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Anomalous weak values and the violation of a multiple-measurement Leggett-Garg inequality
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Quantum mechanics presents peculiar properties that, on the one hand, have been the subject of several
theoretical and experimental studies about its very foundations and, on the other hand, provide tools for developing
new technologies, the so-called quantum technologies. The nonclassicality pointed out by Leggett-Garg
inequalities has represented, with Bell inequalities, one of the most investigated subjects. In this article we
study the connection of Leggett-Garg inequalities with a new emerging field of quantum measurement, the weak
values in the case of a series of sequential measurements on a single object. In detail, we perform an experimental
study of the four-time-correlator Leggett-Garg test, by exploiting single and sequential weak measurements
performed on heralded single photons.
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I. INTRODUCTION

The prominent role of measurement is one of the distinctive
features of quantum theory [1]. The impossibility of interpret-
ing the results of a measurement on a quantum system in terms
of pre-existing values is the core message of Bell’s nonlocality
test [2,3], as well as the core message of noncontextuality tests
[4]. Such an occurrence has also been recognized by Leggett
and Garg [5] in the behavior of macroscopic systems when
subject to subsequent measurements. For these objects, it is
natural to assume that they will be found in a definite, realistic
macrostate (macroscopic realism) and that a measurement,
especially when carried out by a microscopic probe, cannot
perturb such a macrostate (noninvasive measurability). This
original observation by Leggett and Garg has led to a fecund
production of theoretical [6–14] and experimental [15–23]
work focusing on the inadequacy of such a macrorealistic
view [24]; this has also inspired somehow the transposition of
Bell’s nonlocal argument to the time domain [25–29].

In its simplest form, Leggett and Garg’s arrangement
considers a macroscopic body undergoing three two-outcome
measurements at different times, with the first serving as a
preparation. The correlation among the outcomes can be shown
not to be in accordance with macrorealistic prescriptions. To
date, the violation of the Leggett-Garg inequality has been
reported on macroscopic objects, such as transmon qubits
[15] and crystals [21], and following refinements have been
explored with superconducting flux qubits [22]. The test,
however, is also suited to highlight the inadequacy of a realistic
view to the description of simpler quantum objects, such as
phosphorus impurities [19]. In this case, the focus is on the
assessment of the quantum character of the system, being
a very significant tool for quantum technologies [14,23,30],
rather than on its fundamental value.

The canonic three-measurement arrangement can be gener-
alized in several directions. The simplest extension considers
longer sequences [6,8]. Increasing the number of measure-
ments leads to stronger departures from the macrorealistic
predictions, as has been tested with photons [31] and nuclear

spins [18]. A different take considers substituting the measure-
ment in the middle with a weak measurement imparting limited
back-action [32]. Different from the standard approach, weak
measurements allow for testing the Leggett-Garg inequality
in a single apparatus. While shot by shot the measurement
delivers only partial information on the observable, it still
provides the correct expectation value on a large ensemble
[33]. This concept has been introduced in Refs. [34,35] and has
been tested on single photons in Ref. [16] and on transmons in
Ref. [36]. Remarkably, the number of measurements can also
be increased by considering entangled systems, as it has been
performed in the semiweak [17] and weak regimes [37].

The experimental scheme for a Leggett-Garg test (LGT) can
also be employed for observing so-called postselected values:
the value of the second observable is considered only on events
chosen according to the outcome of the last measurement.
Postselection procedures are expected to be mostly harmless in
classical statistics, although the subject is vigorously debated
[38–43]; in this context, postselection carried out in the
weak-measurement regime can lead to anomalous values, in
that they fall outside the range allowed for standard values
[44,45]. When one allows for such a weak measurement to
be performed in a Leggett-Garg test, then a direct connection
can be established between the violation of macrorealism and
the emergence of anomalous postselected values [16,35,46],
like it was demonstrated for quantum contextuality [47,48].
Schemes for the measurement of weak values have found
technical applications, thanks to their ability to amplify small
effects [49–55].

