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Time evolution of linear and generalized Heisenberg algebra nonlinear Pöschl-Teller coherent states
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We analyze the time evolution of two kinds of coherent states for a particle in a Pöschl-Teller potential. We
find a pair of canonically conjugate operators and compare the behavior of their time evolution for both coherent
states. The nonlinear ones are more localized. The trajectory in the phase space of the mean values of these two
operators is a kind of generalization of the Rose algebraic curves. The new pair of canonically conjugate variables
leads to a fourth-order Schrödinger equation which has the same energy spectrum as the Pöschl-Teller system.
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I. INTRODUCTION

The idea of coherent states was first proposed in a very
important paper of Schrödinger [1] and it is linked to the
question of maintaining maximum localizability during the
time evolution of quantum systems. This idea first succeeded in
the case of the harmonic oscillator in which the coherent state
evolution maintains the minimum uncertainty. In the 1960s,
the papers of Klauder [2,3] and Glauber in quantum optics
[4] showed the applicability of coherent states in physics.
For other systems which are not the harmonic oscillator
some generalizations of the coherent states [5–9] have been
introduced and were called nonlinear coherent states; the
question of the localizability in the evolution of these systems
is currently an interesting subject of investigation [10–16].

In this paper, we study the Pöschl-Teller potential (PT)
[17], which has been used in molecular systems [18,19] and,
in a certain number of articles, to model infinite quantum
wells (see, for example, [20] and references therein). For that
system we calculate the evolution of the mean values of a new
pair of canonically conjugate operators both for generalized
Heisenberg algebra (GHA) nonlinear coherent states [7] and
also for the linear ones. This pair of operators is defined in
terms of ladder operators which obey for the PT system the
same algebra as the usual annihilation and creation operators
for the harmonic oscillator. We find that during time evolution
the mean values of the conjugate operators present a fluctuation
which oscillates between a minimum and a maximum value,
exhibiting then a localized behavior. This time evolution is
more localized for the mean values constructed with the GHA
nonlinear than with the linear coherent states. These two
operators determine a phase space in which the trajectory
of their mean values follows a kind of generalization of the
Rose algebraic curves. We use the new pair of canonically
conjugate operators to construct a fourth-order Hamiltonian
whose energy spectrum is the same as the Pöschl-Teller one,
that is, these two systems are isospectral.

In Sec. II we make a brief review of the GHA and introduce
generalized creation and annihilation operators, in terms of
which we construct a new pair of canonically conjugate
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variables and define linear and nonlinear coherent states. In
Sec. III we apply these results to a particle in a Pöschl-Teller
potential and find the realization of the GHA and of its
associated harmonic oscillator algebra. In Sec. IV we construct
linear and nonlinear coherent states for the case ν = 0 of the
Pöschl-Teller potential. We present the behavior of the time
evolution of the uncertainty relation and show that as time
goes by the uncertainty has a maximum value and it is always
smaller or equal for the nonlinear than for the linear case. In
Sec. V we show that in terms of the new pair of canonical
variables the system obeys a fourth-order Hamiltonian whose
solutions are the harmonic oscillator ones. In Sec. VI we
present our final comments.

II. GENERALIZED HEISENBERG ALGEBRA AND ITS
ASSOCIATED CANONICALLY CONJUGATE OPERATORS

A. Brief review of the generalized Heisenberg algebra

The generalized Heisenberg algebra (GHA), constructed a
few years ago [21–23], is a family of Heisenberg-type algebras
depending on a characteristic function of the dimensionless
Hamiltonian H , f (H ), and it is described by the generators
H,A,A† satisfying

HA† = A†f (H ), (1)

AH = f (H )A, (2)

[A,A†] = f (H ) − H, (3)

where A = (A†)†,H = H † is the Hamiltonian of the physical
system under consideration, and f (H ) is a function of H ,
called the characteristic function of the algebra. By its choice,
we obtain a large class of Heisenberg-type algebras. In
particular, if H is the Hamiltonian of the harmonic oscillator,
A and A† are the usual a and a† annihilation and creation
operators. Note that H ≡ H

b
, where H is the dimensional

Hamiltonian of the system and b is a constant with dimension
of energy.

