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Dynamics and thermodynamics of a central spin immersed in a spin bath
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An exact reduced dynamical map along with its operator sum representation is derived for a central spin
interacting with a thermal spin environment. The dynamics of the central spin shows high sustainability of
quantum traits such as coherence and entanglement in the low-temperature regime. However, for sufficiently
high temperature and when the number of bath particles approaches the thermodynamic limit, this feature
vanishes and the dynamics closely mimics Markovian evolution. The properties of the long-time-averaged state
and the trapped information of the initial state for the central qubit are also investigated in detail, confirming that
the nonergodicity of the dynamics can be attributed to the finite temperature and finite size of the bath. It is shown
that if a certain stringent resonance condition is satisfied, the long-time-averaged state retains quantum coherence,
which can have far reaching technological implications in engineering quantum devices. An exact time-local
master equation of the canonical form is derived. With the help of this master equation, the nonequilibrium
properties of the central spin system are studied by investigating the detailed balance condition and irreversible
entropy production rate. The result reveals that the central qubit thermalizes only in the limit of very high
temperature and large number of bath spins.
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I. INTRODUCTION

In the microscopic world, physical systems are rarely
isolated from environmental influence. Systems relevant for
implementation of quantum information theoretic and compu-
tational tasks such as ion traps [1], quantum dots [2], NMR
qubits [3], polarized photons [4], Josephson junction qubits
[5], or nitrogen-vacancy (NV) centers [6,7] all interact with
their respective environments to some extent. Therefore, it is
necessary to study the properties of open-system dynamics
for such quantum systems immersed in baths. For quantum
systems exposed to usual Markovian baths, their quantumness
gradually fades over time, thus negating any advantage gained
through the use of quantum protocols over classical ones. Even
in thermodynamics, the presence of quantum coherence [8,9]
or entanglement [10] enhances the performance of quantum
heat machines. Thus, it is imperative to engineer baths in such
a way so as to retain nonclassical features of the system for
large durations.

Baths can be broadly classified into two different classes,
namely bosonic and fermionic. Paradigmatic examples for
bosonic baths include the Caldeira–Leggett model [11] or the
spin boson model [12]. Lindblad-type master equations for
these models can be found in the literature [13]. However, in
the fermionic case, where one models the bath as a collection
of a large number of spin- 1

2 particles, the situation is generally
trickier and one often has to rely on perturbative techniques
or time-nonlocal master equations [14,15]. Far from being
a theoretical curiosity, the solution of such systems is of
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paramount importance in physical situations such as magnetic
systems [16], quantum spin glasses [17] or superconducting
systems [12].

One specific example of a qubit immersed in a fermionic
bath is the non-Markovian spin star model (see schematic
diagram in Fig. 1) [14,15,18,19], which is relevant for quantum
computing with NV center [20] defects within a diamond
lattice. We show that it is possible to preserve coherence
and entanglement in this system for quite a long time by
choosing bath parameter values appropriately. Even more
interestingly, we confirm the presence of quantum coherence
in the system for the long-time-averaged state for certain
resonance conditions, which is an utter impossibility for
the usual Markovian thermal baths. Such strict and fragile
resonance conditions underlie our emphasis on the need for
ultraprecise engineering of the bath. We also investigate the
amount of information trapped [21] in the central spin system
and draw a connection of the same with the process of
equilibration.

A time-nonlocal integrodifferential master equation was
set up for the central spin model by using the correlated
projection operator technique in Ref. [15]. An exact time-local
master equation for this system was derived in the limit
of infinite bath temperature by the authors of this paper in
Ref. [22] from the corresponding reduced dynamical map.
In this paper, we considerably extend the scope of previous
results by deriving the exact reduced dynamics and the exact
Lindblad-type master equation for arbitrary bath temperature
and system-bath-coupling strength. Our formalism allows us
to study the approach towards equilibration in sufficient detail.
Specifically, we quantitatively address the issue of the quantum
detailed balance condition as well as the irreversible entropy
production rate to analyze the thermodynamic signatures of
the equilibration process.
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FIG. 1. Schematic diagram of the central spin model. The central
spin (red circle) interacts with the bath (green) constituted of spins
(blue circles).

The paper is organized as follows: In Sec. II, we introduce
the central spin model and find the exact reduced dynam-
ics for the system and the corresponding Kraus operator
representation. We use the solution for the exact reduced
dynamics to study the evolution of quantum coherence and
entanglement. In Sec. III, we study the long-time-averaged
state and its properties. We analyze the resonance condition
for the existence of quantum coherence even in the long-time-
averaged state and the phenomenon of information trapping
in the central qubit. In Sec. IV, we begin with the derivation
of the exact time-local master equation for this system and use
this master equation to investigate the nonequilibrium nature
of the dynamics through a thorough study of the deviation
from the detailed balance condition as well as the temporal
dependence of irreversible entropy production rate. We finally
conclude in Sec. V.

II. CENTRAL SPIN MODEL AND ITS
REDUCED DYNAMICS

In this section we present the model for the qubit coupled
centrally to a thermal spin bath. Then we derive the exact
dynamical map for the qubit. We also derive the Kraus
operators for the reduced dynamics.