In this article, we present an experiment encompassing
these two generalizations at the same time, by demonstrating
a sequential multiple-measurement setting carried out in the
weak regime. We perform a LGT on the polarization of single
photons, estimating noncommuting observables via “weak
averages” [56], and draw an explicit link to the emergence
of anomalous values. Our experiment confirms the intimate
connection between the observation of anomalies in the
postselected statistics of quantum measurement as a genuine
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manifestation of the quantum character of the observed object.
These anomalies can then be used as practical witnesses of
nonclassicality whenever such a test is needed, for instance, in
the production of random numbers.

II. THEORETICAL BACKGROUND

The simplest LGT one can design involves three measure-
ments, which we label as IA, IB , and IC ; these are two-outcome
observables which can take either the value +1 or the value
−1. The inequality can be written as follows [5]:

−3 � B3 = 〈IAIB〉 + 〈IBIC〉 − 〈IAIC〉 � 1. (1)

The measurement of IA can be taken to coincide with the initial
preparation in the state |ψA〉 [34]; hence one can assign the
fixed value +1 for IA:

−3 � B3 = 〈IB〉 + 〈IBIC〉 − 〈IC〉 � 1. (2)

The connection with anomalous postselected values of IB

is established by considering the two instances IC = 1 and
IC = −1 separately, each with the respective occurrence
probabilities pC(1) and pC(−1):

B3 = 〈IB〉 + [+〈IB〉 − 1]pC(1) − [−〈IB〉 − 1]pC(−1), (3)

with a〈IB〉 identifying the postselected value of IB , conditioned
on the outcome a for IC . Exploiting the relation

〈IB〉 = +〈IB〉pC(1) + −〈IB〉pC(−1), (4)

it is possible manipulate Eq. (3) as

B3 = 1 + 2pC(1)(+〈IB〉 − 1). (5)

Inserting the condition for the standard values of 〈IB〉, one
recovers the limits of the Leggett-Garg inequality (LGI).

This connection can be extended to the multiple-
measurement LGT introduced in Ref. [5] that considers four
measurements, including state preparation IA:

|B4| = |〈IB〉 + 〈IBIC〉 + 〈ICID〉 − 〈ID〉| � 2. (6)

The form of this inequality resembles the familiar Clauser-
Holt-Shimony-Horne test for spacelike separated systems [57];
in that case, two partners alternate four distinct experimental
arrangements and verify whether the collected statistics is
compatible with a local, realistic theory [25,27]. This can
be viewed as a single system interrogated at four different
times, including preparation. We can manipulate the four-
measurement term B4 as we did for its three-measurement
counterpart, by distinguishing the two instances for the last
measurement ID . This is the simplest generalization of the
treatment in Ref. [35] and, as we show later, is relevant to our
experimental implementation:

|B4| = |〈IB〉 + 〈IBIC〉 + pD(1)[+〈IC〉 − 1]

−pD(−1)[−〈IC〉 − 1]|. (7)

We now assume that the postselected values are bound to be
found in the same ranges as the standard values: in this case, it
is easy to verify that |B4| is upper bounded by 2. The expression
(7) reveals a difference with the three-measurement scenario,
where a one-to-one correspondence between anomalous weak

values and violation of the LGI exists. In our case, violation
of the bound for (7) demands a minimal value,

−〈IC〉 � 3 − M

2pD(−1)
, (8)

where M = 〈IB〉 + 〈IBIC〉 + 〈IC〉, with a similar expression
holding for +〈IC〉. We remark that a related behavior is also
observed in the monitoring of entangled systems, in which a
connection is established between a violation of the LGI and
a convex sum of weak values [17]. In the case of sequential
measurements as well, this connection persists in a subtler
way than in the canonical three-measurement scenario. A more
extensive treatment is presented in the Appendix.

