplification limit, and γ = 1/2,
the balanced limit, in order to understand how the optimal
partitioning approach is able to completely eliminate c.

In the very unbalanced limit, the term proportional to
Aw dominates the Fisher information. The weak values
are given approximately by Aw ≈ −2/φ, A⊥

W ≈ φ/2, and
the asymmetry is given by γ ≈ φ2/4. We find the optimal
estimator to be

dest ≈ dwv
est − Awcγ

a + Nc

⎛
⎝ γN∑

j=1

s1,j +
N∑

j=γN+1

s2,j

⎞
⎠, (53)

where the weak-value estimator dwv
est is defined as

dwv
est = Aw

N

γN∑
j=1

s1,j . (54)

The total (correlated) optimal estimator is just the weak-value
estimator, plus another term involving the sum of all the data,
whose average is approximately 0, and its prefactor vanishes as
c → 0. The additional term is able to account for the (known)
correlations in the system and make a further suppression of
the variance, at the cost of having to process all collectedx
data.

We now turn to the balanced case, where φ = π/4, γ =
1/2, and the weak values are Aw = −1, A⊥

w = 1. In this case,
the weighting prefactors in front of the collected data cancel
out, and we find the estimator

db
est = 1

N

⎛
⎝N/2∑

j=1

s2,j −
N∑

j=N/2+1

s1,j

⎞
⎠, (55)

that is, we simply subtract the data from output channel 1 from
that of output channel 2, and divide by N . This result (55) is
identical to the “background subtraction” technique commonly
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used in experimental laboratories to eliminate correlated noise.
We discuss this in more detail in the next section.

VIII. BACKGROUND SUBTRACTION

Background subtraction typically involves partitioning
measurement outcomes into two types: measurements of
signal plus background noise, and measurements of just
background noise. By comparing the two partitions, unknown
offsets or errors in calibration can be corrected. Background
subtraction can also be used to suppress temporally correlated
noise by sampling the noise background at least once per
correlation time and subtracting off the slowly evolving offset.
Unfortunately, optimizing how often to sample the background
noise is usually a hard problem. This is because usually
both white and slow noise are present, and oversampling
the background (sampling more than once per correlation
time) ceases to reduce either. Optimizing the amount of
background subtraction (as opposed to normal measurements)
is only possible with knowledge of the correlation time of
the noise. This makes it preferable, when possible (as it is
in our example), to alternate the sign of the signal instead
of chopping it on and off. In this variant of background
subtraction, measurement outcomes are partitioned into two
types: measurements of a background noise plus signal,
and measurements of background noise minus signal. By
subtracting the two partitions and dividing by two (just like
in Sec. III), we can eliminate any slow noise present while
also averaging down the white noise.

While we have considered partitioning measurements
using postselection, it is possible to achieve the same result
by alternating the preparation. It is worth noting that the
additional information gained by this more complex use of
the partitioning measurement is very marginal compared to
WVA. Furthermore, we believe there may be situations where
alternating the preparation is experimentally challenging. For
example, in certain optical implementations of WVA, where
different degrees of freedom of the same photon can be used
to encode signal information and postselection information,
background subtraction can occur at much higher rates than
signal preparation [3].

IX. NUMERICAL INVESTIGATION

We will now return to our original (and more experimentally
relevant) noise model. This noise model represents a familiar
scenario in a laboratory. Measurements are made sequentially
in time and are compiled into a data set {si}. As before,
a measurement outcome si can be decomposed into the
parameter of interest d and a Gaussian distributed, zero-mean,
random variable xi , such that

si = d + xi, (56)

where i = 1,2, . . . ,N . We take the covariance matrix to be

Ci,j = aδi,j + ce−|i−j |
t/τ . (57)

Here, 
t sets the time between subsequent measurements, τ

represents the correlation time of the noise, and the ratio of
a to c sets the relative amount of white noise to slow noise
(except in the limit where τ → 0 where all noise is white).

FIG. 7. The Fisher information for the direct method Id , the
partitioning WVA method Iwva , and the partitioning balanced method
(corresponding to background subtraction) I50/50 are plotted for
different values of dimensionless correlation time η = τ/
t . The
inverse variance of the equal-weighting estimator is also plotted
for the three approaches considered. In this figure N = 1000,

a = 1, c = 0.05, and γ = 0.005. The knee in the performance of
the WVA approach occurs at η = 1/γ , where retained measurement
outcomes begin to become correlated again.

For simplicity we will use the unitless quantity η = τ/
t (the
“average” number of correlated measurements) to represent
the correlation time of the noise.

This noise model captures an experimentally common
scenario, wherein there is a white-noise floor (represented
by a) and some correlated noise arising due to experimental
imperfections (represented by c). Overcoming technical noise
of this kind is quite challenging, hence the interest in a
technique that is robust against it.