A. The model

We consider a spin- 1
2 particle interacting uniformly with

N other mutually noninteracting spin- 1
2 particles constituting

the bath.
The total Hamiltonian for this spin bath model is given by

H = HS + HB + HSB

= h̄

2
ω0σ

0
z + h̄ω

2N

N∑
i=1

σ i
z + h̄ε

2
√

N

N∑
i=1

(
σ 0

x σ i
x + σ 0

y σ i
y

)
,

(1)

with σ i
k , {k = x,y,z} as the Pauli matrices of the ith spin of the

bath and σ 0
k , {k = x,y,z} as the same for the central spin. ε is

the system-bath interaction parameter. Here HS , HB , and HSB

are the system, bath, and interaction Hamiltonian, respectively.
N is the number of bath atoms directly interacting with the cen-
tral spin. The bath frequency and the system-bath interaction
strength are both rescaled as ω/N and ε/

√
N , respectively. By

the use of collective angular-momentum operators for the bath
spins Jl = ∑N

i=1 σ i
l (where l = x,y,z, + ,−), we rewrite the

bath and interaction Hamiltonians as

HB = h̄ω

2N
Jz,

HSB = h̄ε

2
√

N

(
σ 0

x Jx + σ 0
y Jy

)
. (2)

We then use the Holstein–Primakoff transformation [23,24] to
redefine the collective bath angular-momentum operators as

J+ =
√

Nb†
(

1 − b†b

2N

)1/2

, J− =
√

N

(
1 − b†b

2N

)1/2

b,

(3)

where b and b† are the bosonic annihilation and creation
operators with the property [b,b†] = 1. Then the Hamiltonians
of Eq. (2) can be rewritten as

HB = − h̄ω

2

(
1 − b†b

N

)
,

HSB = h̄ε

[
σ+

0

(
1 − b†b

2N

)1/2

b + σ−
0 b†

(
1 − b†b

2N

)1/2
]
. (4)

B. Dynamical map of central spin

In the following, we derive the exact reduced dynamical
map of the central spin after performing the Schrödinger
evolution for the total system and bath and then tracing
over the bath degrees of freedom. It is assumed that the
initial system bath joint state is a product state, ρSB (0) =
ρS(0) ⊗ ρB(0), which ensures the complete positivity of the
reduced dynamics [25,26]. The initial bath state is considered
as a thermal state ρB(0) = e−HB/KT /Z, where K , T , and Z =∑N

n=0 e− h̄ω
KT

(n/2N−1/2) are the Boltzmann constant, temperature
of the bath, and the partition function, respectively. Consider
the evolution of the state |ψ(0)〉 = |1〉|x〉, where |1〉 is the
system excited state and |x〉 is an arbitrary bath state. After
the unitary evolution U (t) = exp(− iH t

h̄
), let the state be

|ψ(t)〉 = γ1(t)|1〉|x ′〉 + γ2(t)|0〉|x ′′〉. Let us now define two
operators Â(t) and B̂(t) corresponding to the bath Hilbert
space such that Â(t)|x〉 = γ1(t)|x ′〉 and B̂(t)|x〉 = γ2(t)|x ′′〉.
Then we have |ψ(t)〉 = Â(t)|1〉|x ′〉 + B̂(t)|0〉|x ′′〉. Now from
the Schrödinger equation d

dt
|ψ(t)〉 = − i

h̄
H |ψ(t)〉 and Eq. (4),

we have

dÂ(t)

dt
= −i

[
ω0

2
− ω

(
1 − b†b

2N

)]
Â(t)

− iε

(
1 − b†b

2N

)1/2

bB̂(t),
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dB̂(t)

dt
= i

[
ω0

2
+ ω

(
1 − b†b

2N

)]
B̂(t)

− iεb†
(

1 − b†b

2N

)1/2

Â(t). (5)

By substituting Â(t) = Â1(t) and B̂(t) = b†B̂1(t), we have

dÂ1(t)

dt
= −i

[
ω0

2
− ω

(
1 − n̂

2N

)]
Â1(t)

− iε

(
1 − n̂

2N

)1/2

(n̂ + 1)B̂1(t),

dB̂1(t)

dt
= i

[
ω0

2
+ ω

(
1 − n̂ + 1

2N

)]
B̂1(t)

− iε

(
1 − n̂

2N

)1/2

Â1(t), (6)

where n̂ = b†b is the number operator. The operator equa-
tions (6) can be straightforwardly solved and the solutions will
be functions of n̂ and t . Then Â1(t)|n〉 = A1(n,t)|n〉, where
n̂|n〉 = n|n〉. Therefore, the evolution of the reduced state of
the qubit (|1〉〈1|) can now be found by tracing over the bath
modes as

φ(|1〉〈1|) = TrB[|ψ(t〉〈ψ(t)|)]

= 1

Z

N∑
n=0

[|A1(n,t)|2|1〉〈1| + (n + 1)|B1(n,t)|2|0〉

× 〈0|]e− h̄ω
KT

(n/2N−1/2), (7)

where from the solution of Eq. (6), we have
|B1(n,t)|2 = 4ε2(1 − n/2N ) sin2(ηt/2)

η
and |A1(n,t)|2 =

1 − (n + 1)|B1(n,t)|2.
Similarly we define χ (0) = |0〉|x〉 and χ (t) = Ĉ(t)|0〉|x〉 +

D̂(t)|1〉|x〉. Following the similar procedure and with the
substitution Ĉ(t) = Ĉ1(t), D̂(t) = bD̂1(t), we find

dĈ1(t)

dt
= i

[
ω0

2
+ ω

(
1 − n̂

2N

)]
Ĉ1(t) − iεn̂

(
1 − n̂ − 1

2N

)1/2

× D̂1(t),

dD̂1(t)

dt
= −i

[
ω0

2
− ω

(
1 − n̂ − 1

2N

)]
D̂1(t)

− iε

(
1 − n̂ − 1

2N

)1/2

Ĉ1(t). (8)

From the solution of Eq. (8), we find

φ(|0〉〈0|) = TrB[|χ (t〉〈χ (t)|)]

= 1

Z

N∑
n=0

[n|D1(n,t)|2|1〉〈1| + |C1(n,t)|2|0〉〈0|]

× e− h̄ω
KT

(n/2N−1/2), (9)

with |D1(n,t)|2 = 4ε2[1 − (n − 1)/2N ] sin2(η′t/2)
η′ and |C1

(n,t)|2 = 1 − n|D1(n,t)|2. For the off-diagonal component of

the reduced density matrix, we have

φ(|1〉〈0|) = TrB[|ψ(t〉〈χ (t)|)]

= 1

Z

N∑
n=0

[A1(n,t)C∗
1 (n,t)|1〉〈0|]

× e− h̄ω
KT

(n/2N−1/2), (10)

with A1(n,t)C∗
1 (n,t) = �(t).