III. EXPERIMENTAL IMPLEMENTATION

We perform a test of the inequality (7) by exploiting single
photons undergoing single and sequential weak measurements
of their polarization. Such a test certifies quantum properties of
the single photon and uses these to illustrate the link between
the LGI and weak values, rather than providing a conclusive
proof against macrorealism. In this spirit, we are assuming a
certain confidence in our apparatus (Fig. 1); hence we do not
address loopholes [37,58].
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FIG. 1. Experimental setup. Heralded single photons are pro-
duced by downconversion in a 5-mm-long LiIO3 nonlinear crystal
(NLC) cut for type-I phase matching; the pump beam, obtained by
second harmonic generation (SHG) of a mode-locked laser (rep. rate,
76 MHz), produces idler (λi = 920 nm) and signal (λs = 702 nm)
photons, which are then coupled in a single-mode fiber (SMF). The
idler photons are detected by means of a single-photon avalanche
diode (SPAD), which imparts a trigger to the signal detection system.
Signal photons are prepared in the polarization state |ψA〉 by means
of a polarizing beam splitter (PBS) and a half-wave plate (HWP)
(IA = 1); then they pass through a birefringent system BCy that shifts
them in the transverse y direction, depending on their polarization,
thus measuring IC weakly. BCy consists of two birefringent crystals:
the first one realizes the weak interaction, while the second one
compensates temporal walk-off and decoherence effects. A similar
system, BCx , performs in cascade a weak measurement of IB by
shifting the photons in the x direction; this is placed after a HWP
allowing one to measure along an arbitrary linear polarization axis.
A further HWP is used to counter the basis change and decide the
observable ID which determines the postselection. The photons are
finally detected by means of a spatial-resolving 32 × 32 SPAD array.
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Single photons are emitted by a downconversion source
[59]; at a heralding rate around 130 kHz, the quality of the
emission is certified by a measured value of the antibunching
parameter [60] of 0.13 ± 0.01 without any background and
dark-count subtraction. This implies that in our test we can
genuinely associate the outcomes of the measurements to prop-
erties of single particles, avoiding classical wavelike analogies
[61]. The state of the photon is prepared (preselected) in
the polarization state |ψA〉 = cos α|H 〉 + sin α|V 〉 by means
of a calcite polarizing beam splitter (PBS) and a half-wave
plate (HWP).

The use of a single-mode fiber (SMF) then prepares
the transverse profile F(x,y) in a Gaussian shape of width
σ , which ensures that the two directions can be used as
distinct pointers for the weak measurements [56]. These
operations are implemented by coupling the polarization to
the transverse position by means of the unitary transformations
Ûx = exp(−igx ÎB ⊗ P̂x) and Ûy = exp(−igy ÎC ⊗ P̂y), where
ÎC = |H 〉〈H | − |V 〉〈V | and ÎB = |ψγ 〉〈ψγ | − |ψ⊥

γ 〉〈ψ⊥
γ | are

associated with an arbitrary direction for the linear polar-
ization: |ψγ 〉 = cos γ |H 〉 + sin γ |V 〉 and |ψ⊥

γ 〉 = sin γ |H 〉 −
cos γ |V 〉. The operators P̂x and P̂y are the momenta associated
with the x and y positions, respectively. The interaction Ûx

(Ûy) is brought about by a 2-mm-long birefringent crystal
whose extraordinary (e) optical axis lies in the x-z (y-z)
plane, at a π/4 angle with respect to the z direction. Due
to the spatial walk-off effect experienced by the photons,
the two polarization paths get slightly separated along the
x (y) direction. The actual interaction along the IB basis
can be tuned by means of a HWP. The condition g2

x/σ
2 �

g2
y/σ

2 � 1 ensures that the back-action on the incoming
state is negligible; i.e., the measurement is carried out in
the weak regime [56]. Along with the spatial walk-off, each
birefringent crystal also induces a temporal walk-off and a
possible polarization change, both to be compensated to avoid
unwanted additional decoherence effects. We were able to
do this by adding after each crystal a second birefringent
crystal of properly chosen length (1.1 mm) with the optical axis
along the y (x) direction, each mounted on a piezo-controlled
rotator with 100 μrad nominal resolution, allowing us to
cancel the temporal walk-off, avoiding unwanted circular
components in the polarization state due to the previous
interaction.