The Fock space representation of the GHA is given through
a general vector |m〉 which is required to be an eigenvector of
the Hamiltonian, H |m〉 = εm|m〉, where εm = f (m)(ε0), and
f (m)(ε0) is the definition of the mth iterate of ε0 under f .
ε0 is the lowest eigenvalue of H with respect to the vacuum
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state |0〉. Besides, H = H (N ) where N |m〉 = m|m〉. Using
relations (1)–(2), we have

A†|m〉 = Nm|m + 1〉, (4)

A|m〉 = Nm−1|m − 1〉, (5)

where

N 2
m = εm+1 − ε0. (6)

The Casimir operator of the algebra is

C = A†A − H, C|m〉 = ε0|m〉∀m. (7)

In [22] it was shown that choosing for the characteristic
function of the GHA the linear function f (x) = x + 1 the
algebra presented in Eqs. (1) and (2) becomes the harmonic
oscillator algebra. For f (x) = qx + 1 we obtain in Eqs. (1) and
(2) the q-oscillator algebra. Moreover, it was shown in [24]
that there is a class of quantum systems described by these
generalized Heisenberg algebras. This class is characterized
by those quantum systems having energy eigenvalues written
as

εn+1 = f (εn), (8)

where εn+1 and εn are successive energy levels and f (x) is
a different function for each physical system. This function
f (x) is exactly the characteristic function that appears in the
construction of the algebra in Eqs. (1) and (2). In the algebraic
description of this class of quantum systems, A† and A are
creation and annihilation operators.

Note that using Eq. (8) Nm is the eigenvalue of the operator
CH defined according to

CH |m〉 ≡
√

f (H ) − ε0|m〉 = √
εm+1 − ε0|m〉. (9)

B. GHA and generalized harmonic oscillator
creation and annihilation operators

Let us now discuss the meaning of a GHA in a Fock space.
To start with, we note that the GHAs, given by Eqs. (1)–(6),
can be constructed once we know the energy spectrum of
the corresponding systems, which completely determines the
characteristic function. This endues that isospectral systems
have the same GHA. These isospectral systems will be
distinguished by the physical realization of the operators A

and A† (see, for example, [25]). In fact, we can think of GHA
as a metasystem in the sense that the same algebraic structure
allows more than one physical realization.

We will now define an operator D, that together with its
adjoint operator D† and the operator N , presents the same
algebraic structure as the harmonic oscillator operators a, a†,
and N .

We consider a general GHA system whose Hamiltonian
is H . Using the operator CH given in (9), we can define the
operator D as

D ≡ √
N + 1

1

CH

A. (10)

D† is the Hermitian conjugate of D.
We know how each of the operators in definition (10) acts

on the Fock space, so it can easily be seen that D acts on a Fock

state |m〉 as the usual annihilation operator a, D|n〉 = √
n |n −

1〉. It is then simple to prove that the operators D,D†,N obey

[D,D†] = 1, (11)

[N,D] = −D, (12)

[N,D†] = D†. (13)

C. Algebraic canonically conjugate operators ξ and ρ

The algebra of the operators N , D, and D†, given by
Eqs. (11)–(13), allows one to define canonically conjugate
positionlike and momentumlike (ξ,ρ) operators for any system
described by a GHA, as follows:

ξ = L√
2

(D + D†), (14)

ρ = i
h̄√
2L

(D† − D), (15)

where L is some constant with dimension of length specific
to the physical system described by the Hamiltonian H ;
conversely, we can now write operators D and D† in terms
of (ξ,ρ) as

D = ξ√
2L

+ iL√
2h̄

ρ, (16)

D† = ξ√
2L

− iL√
2h̄

ρ. (17)

From the commutation relation of D and D†, we have the
interesting result that

[ξ,ρ] = ih̄, (18)

ensuing that the pair of variables (ξ,ρ) is canonically conju-
gate.

D. Nonlinear and linear coherent states

The fact that, as we have shown above, there are two
different algebras associated with any system, that is, the GHA
algebra generated by H , A, and A† [(1)–(3)] and the harmonic
oscillator algebra generated by N , D, and D† [(11)–(13)],
allows us to build both linear and GHA nonlinear coherent
states from the Fock space, as we have now two different pairs
of annihilation and creation operators, (A,A†) and (D,D†),
acting on it.

Linear coherent states are the coherent states for the
harmonic oscillator; they were first introduced mathematically
[1–4] and only later it was realized that they could be generated
in the laboratory [26]. Their well-known expression is

|z〉L = e
−|z|2

2

∞∑
n=0

zn

√
n!

|n〉, (19)

where εn = n + 1/2 is the dimensionless harmonic oscillator
nth energy level, n! = (εn − ε0)! ≡ ∏n

k=1(εk − ε0) and z is a
complex number.

It has also been shown [27] that GHA nonlinear coherent
states corresponding to any other system can be constructed
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and that their general form is

|z〉NL = N (z)
∞∑

n=0

zn

Nn−1!
|n〉, (20)

where Nn−1 = √
εn − ε0 is given in (6). |z〉NL is a solution of

the equation A|z〉NL = z|z〉NL.
The time evolution of the states is obtained by the

application of the unitary operator,

U (t) = exp(−iHt/h̄), (21)

where H is the Hamiltonian associated with the GHA in
question. Note that for the linear coherent state, its time
evolution is not the same as the harmonic oscillator one.