Therefore, the reduced state of the system after the unitary
evolution of the joint system-bath state can be expressed as

ρS(t) = TrB[e−iH t/h̄ρS(0) ⊗ ρB(0)eiHt/h̄]

=
(

ρ11(t) ρ12(t)
ρ21(t) ρ22(t)

)
, (11)

where the components of the density matrix are given by

ρ11(t) = ρ11(0)[1 − α(t)] + ρ22(0)β(t),
(12)

ρ12(t) = ρ12(0)�(t),

with

α(t) = 1

Z

N∑
n=0

4(n + 1)ε2
(

1 − n

2N

) sin2(ηt/2)

η2

× e− h̄ω
KT

(n/2N−1/2),

β(t) = 1

Z

N∑
n=0

4nε2

(
1 − n − 1

2N

)
sin2(η′t/2)

η′2

× e− h̄ω
KT

(n/2N−1/2),

�(t) = 1

Z

N∑
n=0

e−iωt/2N [cos(ηt/2) − i(ω0 − ω/2N )

× sin(ηt/2)][cos(η′t/2) + i(ω0 − ω/2N )

× sin(η′t/2)]e− h̄ω
KT

(n/2N−1/2), (13)

and

η =
√(

ω0 − ω

2N

)2
+ 4ε2(n + 1)

(
1 − n

2N

)
,

(14)

η′ =
√(

ω0 − ω

2N

)2
+ 4ε2n

(
1 − n − 1

2N

)
,

where the partition function is Z = ∑N
n=0 e− h̄ω

KT
(n/2N−1/2).

C. Operator sum representation

A very important aspect of general quantum evolution
represented by a completely positive trace preserving op-
eration is the Kraus operator sum representation, given
as ρ(t) = ∑

i Ki(t)ρ(0)K†
i (t). The Kraus operators can be

constructed [27] from the eigenvalues and eigenvectors of the
corresponding Choi–Jamiolkowski (CJ) state [27,28]. The CJ
state for a dynamical map �[ρ] acting on a d-dimensional
system is given by (Id ⊗ �)[�+], with �+ = |�+〉〈�+| being
the maximally entangled state in d × d dimensions. For the
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particular evolution considered here, we find the CJ state to be⎛
⎜⎜⎜⎝

1−α(t)
2 0 0 �(t)

2

0 α(t)
2 0 0

0 0 β(t)
2 0

�∗(t)
2 0 0 1−β(t)

2

⎞
⎟⎟⎟⎠. (15)

From the eigensystem of the CJ state given in Eq. (15), we
derive the Kraus operators as

K1(t) =
√

β(t)

(
0 1
0 0

)
,

K2(t) =
√

α(t)

(
0 0
1 0

)
, (16)

K3(t) =
√

X1

1 + Y 2
1

(
Y1e

iθ(t) 0
0 1

)
,

K4(t) =
√

X2

1 + Y 2
2

(
Y2e

iθ(t) 0
0 1

)
,

where θ (t) = arctan[�I (t)/�R(t)] and

X1,2 =
(

1 − α(t) + β(t)

2

)
± 1

2

√
[α(t) − β(t)]2 + 4|�(t)|2,

Y1,2 =
√

[α(t) − β(t)]2 + 4|�(t)|2 ∓ [α(t) − β(t)]

2|�(t)| .

One can check that the Kraus operators satisfy the condition∑
i K

†
i (t)Ki(t) = I.

D. Coherence and entanglement dynamics of central spin

Having obtained the exact reduced dynamics of the central
spin, in the following we study the temporal variation of non-
classical properties, viz. quantum coherence and entanglement
of the system. It is well known that, for the usual Markovian
systems, such nonclassical quantities decay monotonically
over time and eventually disappear [29–31]. However, the
central spin system is strongly non-Markovian in nature and,
therefore, a natural and pertinent question is to ask whether
it is possible to preserve quantum features for long periods
of time for this system. The following sections are devoted to
answering that question for various parameter regimes of the
spin bath model.

1. Quantum coherence

In this article we consider l1 norm of coherence as a
quantifier of quantum coherence [29]. For a qubit system, the
l1 norm of coherence Cl1 is simply given by twice the absolute
value of any off-diagonal element, i.e., 2|ρ12(t)|. The evolution
of coherence is then given by

Cl1 (t) = Cl1 (0)|�(t)|. (17)

This is a straightforward scaling of the initial quantum
coherence. In subsequent analysis, we can thus take the initial
coherence to be unity, i.e., the maximally coherent state
without loss of generality.

2. Quantum entanglement

Operationally, quantum entanglement is the most useful
resource in quantum information theory [32–36]. However, it is
also a fragile one [37] and decays quite quickly for Markovian
evolution [31]. We suppose a scenario in which the central spin
qubit is initially entangled to an ancilla qubit A in addition to
the spin bath. There is no subsequent interaction between the
ancilla qubit and the central spin. Our goal is to investigate the
entanglement dynamics of the joint two-qubit state ρSA. From
the factorization theorem for quantum entanglement [38], we
have

E(ρSA(t)) = E(ρSA(0))E(χSA(t)), (18)

where χSA(t) is the CJ state in Eq. (15) and the entanglement
measure E is concurrence [39]. Concurrence of a two-qubit
system is given as E(ρAB) = max{0,λ1 − λ2 − λ3 − λ4},
where λ1, . . . ,λ4 are the square roots of the eigenvalues of
ρABρ̃AB in decreasing order, ρ̃AB = (σy ⊗ σy)ρ∗

AB(σy ⊗ σy).
Here the complex conjugation ρ∗

AB is taken in the compu-
tational basis, and σy is the Pauli spin matrix. From now
on, we mean concurrence by entanglement throughout the
paper. Then the entanglement of the CJ state can be written
as E(χSA(t)) = max(0,|�(t)| − √

α(t)β(t)). Since the initial
entanglement E(ρSA(0)) is simply a constant scaling term, we
take this to be unity, i.e., we consider a maximally entangled
initial ρSA(0) state without loss of generality and study the
subsequent dynamics.