After the second weak interaction, the photons arrive at
a HWP that undoes the preceding rotation and, at the same
time, determines the projection of the state onto one of
the postselected states 〈ψA|, 〈ψD| = cos δ〈H | + sin δ〈V |, or
〈ψ⊥

D | = sin δ〈H | − cos δ〈V |, by means of a PBS.
At the end of the optical path, the single photon is detected

by a spatial-resolving single-photon detector prototype, i.e., a
two-dimensional array made of 32 × 32 “smart pixels” [62]—
each embedding a SPAD detector and its front-end electronics
for counting and timing single photons—operating in parallel
with a global shutter readout. The SPAD array is operated in
gated mode, with each count by the SPAD on the heralding arm
triggering a 6-ns detection window in each pixel of the array.
At our heralding rate of ∼130 kHz, the dark-count rate of the
array is drastically reduced by the low-duty cycle, improving
the signal-to-noise ratio.

Since we are interested in the LGT as a tool for probing
quantumness, we estimate each term in the inequality (7)
separately in our setup. The chain of weak interactions and the
space-resolved detector allow us to reconstruct the expectation
values 〈IB〉 and 〈IC〉 by measuring the average x and y

positions of the photons, respectively, when postselecting
on the input state 〈ψA|: 〈̂x〉 � gx〈ÎB〉 and 〈ŷ〉 � gy〈ÎC〉.
The correlation of the x and y positions gives 〈̂x ŷ〉 �
gxgy

2 (〈ÎB ÎC〉 + 〈ÎB〉〈ÎC〉). By inverting these relations, it is
possible to obtain the single and sequential values 〈ÎC〉, 〈ÎB〉,
and 〈ÎB ÎC〉, estimated as weak averages. This resolves a major
difficulty, in that by using standard “strong” measurements
one would only have access to the symmetrized quantity
1
2 〈ψA|ÎB ÎC + ÎC ÎB |ψA〉 [63]. Postselection on 〈ψD| and 〈ψ⊥

D |
occurrence delivers the probabilities pD(1) = |〈ψD|ψA〉|2 and
pD(−1) = |〈ψ⊥

D |ψA〉|2, as well as the weak values 1〈ÎC〉 and

−1〈ÎC〉. We are then asking the macrorealist to agree that this
experimental procedure delivers the correct results because it
accesses the actual “macrorealist values” of the observables,
since postselection on the input state leads to the expected
value, with no anomalies. In this respect, it is not surprising
that the measurement procedure is insensitive to the imaginary
part of the weak values [64], as discussed in Ref. [56].

IV. RESULTS AND CONCLUSIONS

Figure 2 reports a theoretical simulation showing the shape
of B4 for four different values of γ , plotted vs the parameters α

and δ determining the pre- and postselection states. Aside from
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FIG. 2. Behavior of the quantity B4 in Eq. (7) vs the parameters
α (related to the state |ψA〉) and δ (determining the states |ψD〉 and
|ψ⊥

D 〉), both in π units, for four different values of the parameter γ

defining the polarization operator IB : γ = 0.1π for plot (a), γ = 0.4π

for plot (b), γ = 0.5π for plot (c), and γ = 0.95π for plot (d). In each
of these plots, the yellow part of the surface indicates the nonviolation
area (−2 � B4 � 2), while in orange and magenta are highlighted
respectively the positive (B4 > 2) and negative (B4 < −2) violation
areas. In each plot, the blue arrow indicates the point for which the
violation was experimentally checked.
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TABLE I. Leggett-Garg inequality violation results obtained in
our four experimental scenarios. The first column reports the γ , α, and
δ values exploited in each experiment, the second and third columns
host, respectively, the theoretical (B(th)

4 ) and experimentally obtained
(B(exp)

4 ) values of the quantity B4, while the fourth and fifth columns
show the anomalous weak values obtained for IC in each experiment.