We have already considered two limiting cases of this
generalized noise model. In the “white-noise limit,” η → 0
and measurement outcomes are uncorrelated. In the opposite
limit, η → ∞ and the covariance matrix reduces to the directly
solvable one from Sec. VII,

Ci,j = aδi,j + c. (58)

We refer to this as the “slow-noise limit.” This limit represents
taking the correlation time of the noise to infinity resulting
in a scenario where estimation error is increased by some
unknown offset c. We have previously treated the two limits
of our noise model for all three measurement approaches
considered (direct, WVA, and OPM). We expect the effects of
the correlations to grow as the correlation time (or η) increases,
smoothly connecting our two limits for all the measurement
approaches considered. Finding the Fisher information in
this intermediate regime, however, is challenging due to the
complex structure of the covariance matrix. In order to find
the Fisher information, we generate large covariance matrices
with the appropriate structure and invert and sum them while
varying the correlation time. This allows us to smoothly
connect the two limits. In Fig. 7, the Fisher information for
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both the WVA method, the direct method, and background
subtraction (equivalent to OPM) is plotted as a function of
the average number of correlated measurements η. In each
scenario, the Fisher information is found through construction
of the covariance matrix that would be produced by the
measurement design and then inverted and summed. For
comparison, the inverse variance of the mean associated with
the equal-weighting estimator is also found analytically and
plotted in solid lines. In the two limits (η → 0 and η → ∞)
the two estimators are equivalent. In the intermediate regime,
the equal-weighting estimator is no longer strictly optimal. It
deviates only very slightly from the Fisher information as a
result of the finite size of the covariance matrices we consider
(due to the boundaries of our data set certain measurements
are correlated to more measurements than others). In Fig. 7,
as expected, as η → 1, the Fisher information in the direct
method degrades swiftly, while the Fisher information of the
weak-value method is unaffected. Only after η approaches 1/γ

(γ was arbitrarily chosen to be 0.5%) does the performance
of the weak-value method begin to diminish. If γ is fixed,
then in the limit of η → ∞ the minimum variance becomes
a/N + γ c. Even in the intermediate regime, with weak
correlations, postselection suppresses the detrimental effects
of the correlations by increasing the time between retained
measurement outcomes.

These results confirm the work of Feizpour, Xing, and
Steinberg who argued that WVA-based measurement estima-
tion strategies afforded an advantage in a correlated noise limit
over direct methods. They also agree with Ferrie and Combe’s
observation [24] that WVA does not always achieve globally
optimal performance. We see that the OPM–background
subtraction technique slightly outperforms WVA as soon
as the correlation time becomes comparable to the time
between measurements. This difference can be substantial if
the minimum probability of postselection is large; however, if
it is on the order of 1

γ
it is quite small. In Fig. 7 the relative size

of a and c that represent the white and slow portions of the
noise was chosen in order to visually differentiate the different
approaches. In typical situations, c is much less than a, for
otherwise an experimentalist would be easily able to detect it
in preparation for the experiment. If, however, the value of c

is on the order of a/N , then an experimentalist would have to
spend more time characterizing the noise then performing the
experiment—an unlikely scenario in all but the most heroic
metrology experiments. A realistic value for c is therefore on
the order of a/N , and we see that in this scenario the additional
advantage afforded by optimally using all the data is


I = N

a
− N

a + c
≈ 1

a + a/N
. (59)

This cost in precision limits to 1/a as N → ∞ and is equal to
the information which would be gained by a single additional

measurement in this scenario. These numerical results confirm
that the conclusions reached using our simplified model for
correlated noise hold generically in more realistic laboratory
situations with noise environments with time decaying corre-
lations.

X. CONCLUSIONS

We have investigated how the introduction of a second
partitioning measurement affects parameter estimation. Using
a realistic model for additive, Gaussian, time-correlated noise
we found that, for all the cases considered, introducing a
second partitioning measurement affords an advantage in
the Fisher information over a direct measurement method
(no second partitioning measurement) once the correlation
time of the noise becomes longer than the measurement rate.
Furthermore, we have found that if one or more output channels
from the partitioning measurement are filtered (corresponding
to a WVA-like postselection), the majority of this advantage
is retained. Thus, WVA can help dramatically suppress the
detrimental effects of slow noise, recovering the performance
achieved in the white-noise limit by effectively decreasing
the correlations between retained measurement outcomes. The
informational cost of the postselection step is studied by
comparing the Fisher information of the WVA approach with
an optimal partitioning measurement scheme, which utilizes
all the data and correlations between partitions. The cost of
discarding all but one partition is found to be related to the
ratio of the magnitudes of the slow and white noise. We
argue that in a typical laboratory situation, this cost will
be comparable to the information gained by performing a
single extra measurement and is, therefore, negligible. An
analysis of the estimators used by OPM leads us to the
realization that in the balanced case, OPM is equivalent to
probabilistic background subtraction. This insight provides a
unified framework for understanding when partitioning-class
measurements, and specifically weak-value amplification, can
be useful. In conclusion, in experimental settings with time-
correlated noise, if background subtraction or other optimal
partitioning measurement methods are technically challeng-
ing to implement or if a substantially reduced data set is
desirable, WVA vastly outperforms conventional measurement
approaches and is near optimal.
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