We now present the results for time evolution of quantum
coherence and entanglement with the bath temperature T ,
the strength of system-bath interaction ε, and the number N

of spins in the spin bath attached to the central spin. Here
we mention that, throughout the subsequent analysis in this
work, we have taken h̄ = K = 1, unless otherwise stated. If
the spin bath is at a very high temperature, we expect the
thermal noise to swamp signatures of quantumness, which
is broadly confirmed in Figs. 2(a) and 2(b). However, small
fluctuations in quantum coherence continue to occur, testifying
to the non-Markovianity of the dynamics. On the contrary, for
low bath temperature, as demonstrated in Fig. 2(a), quantum
coherence does not decay noticeably and, for the time span
we consider, it does not dip below a certain value, which is
in itself quite high. For intermediate temperatures, coherence
broadly decays with increasing decay rate as we increase the
bath temperature, but along with small fluctuations due to non-
Markovianity. For the sake of concreteness, assuming typical
order-of-magnitude values of various parameters governing
the dynamics of quantum coherence, we are able to estimate
the timescale for which coherence is sustained. Supposing the
coupling strength ε ∼ 1 MHz [40], and assuming the spins
having intrinsic energies ∼100 MHz [40], we can conclude
that, at room temperature (T = 300 K) and for N = 100,
the value of coherence is guaranteed to be at least 80%
of the initial coherence for at least ∼100 μs. Interestingly,
this timescale for guaranteeing at least 80% of the initial
coherence is not too sensitive on the bath temperature in
practice. For example, if we assume the bath to be at a very
low temperature, say 10−4 K, then this time increases to only
around ∼300 μs. The dynamics of entanglement as shown in
Fig. 2(d) is quite similar to that of coherence. At the high-
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N = 100

N = 100 

N = 100

N = 100

(a) (b) (c)

(d) (e) (f)

FIG. 2. Dynamics of quantum coherence and entanglement for the central qubit immersed in the spin bath. (a) Variation of coherence
C(t) with time t for different bath temperatures. (b) Variation of coherence C(t) with time t for different system-bath interaction strengths.
(c) Variation of coherence C(t) with time t for different numbers of bath spins. (d) Variation of entanglement E(t) with time t for different bath
temperatures. (e) Variation of entanglement E(t) with time t for different system-bath interaction strengths. (f) Variation of entanglement E(t)
with time t for different numbers of bath spins.

temperature limit, the difference with dynamics for quantum
coherence lies in the fact that entanglement encounters a
sudden death and never revives. This is entirely consistent
with the usual observation for many physical systems where
quantum coherence turns out to be more robust against noise
than entanglement [41–43]. In the opposite regime, for low
enough temperatures, entanglement dynamics is very much
similar to that of coherence. Another parameter we can tune is
the system-bath interaction strength ε, which, depending upon
the species of the central spin as well as the bath spins, may
differ. In case the interaction parameter is too small, the system
evolves almost independently from the bath and therefore the
coherence and entanglement of the system decay quite slowly,
as shown in Figs. 2(b) and 2(e). In the opposite limit, if the
system-bath interaction is comparable to the energy difference
of the spin levels of the central spin, we observe a rapid
decay in quantum coherence with the presence of the usual
non-Markovian fluctuations. Whereas entanglement decays to
zero almost immediately with no revival detected in the time
span considered in Fig. 2(e). Equation (13) also allows us to
study the dynamics of coherence for a varying number of bath
spins. If the number of spins in the bath is large, we observe
from Fig. 2(c) that the coherence rapidly decays and only small
fluctuations are subsequently detected. In case the number of

spins in the bath is not very large, the evolution of coherence
undergoes periodic revivals. In that extremal case where only
one auxiliary spin is coupled to the central spin, the coherence
merely oscillates steadily. The magnitude of such revivals
decreases with increasing bath size, eventually reducing to
being indistinguishable with smaller fluctuations for large
enough number of spins in the bath. As seen in Fig. 2(c),
revivals themselves occur in periodic packets, magnitudes of
which decrease steadily with time. On the other hand, if the
number of bath particles is quite large, entanglement decays
very quickly to zero. However, for a smaller number of spins
in the bath, the entanglement dynamics depicted in Fig. 2(f)
is quite similar to the corresponding dynamics of coherence
captured earlier in Fig. 2(c).

III. ANALYSIS OF TIME-AVERAGED DYNAMICAL MAP

In this section we probe the behavior of the long-time-
averaged state of the central spin qubit. We study under what
condition the long-time-averaged state is coherent. We further
investigate whether or under what conditions the long-time-
averaged state is a true fixed point of the dynamical map,
i.e., independent of initial condition. In connection to that we
further study what role the finite size of the environment plays
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in this context. The long-time-averaged state of the central spin
qubit is given by

ρ = lim
τ→∞

∫ τ

0 ρ(t)dt

τ
. (19)

Following this definition, we find

ρ11 = lim
τ→∞

∫ τ

0 ρ11(t)dt

τ
= ρ11(0)(1 − α) + ρ22(0)β,

(20)
ρ12 = ρ12(0)�,

where α, β, and � are long time averages of α(t), β(t), and �(t)
respectively. When we integrate a bounded periodic function
over a long time and divide by the total time elapsed, we
can consider the integral being over a large integer number of
periods without loss of generality. Now,

α =
N∑

n=0

2(n + 1)ε2
(

1 − n

2N

) 1

η2

e− h̄ω
KT

(n/2N−1/2)