Parameters B(th)
4 B(exp)

4 1〈Ic〉 −1〈Ic〉
γ = 0.1π

α = 0.233π 2.82 2.76 ± 0.17 2.34 ± 0.04 − 0.34 ± 0.04
δ = 0.867π

γ = 0.4π

α = 0.767π − 2.82 − 2.74 ± 0.18 − 0.30 ± 0.04 2.20 ± 0.04
δ = 0.633π

γ = 0.5π

α = 0.833π − 2.50 − 2.56 ± 0.16 0.01 ± 0.06 1.86 ± 0.06
δ = 0.667π

γ = 0.95π

α = 0.8π 2.71 2.86 ± 0.19 1.86 ± 0.04 − 0.12 ± 0.06
δ = 0.15π

the yellow part of the surface, indicating where the classical
bound holds, for each γ value one observes orange and/or
magenta areas, corresponding to the B4 > 2 and B4 < −2
violations, respectively.

We tested the inequality for different choices of the initial
state α, of the orientation γ of the weak measurement, and
of the final postselection δ: the four combinations have been
identified to deliver a violation (indicated by the blue arrow
in each plot reported in Fig. 2) close to the maximal value,
whose results are illustrated in Table I. For each of the
four tests performed, the experimental values of B4 are in
excellent agreement with the theoretical expectations within
the statistical uncertainties, granting for both the positive
and negative values a classical bound violation between 3.4
and 4.4 standard deviations. In Table I, we also report the
measured weak values showing how anomalies, i.e., values
outside the standard range −1 to 1, do flag the violation of the
Leggett-Garg inequality when these obey the condition (8).

We demonstrated the capability of our setup to address
single photons with negligible disturbance, certifying it by
a LGT and, in a complementary way, by the presence
of anomalous weak values upon postselection. This is a
manifestation of the good quality of our device, which may
find applications in random number generators [65–67]. Care

must be taken, however, in extending these considerations to
adversarial scenarios, when the presence of loopholes, either
from fair sampling or from “clumsiness” of the experimenter
[37,68], can play a role.
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APPENDIX

We can generalize the connection between the violation of
a LGI and postselected values as follows: consider a sequence
of m binary measurements In, with the first one I1 coinciding
with state preparation, hence I1 = 1 deterministically. A
generalized LGI is written as

−nδn=2k+1 − (n − 2)δn=2k � Bn � n − 2, (A1)

with

Bn =
n−2∑
m=1

〈ImIm+1〉 + 〈In−1In〉 − 〈I1In〉. (A2)

We now consider the last measurement In and distinguish
between the events for which In = 1 or In = −1, each
occurring with probabilities p+ and p−, respectively. This
leads us to consider the postselected values ±〈InIn+1〉 for any
correlator in (A1):

Bn = p+

(
n−2∑
m=1

+〈ImIm+1〉 + +〈In−1〉 − 1

)

+p−

(
n−2∑
m=1

−〈ImIm+1〉 − −〈In−1〉 + 1

)
. (A3)

If we now assume that all postselected values are regular, in that
they are both within the spectrum of ordinary eigenvalues, the
term in p+ is upper bounded by n − 2. The term in p− actually
contains an expression akin toBn−1 for the postselected values;
the upper bound for the whole quantity is n − 2 as well.
Therefore, the regularity of the postselected values in both
their domain and their compatibility with macroscopic realism,
leads to the LGI (A1).
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[7] J. Kofler and Č. Brukner, Phys. Rev. Lett. 101, 090403 (2008).
[8] M. Barbieri, Phys. Rev. A 80, 034102 (2009).

[9] N. Lambert, C. Emary, Y.-N. Chen, and F. Nori, Phys. Rev. Lett.
105, 176801 (2010).

[10] S. Nimmrichter and K. Hornberger, Phys. Rev. Lett. 110, 160403
(2013).