In the next section we will explicitly discuss these operators
D,D†,ξ , and ρ and construct linear and nonlinear coherent
states in the case of a particle in a Pöschl-Teller potential.

III. THE CASE OF THE PÖSCHL-TELLER POTENTIAL

Let us consider the system consisting of a particle in the
Pöschl-Teller potential,

V (x) = h̄2π2

2mL2

ν(ν + 1)

sin2(πx/L)
, (22)

where ν � 0 and 0 < x < L; this potential is infinite for x

outside this range.
The corresponding Schrödinger equation is

H�n(x) =
(

− h̄2

2m

d2

dx2
+ V (x)

)
�n(x) (23)

= b εn�n(x) = b (n + ν + 1)2 �n(x), (24)

where n = 0,1,2,3, . . ., b = h̄2π2/2mL2, and m is the mass
of the particle; its solutions are

�n(x) = cn(ν) sinν+1(πx/L) Cν+1
n (cos(πx/L)), (25)

where

cn(ν) = �(ν + 1)
2ν+1/2

√
L

√
n!(n + ν + 1)

�(n + 2ν + 2)

is a normalization constant and Cν+1
n is a Gegenbauer

polynomial [28].
The dimensionless energy spectrum is then given by

εn = (n + ν + 1)2; (26)

we can easily see that εn+1 = (n + 2 + ν)2 = (
√

εn + 1)2.
The characteristic function for this physical system is then
f (x) = (

√
x + 1)2. In order to obtain the corresponding GHA,

generated by the dimensionless Hamiltonian H ≡ H
b

and the
creation and annihilation operators A†, A, we substitute the
above characteristic function in Eqs. (1)–(3):

[H,A†] = 2 A† √
H + A†, (27)

[H,A] = −2
√

H A − A, (28)

[A,A†] = 2
√

H + 1. (29)

The square root of the generator H is well defined since this
is a Hermitian and positive definite operator.

Note that this characteristic function is the same for the free
particle in an infinite square-well potential [25]. As a matter
of fact this characteristic function is the same for all systems
having an energy spectrum of the form εn = (n + a)2, where a

is a positive real number. Consequently, this family of systems
has the same GHA.

The Fock space representation of the algebra generated by
H , A, and A†, as in Eqs. (27)–(29), is obtained considering
eigenstates |n〉 of H . The action of these algebra generators
on |n〉 is given by

H |n〉 = (n + ν + 1)2 |n〉, n = 0,1,2, . . . , (30)

A† |n〉 =
√

(n + 1)(n + 2ν + 3) |n + 1〉, (31)

A |n〉 =
√

n(n + 2ν + 2) |n − 1〉, (32)

whereN 2
n = εn+1 − ε0 = (n + 1)(n + 2ν + 3) and, of course,

we have also

H|n〉 = b(n + ν + 1)2 |n〉 n = 0,1,2, . . . . (33)

Note that A|0〉 = 0. This is equivalent to the ν-discrete repre-
sentations of the su(1,1) algebra ([8,29,30]). This equivalence
happens for systems whose energy spectrum is of the form
an2 + bn + c, a, b, and c positive numbers, but not for any
system.

We depart from the operators H , A, and A† above, that
obey the GHA given in (27)–(29) and act on the Fock space
according to (30)–(32). In the Hilbert space of functions
(25) their physical realization in terms of the position and
differential operators is

H = − h̄2

2m

d2

dx2
+ V (x), (34)

A = g(N )

(
−L

π

d

dx
sin

πx

L
+ (N + ν + 1) cos

πx

L

)
, (35)

A† =
(

L

π
sin

πx

L

d

dx
+ cos

πx

L
(N + ν + 1)

)
g(N ), (36)

where

g(N ) ≡
√

(N + ν + 2)(N + 2ν + 3)

(N + ν + 1)(N + 2ν + 2)
. (37)

A different physical realization of the ladder operators that
satisfy the dynamical su(2) can be found in [8] for a modified
Pöschl-Teller potential.

In our case, the operators D and D† defined in Eq. (10) are
given by

D = 1√
N + 2ν + 3

A, (38)

D† = A† 1√
N + 2ν + 3

. (39)

Note that these two new operators are constructed with the
generators of the GHA, namely, A, A†, and

√
H = N + ν + 1.
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Therefore the canonical variables ξ and ρ can be written in
terms of the Pöschl-Teller operators x and d/dx as

ξ = L√
2

[
1√

N + 2ν + 3
A + A† 1√

N + 2ν + 3

]
, (40)

ρ = ih̄√
2L

[
1√

N + 2ν + 3
A − A† 1√

N + 2ν + 3

]
, (41)

where operators A and A† are given above in relations (35) and
(36). A GHA algebraic structure depends only on the energy
spectrum but since one may have different physical systems
with the same energy spectrum, the so-called isospectral
systems [31,32], what we have to do in order to fully connect a
GHA to a given physical system is to realize the GHA operators
A, A† in its Hilbert space; this is achieved once one realizes
the operators A and A† in terms of x, d/dx, and H , as was
done for the Pöschl-Teller in Eqs. (35) and (36). In this way,
the canonically conjugate operators ξ and ρ given in equations
above are operators acting on the Hilbert space of a particle in
a Pöschl-Teller potential.