Z
, (21)

where the result follows from the fact that average of sin2 (θ (t))
over any integer number of time periods is 1

2 . Similarly we get

β =
N∑

n=0

2nε2

(
1 − n − 1

2N

)
1

η′2
e− h̄ω

KT
(n/2N−1/2)

Z
. (22)

The equation for population dynamics [Eq. (20)] shows that
even the very-long-time-averaged state retains the memory
of the initial state, which is a signature of the system being
strongly non-Markovian. This initial state dependence is
captured in Fig. 3(a). It is observed that the parameter ( ρ11

ρ22
)

which captures the population distribution for the long-time-
averaged state is heavily dependent on the initial ground-
state population. If the initial population of the ground state
increases, so does the population of the ground state for the
long-time-averaged state. However, if the bath is very large,
the population statistics for the long-time-averaged state is
markedly less sensitive to the initial population. This leads us
to posit that the only true fixed point independent of the initial
conditions for this system exists only in the limit N → ∞.
We also observe that, in the limit ρ11(0) = ρ22(0) = 1

2 , ( ρ11

ρ22
)

tends towards 1 regardless of bath size N , indicating the
dynamics is almost unital. Also we should mention that, in
the thermodynamic limit (N → ∞), when the temperature
of the bath is infinite, the state ρ̄11 = ρ̄22 = 1/2 is not only
the fixed point of the dynamics but the canonical equilibrium
state also. Thus we can conclude that, in the limit N → ∞
and T → ∞, the present open-system dynamics is ergodic.
Moreover, we see that the system-bath coupling strength not
only affects the timescale of evolution but also plays significant
role in the population statistics of the time-averaged state. This
we can see from Eqs. (21) and (22), which is also depicted
in Fig. 3(b). Also, for most of the cases, we have � = 0. It
is interesting to note that the long-time averaged state ρ is
incoherent in general. This implies that, even though quantum
coherence or entanglement persists for quite a long time if
the bath temperature is very low, as depicted in Fig. 2(a) or
2(d) respectively, they must eventually decay. It is important
to mention that there are specific resonance conditions under

(a)

(b)

FIG. 3. Variation of the ratio of long-time-averaged populations
at excited and ground state ρ̄11/ρ̄22 with (a) initial population of the
excited state ρ11(0) and (b) interaction strength ε, keeping the number
N of bath spins as a parameter.

which � can have a finite value, which will be analyzed in the
following section.

A. Resonance condition for long-lived quantum coherence

We mentioned previously that the long-time-averaged
state is in general diagonal but, for very specific choices
of parameter values, this is not true and there indeed is
long-lived quantum coherence even in the long-time-averaged
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state. This can be of significant interest for theoretical
and experimental purposes. For the off-diagonal component,

the real and imaginary parts of �(t), defined as �R(t) and
�I (t), respectively equals

�R(t) =
∑

n

cos
ωt

2N

[
cos

ηt

2
cos

η′t
2

+
(
ω0 − ω

2N

)2

ηη′ sin
ηt

2
sin

η′t
2

]
e− h̄ω

KT
(n/2N−1/2)

Z

+
∑

n

(
ω0 − ω

2N

)[
sin ωt

2N
cos ηt

2 sin η′t
2

η′ − sin ωt
2N

sin ηt

2 cos η′t
2

η

]
e− h̄ω

KT
(n/2N−1/2)

Z
,

�I (t) = −
∑

n

sin
ωt

2N

[
cos

ηt

2
cos

η′t
2

+
(
ω0 − ω

2N

)2

ηη′ sin
ηt

2
sin

η′t
2

]
e− h̄ω

KT
(n/2N−1/2)

Z

+
∑

n

(
ω0 − ω

2N

)[
cos ωt

2N
cos ηt

2 sin η′t
2

η′ − cos ωt
2N

sin ηt

2 cos η′t
2

η

]
e− h̄ω

KT
(n/2N−1/2)

Z
. (23)

We always have

sin θ1(t) sin θ2(t) sin θ3(t) = sin θ1(t) cos θ2(t) cos θ3(t) = 0.

For each of the rest of the terms, it can be shown that the
criterion for nonzero time-averaged coherence reads

ω

2N
=

∣∣∣∣η ± η′

2

∣∣∣∣.
For the condition ω

2N
= | η+η′

2 | to hold, it is easily shown that

N � ω

ω0
. (24)

Given that ω and ω0 are usually of the same order of magnitude,
we feel this is a rather unrealistic demand on N , since we
are concerned with a heat bath, albeit finite sized. We thus
concentrate on the other condition ω

2N
= ( η−η′

2 ). The equation
ω

2N
= ( η−η′

2 ) can be explicitly expanded out and the following
quadratic equation in n is obtained:(

ε4

N2
+ ε2ω2

2N3

)
n2 −

(
2ε4

N
+ ε2ω2

N2

)
n

+
(

ω0ω
3

4N3
− ω2ω2

0

4N2
− ε2ω2

2N2
+ ε4

)
= 0. (25)

By solving this quadratic equation and noting that the value of
n must be an integer, we reach the following equation, which
is the resonance condition.

N ± εω

2

√
q1

8N3 + q2

16N4 + q3

32N5 − q4

64N6

ε4

4N2 + ε2ω2

8N3

∈ Z+, (26)

with

q1 = ε4, q2 = (
ε2ω2 + ε2ω2

0 + 2ε4
)
,

q3 = (
ω2ω2

0 + 2ε2ω2 − 2ε2ωω0
)
, q4 = 2ω0ω

3,

where Z+ is the set of positive integers ∈ [0,N ]. Taking
ω = ω0 = 1 and in the limit N 
 1, we have the resonance
condition

N ±
√

N

ε
√

2
∈ Z+. (27)

Thus, if we are interested in obtaining a nonzero amount of
quantum coherence in the long-time-averaged state, we have
to tune the interaction parameter exactly in such a way that
N ±

√
N

ε
√

2
is a positive integer. This is a nice example where

precise bath engineering can help us achieve long sustained
coherence.