[11] C. Budroni and C. Emary, Phys. Rev. Lett. 113, 050401 (2014).
[12] C. Robens, W. Alt, D. Meschede, C. Emary, and A. Alberti,

Phys. Rev. X 5, 011003 (2015).
[13] C. Budroni, G. Vitagliano, G. Colangelo, R. J. Sewell, O. Gühne,

G. Tóth, and M. W. Mitchell, Phys. Rev. Lett. 115, 200403
(2015).

052123-4

https://doi.org/10.1166/asl.2010.1133
https://doi.org/10.1166/asl.2010.1133
https://doi.org/10.1166/asl.2010.1133
https://doi.org/10.1166/asl.2010.1133
https://doi.org/10.1016/j.physrep.2005.03.003
https://doi.org/10.1016/j.physrep.2005.03.003
https://doi.org/10.1016/j.physrep.2005.03.003
https://doi.org/10.1016/j.physrep.2005.03.003
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevLett.99.180403
https://doi.org/10.1103/PhysRevLett.99.180403
https://doi.org/10.1103/PhysRevLett.99.180403
https://doi.org/10.1103/PhysRevLett.99.180403
https://doi.org/10.1103/PhysRevLett.101.090403
https://doi.org/10.1103/PhysRevLett.101.090403
https://doi.org/10.1103/PhysRevLett.101.090403
https://doi.org/10.1103/PhysRevLett.101.090403
https://doi.org/10.1103/PhysRevA.80.034102
https://doi.org/10.1103/PhysRevA.80.034102
https://doi.org/10.1103/PhysRevA.80.034102
https://doi.org/10.1103/PhysRevA.80.034102
https://doi.org/10.1103/PhysRevLett.105.176801
https://doi.org/10.1103/PhysRevLett.105.176801
https://doi.org/10.1103/PhysRevLett.105.176801
https://doi.org/10.1103/PhysRevLett.105.176801
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1103/PhysRevLett.110.160403
https://doi.org/10.1103/PhysRevLett.113.050401
https://doi.org/10.1103/PhysRevLett.113.050401
https://doi.org/10.1103/PhysRevLett.113.050401
https://doi.org/10.1103/PhysRevLett.113.050401
https://doi.org/10.1103/PhysRevX.5.011003
https://doi.org/10.1103/PhysRevX.5.011003
https://doi.org/10.1103/PhysRevX.5.011003
https://doi.org/10.1103/PhysRevX.5.011003
https://doi.org/10.1103/PhysRevLett.115.200403
https://doi.org/10.1103/PhysRevLett.115.200403
https://doi.org/10.1103/PhysRevLett.115.200403
https://doi.org/10.1103/PhysRevLett.115.200403


ANOMALOUS WEAK VALUES AND THE VIOLATION OF A . . . PHYSICAL REVIEW A 96, 052123 (2017)

[14] P. Facchi et al., J. Phys. A 47, 035301 (2014).
[15] A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion,

D. Esteve, and A. N. Korotkov, Nat. Phys. 6, 442 (2010).
[16] M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L.

O’Brien, A. G. White, and G. J. Pryde, Proc. Natl. Acad. Sci.
USA 108, 1256 (2011).

[17] J. Dressel, C. J. Broadbent, J. C. Howell, and A. N. Jordan, Phys.
Rev. Lett. 106, 040402 (2011).

[18] V. Athalye, S. S. Roy, and T. S. Mahesh, Phys. Rev. Lett. 107,
130402 (2011).

[19] G. C. Knee, S. Simmons, E. M. Gauger, J. J. Morton, H.
Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, K. M. Itoh,
M. L. Thewalt, G. A. D. Briggs, and S. C. Benjamin, Nat.
Commun. 3, 606 (2012).

[20] Y. Suzuki, M. Iinuma, and H. F. Hofmann, New J. Phys. 14,
103022 (2012).

[21] Z.-Q. Zhou, S. F. Huelga, C.-F. Li, and G.-C. Guo, Phys. Rev.
Lett. 115, 113002 (2015).

[22] G. C. Knee, K. Kakuyanagi, M.-C. Yeh, Y. Matsuzaki, H. Toida,
H. Yamaguchi, S. Saito, A. J. Leggett, and W. J. Munro, Nat.
Commun. 7, 13253 (2016).

[23] G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, V.
Schettini, N. Gisin, S. V. Polyakov, and A. Migdall, Phys. Rev.
A 79, 044102 (2009).

[24] C. Emary, N. Lambert, and F. Nori, Rep. Prog. Phys. 77, 016001
(2014), offers a comprehensive review of recent results.
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