B. Information trapping in the central spin system

Let us now investigate whether or under what condition
the dynamical map considered here does have a true fixed
point; i.e., the existence of a state which is invariant under
the particular dynamics. To do this, define the time-averaging
map � as the map which takes any initial state ρ to the
corresponding time-averaged state ρ as given by Eq. (20).
Now suppose the system is initially in a state ρ. Then a
natural question to ask is the following: “Is the corresponding
time-averaged state ρ invariant under the map � ?” This can
only happen when the map � is an idempotent one, i.e.,

FIG. 4. Variation of information trapping T with temperature T ,
keeping the number N of bath spins as a parameter.
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�
2 = �. Clearly, if the time-averaged state did not retain the

memory of the initial state, this would be the case. Therefore,
the deviation from idempotence of the map � can serve as a
useful measure of the initial state dependence of the system in
the long run, which is termed “information trapping” [21] and
is defined by

T (�) = max
ρ∈HS

D[�
2
ρ,�ρ], (28)

where D[·,·] is a suitable distance measure on the Hilbert
space of the system. Choosing the trace norm as our distance
measure, the expression for T in the central spin model is
computed as

T (�) = |β̄ − ᾱ|. (29)

(a)

(b)

FIG. 5. Variation of information trapping T with interaction
strength ε at (a) low temperature and (b) high temperature, keeping
the number N of bath spins as a parameter.

We immediately note that this quantity vanishes iff β̄ = ᾱ,
which is the case only in the limit N → ∞, T → ∞, i.e., the
thermodynamic and high-temperature limit. The above state-
ment is confirmed in Fig. 4. As we increase the temperature of
the bath, the trapped information T asymptotically vanishes. It
is also observed that, at any given temperature, the amount of
information trapped is greater for a smaller-sized-bath. This
is consistent with the observation that a very large bath is
required for T to vanish. Figures 5(a) and 5(b) lead to the
observation that, as the system-bath coupling gets stronger,
the amount of information trapping, i.e., the dependence of
the time-averaged state on the initial state, also increases.

IV. CANONICAL MASTER EQUATION AND THE
PROCESS OF EQUILIBRATION

Finding the generator of a general dynamical evolution
of a quantum system is one of the fundamental problems in
the theory of open quantum systems, which leads to a better
understanding of the actual nature of decoherence. It is our aim
here to derive a canonical master equation without resorting
to weak coupling and the Born–Markov approximation for the
reduced dynamics presented in Eq. (12), by virtue of which
we will later analyze various thermodynamic aspects of the
qubit system. Using the formalism of Ref. [44], we obtain the
following exact time-local master equation for the central spin
in the Lindblad form:

ρ̇(t) = i

h̄
δ(t)[ρ(t),σz] + �deph(t)[σzρ(t)σz − ρ(t)]

+�dis(t)

[
σ−ρ(t)σ+ − 1

2
{σ+σ−,ρ(t)}

]

+�abs(t)

[
σ+ρ(t)σ− − 1

2
{σ−σ+,ρ(t)}

]
, (30)

where σ± = σx±iσy

2 , and �dis(t), �abs(t), and �deph(t) are
the rates of dissipation, absorption, and dephasing processes,
respectively, and δ(t) corresponds to the unitary evolution,
respectively, given as

�dis(t) =
[

d

dt

[α(t) − β(t)]

2
− [α(t) − β(t) + 1]

2

d

dt

× ln(1 − α(t) − β(t))

]
,

�abs(t) = −
[

d

dt

[α(t) − β(t)]

2
− [α(t) − β(t) − 1]

2

× d

dt
ln(1 − α(t) − β(t))

]
,

�deph(t) = 1

4

d

dt

[
ln

(
1 − α(t) − β(t)

|�(t)|2
)]

,

δ(t) = −1

2

d

dt

[
ln

(
1 +

(
�R(t)

�I (t)

)2
)]

. (31)

For the detailed derivation of the master equation, one can
look into Refs. [22,44]. Note that the system-environment
interaction generates a time-dependent Hamiltonian evolution
in the form of δ(t). This is analogous to the Lamb-shift
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correction in the unitary part of the evolution. Complete
positivity [45–50] is one of the important properties of a
general quantum evolution, following the argument that, for
any valid quantum dynamical map, the positivity must be
preserved if the map is acting on a system which is correlated
to an ancilla of any possible dimension. For a Lindblad type
evolution, this is guaranteed by the condition

∫ t

0 �i(s)ds � 0
[51], which can be easily verified for the specific decay rates
given in Eq. (31). However since the dynamical map here
is derived starting from an initial product state, complete
positivity is always guaranteed [52,53].

A. The principle of detailed balance

Here we investigate the process of approach toward the
steady state for the open-system dynamics considered in this
paper. There are various different approaches to explore the
process of equilibration in an open-system dynamics, each of
which has their own merit [54]. In this work we carry out this
investigation for the specific system considered here from a
few different aspects, one of which is the quantum detailed
balance first introduced by Boltzmann, who used it to prove
the famous H theorem [55]. When two or more irreversible
processes occur simultaneously, they naturally interfere with
each other. If due to the interplay between those different
processes, over a sufficient period of evolution time, a certain
balance condition between them is reached, then the system
reaches a steady state. Consider the Pauli master equation for
the atom undergoing such processes [13], which is given by

Ṗn =
∑
m

γnmPm −
∑
m

γmnPn, (32)

where Pn is the diagonal matrix element of the density operator
and γmn is the transition probability for the process |m〉 → |n〉.
The well-known detailed balance condition [56,57] for the
Pauli master equation is given as γmnP

(s)
n = γnmP (s)

m , where
P (s)

n is a diagonal density-matrix element at the steady state.
We first derive a rate equation of the form of Eq. (32) from
the master equation (30) in order to study the detailed balance
for our particular system [58,59]. Let us consider the unitary
matrix U (t), which diagonalizes the system density matrix
ρ(t) as ρD(t) = U (t)ρ(t)U †(t). Then we can straightforwardly
derive the equation of motion for the diagonalized density
matrix as

ρ̇D(t) = i

h̄
δ(t)[ρD(t),σ̄z(t)]

+�deph(t)[σ̄z(t)ρD(t)σ̄z(t) − ρD(t)]

+�dis(t)

[
σ̄−(t)ρD(t)σ̄+(t) − 1

2
{σ̄+(t)σ̄−(t),ρD(t)}

]

+�abs(t)

[
σ̄+(t)ρD(t)σ̄−(t)−1

2
{σ̄−(t)σ̄+(t),ρD(t)}

]
,

(33)

where Āj (t) = U (t)AjU
†(t). Considering Pa(t) =

〈a|ρD(t)|a〉, we get the rate equation similar to the
Pauli equation as

Ṗa(t) =
∑

i

∑
b

|〈a|Āi(t)|b〉|2Pb(t)

N = 100 

FIG. 6. Variation of D(t) with time, keeping temperature T as a
parameter. ρ11(0) = 0.5, ρ12(0) = 0.

−
∑

i

〈a|Ā†
i (t)Āi(t)|a〉Pa(t), (34)

where Āi(t) are all the Lindblad operators in the diagonal basis
as given in Eq. (33). For the instantaneous steady state we must
have Ṗa(t) = 0, for all a. Thus, we have the detailed balance
condition ∑

i �i(ts)〈a|Ā†
i (ts)Āi(ts)|a〉Pa(ts)∑

i

∑
b �i(ts)|〈a|Āi(ts)|b〉|2Pb(ts)

= 1, (35)

where ts is the time at which the system comes to the steady
state. From Eqs. (33) and (35), we arrive at the following
condition:

D(ts) = �dis(ts)Pa(ts)

�abs(ts)Pb(ts)
= 1, (36)

where

Pa,b(t) = 1
2 (1 ±

√
[ρ11(t) − ρ22(t)]2 + 4|ρ12(t)|2)

are the eigenvalues of the system density matrix. Any deviation
of D(t) from its steady state value implies that the system
has not attained a steady state at that instant in time.
The magnitude of such deviations may be regarded as a
measure of how far away the system is from equilibrating.
In the following we study the time dynamics of deviations from
the detailed balance condition (36). From Fig. 6, we observe
that the deviations from the detailed balance condition are
quite persistent in the low-temperature limit. In the opposite
limit, as we go on increasing the bath temperature, Fig. 6
shows that the fluctuations in deviation from the detailed
balance condition increasingly tend to damp down. In the
limit of a completely unpolarized bath, the detailed balance
condition is met if the system size is large enough. For
an initially coherent central qubit, any study of approach
towards steady state has to also take the coherence dynamics
into account. In the very-low-temperature limit, the value
of quantum coherence [Fig. 2(a)] is encapsulated within a
narrow band whose width does not decay much over time. The
persistence of coherence in this case implies the deviations
are further away from D(t) = 1 than in Fig. 6. In the opposite
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N = 100 

FIG. 7. Variation of D(t) with time, keeping temperature T as a
parameter. ρ11(0) = 0.5, ρ12(0) = 0.2.

limit of a high-temperature bath, quantum coherence dies down
very quickly, as seen in Fig. 2(a). This explains why, just like
Fig. 6, D(t) again approaches 1 in Fig. 7. In the intermediate
regime, as we increase the temperature, the approach towards
D(t) = 1 becomes faster. If the system-bath coupling strength
is very weak, we see from Fig. 8 that the deviation of D(t)
from unity is very small. This is understandable because, as
the system-bath interaction gets weaker, the change in the state
of the system due to the exposure of bath interaction becomes
slower and the process becomes more and more quasistatic.
Hence, the system remains close to its steady state. As we go
on increasing the strength of the interaction, the fluctuations
in population levels increase, implying that the deviation from
detailed balance condition also increases, which is confirmed
in Fig. 8. With increasing bath size, we see from Fig. 9 that
deviations from the detailed balance condition become smaller
and smaller. This is fully consistent with the observation for
many physical systems that energy exchange and consequent

FIG. 8. Variation of D(t) with time, keeping interaction strength
ε as a parameter. ρ11(0) = 0.5, ρ12(0) = 0.

FIG. 9. Variation of D(t) with time, keeping N as a parameter.
ρ11(0) = 0.5, ρ12(0) = 0.

thermalization of a system are better facilitated by having a
large bath rather than a small ancilla attached to it.

B. Irreversible entropy production

Here we investigate how this system approaches a steady
state from a thermodynamic perspective, i.e., the phenomenon
of irreversible entropy production (IEP). The entropy produc-
tion rate is formally defined as the negative rate of change of
relative entropy between the instantaneous state and the steady
state, i.e., �(t) = − d

dt
S(ρ(t)||ρst ). For an ideal Markovian

evolution, �(t) is always positive [60]. The rate equation
(34) can be compactly represented as Ṗa(t) = ∑

b LabPb(t),
with

L =
(−�dis(t) �abs(t)

�dis(t) −�abs(t)

)
.

The entropy of the system is defined as S(t) =
−∑

b Pb(t) ln Pb(t). By differentiating S(t) with respect to
time, it can be easily shown that

Ṡ(t) =
∑
ab

LabPb(t) ln

(LabPb(t)

LbaPa(t)

)

−
∑
ab

LabPb(t) ln

(Lab

Lba

)

= �(t) + �(t). (37)

The first term on the right-hand side can be identified as
the entropy production rate �(t) and the second term �(t)
defines the effective rate at which entropy is transferred from
the environment to the system. For the particular central spin
system considered in this paper, the IEP rate is given by

�(t) = [�dis(t)Pa(t) − �abs(t)Pb(t)] ln

(
�dis(t)Pa(t)

�abs(t)Pb(t)

)
.

(38)

We see from Eq. (38) that the IEP rate is related to D(t)
and, at the time ts when the system obeys the detailed
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FIG. 10. Variation of IEP rate �(t) and Lindblad coefficients for
absorption �abs(t) and dissipation �dis(t) with time t . Initial state
ρ(0) is chosen as 4

5 |1〉〈1| + 1
5 |1〉〈0| + 1

5 |0〉〈1| + 1
5 |0〉〈0|.

balance condition, we have �(ts) = 0. We also see from the
expression of the IEP rate that, for the Markovian situation
[i.e., �dis(t), �abs(t) � 0], it will always be non-negative. This
behavior is illustrated in Fig. 10. Whenever the irreversible
entropy production rate �(t) is negative, the absorption and
dissipation rates are also negative, and vice versa, in the time
span we probed. Since negativity of at least one Lindblad
coefficient �(t) is a necessary and sufficient condition [50] for
non-Markovianity, this leads us to conclude that, whenever this
system is non-Markovian, a negative IEP rate �(t) is obtained.
While the negativity of the IEP rate at any point in the dynamics
necessarily implies that the dynamics is non-Markovian, the
opposite is not true in general. However, in this illustration
we note that the opposite is also true. If the bath temperature
is very low, we have already seen from Fig. 2(a) that the
quantum coherence of the central spin qubit persists for a long
time, resulting in persistent deviations from the steady-state

N = 100 

FIG. 11. Variation of IEP rate �(t) with time t for different bath
temperatures. Initial state ρ(0) = 4

5 |1〉〈1| + 1
5 |1〉〈0| + 1

5 |0〉〈1| +
1
5 |0〉〈0|.

FIG. 12. Variation of IEP rate �(t) with time t for different
number of bath spins. Initial state ρ(0) = 4

5 |1〉〈1| + 1
5 |1〉〈0| +

1
5 |0〉〈1| + 1

5 |0〉〈0|.

detailed balance condition, as depicted in Fig. 6. Therefore, it
is expected that the IEP rate will also fluctuate and not show
any sign of dying down to zero. This is indeed captured in
Fig. 11. In the opposite limit, as we go on increasing the bath
temperature, as seen Fig. 6, the approach towards a steady state
becomes quicker. This is again confirmed in Fig. 11, where the
fluctuations in IEP rate die down more and more quickly for
higher temperatures. As we have already observed in Fig. 9, the
approach towards a steady state through exchange of energy
between the system and the bath is quicker for a larger bath.
This is again confirmed in Fig. 12, which shows the IEP rate
becoming smaller and smaller as we increase the bath size.
The period of fluctuations also diminish with increasing bath
size.

V. CONCLUSION

In this paper we explore various aspects of a central
qubit system in the presence of a noninteracting thermal
spin environment. We solve the Schrödinger dynamics of
the total state and derive the exact reduced dynamical map
for the central qubit. We compute the corresponding Kraus
decomposition and evaluate the time evolution of quantum
coherence (quantified through the l1 norm) for the qubit in
various parameter regions in Sec. II D. We note that, as the
number of bath spins and the temperature increases, quantum
coherence decays steadily with very small fluctuations, thus
enabling us to conclude that, in the thermodynamic limit
(N → ∞) and for sufficiently high temperature, the decay
of coherence closely mimics the corresponding behavior in
Markovian systems. We observe quite similar phenomena
for quantum entanglement in the same limit, where we see
the usual entanglement sudden death. On the contrary, for
low temperature, both coherence and entanglement sustain
steadily in a band for a very long period of time. This is an
important observation having potential practical applications
in quantum information processing. It implies that, for the
open system considered in this paper, the environment can
be designed in such particular ways that quantum signatures
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like coherence or entanglement can be preserved for a long
period of time. For diminishing number of bath spins, steady
oscillations of both coherence and entanglement increase both
in magnitude and frequency, which can be attributed to the
finite-size effect. In the second part of our work, we derive the
exact canonical master equation for the central qubit, without
using the weak-coupling approximation or the Born–Markov
approximation, to study under what condition the central qubit
thermalizes with its environment and, if not, whether it at all
comes to any steady state other than the corresponding thermal
state. Probing the quantum detailed balance relation and the
IEP rate, we conclude that, as the completely unpolarized
(T → ∞) spin bath reaches the thermodynamic limit, the
system equilibrates faster. We see that in the non-Markovian
region [�i(t) < 0] of the dynamics, the IEP rate is negative,
which is a signature of a system driven away from equilibrium.
However, with the increasing number of bath spins and the
temperature, we observe that this effect vanishes and the IEP
rate remains very close to zero. In fact, from further study of
long-time-averaged state and information trapping, we also see
that, in the mentioned limit, the system actually equilibrates
to the corresponding canonical state at infinite temperature.
Hence, one may naturally infer that, in the limit of N → ∞,
T → ∞, the dynamics is ergodic and the bath does not retain

the memory of the initial state. However, as we deviate from
this limit, ergodicity breaks down. In those cases, we observe
a finite amount of information trapping in the central spin
system, which demonstrates that then the bath does hold the
memory of the initial state. Perhaps the most important result
of the present work is the finding of the existence of coherence
in the long-time-averaged state of the central spin. We have
shown that, for specific choices of the system-bath interaction
parameter, a resonance condition is satisfied and as a result the
long-time-averaged state retains a finite amount of coherence.
Here no external coherent driving is required to preserve
this coherence. Our result shows that through precise bath
engineering, a spin environment can be manipulated in such a
way that it acts as a quantum resource to preserve coherence
and potentially entanglement. The presence of such long-time
quantumness can have potentially far reaching consequences
for the construction of quantum thermal machines whose
performances are augmented by coherence.
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