From (30)–(32) and (38) and (39), we obtain the action of
the operators D and D† on the Fock space:

D|n〉 = 1√
N + 2ν + 3

A|n〉 = √
n |n − 1〉, (42)

D†|n〉 = A† 1√
N + 2ν + 3

|n〉 = √
n + 1 |n + 1〉. (43)

Then, from definitions (14) and (15) we have the variables ξ

and ρ.
From (42) and(43), in terms of these operators the Pöschl-

Teller Hamiltonian is written,

H = b(D†D + ν + 1)2. (44)

IV. COHERENT STATES FOR THE CASE ν = 0

Considering that the characteristic function and conse-
quently the GHA are the same for all systems with the energy
spectrum εn = (n + ν + 1)2, n = 0,1,2,3 . . ., and remember-
ing that, as mentioned in the beginning of Sec. II, the m-energy
level is the m iterate of ε0 according to εm = f (m)(ε0), this
implies that for each value of ν corresponds a different
value of the vacuum energy ε0. In fact, the Casimir of the
Pöschl-Teller system is, according to (7) and (26), given by
ε0(ν) = (ν + 1)2; this means that this system and the infinite
square-well potential are different representations of the same
algebra. The results obtained for a definite value of ν are
then qualitatively equivalent to any other value. Therefore,
for the sake of simplicity, from now on we choose ν = 0,
which happens to be the free particle in an infinite square-well
potential.

Besides up to now we have considered the Fock space
starting from n = 0. But in the case of the free particle in an
infinite square-well potential, it is usual to start it from n = 1.
To follow this standard procedure from now on we replace
in all the equations [(20) and (30)–(43)] the operator N by
N − 1 and the quantum number n by n − 1. Notice that the
new function g(N ) is obtained from Eq. (37) replacing N by
N − 1.

A. Constructing GHA nonlinear coherent states

We now construct GHA nonlinear coherent states |z〉NL =∑
n�1 cn|n〉 written in terms of the eigenvectors |n〉, as the

coherent states that obey the equation,

A|z〉NL = z|z〉NL, (45)

where n � 1; |1〉 is now the ground state, i.e., A|1〉 = 0. The
action of the annihilation operator A on the Fock states |n〉 is
given by Eq. (32), leading to [7]

|z〉NL = CNL(|z|)
∞∑

n=1

zn−1∏n
l=1(l2 − 1)

|n〉, (46)

where z is a complex number. We can see that, for this case,
Nn−1 appearing in the general form, Eq. (20), is Nn−1 =√

εn − ε0 = √
n2 − 1.

The states above satisfy the conditions of normalizability,
continuity in the label, and completeness [6,7]. From normaliz-
ability, that is, 〈zNL|zNL〉 = 1, we find the normalization factor
CNL(z) to be

C2
NL(|z|) =

[ ∞∑
n=1

|z|2n−2∏n
l=1(l2 − 1)

]−1

= |z|2
2I2(2|z|) , (47)

where In(x) are the modified Bessel functions of the second
kind [33], and z belongs to the whole complex plane. It is
important to mention that the particular nonlinear coherent
states (46) are the ν = 0 Barut-Girardello coherent states
([8,29,30]). In fact, we can show that this generally happens
when the energy spectrum is a polynomial of the form
an2 + bn + c, where a, b, and c are positive numbers. Since
this is not the case for the spectrum of the q oscillators, their
corresponding GHA nonlinear coherent states [7] are more
general than Barut-Girardelo ones.

B. Constructing linear coherent states

Now, we have a second approach. The existence of a second
annihilation operator, namely D, acting on the Fock space as

D|n〉 = √
n − 1 |n − 1〉, (n � 1), (48)

with D|1〉 = 0, allows us to also have for the system in
question coherent states similar to the ones given by (19).
These linear coherent states obey the relation,

D|z〉L = z|z〉L, (49)

and can be written as (n � 1)

|z〉L = e
−|z|2

2

∞∑
n=1

zn−1

√
(n − 1)!

|n〉, (50)

where 〈x|n〉 = �n(x) is the wave function of the PT system
and z belongs to the whole complex plane.

It is worthwhile to remark that both coherent states,
nonlinear and linear ones, given by Eqs. (46) and (50) can be
constructed for the same physical system. Both sets of coherent
states satisfy the conditions of normalizability, continuity in
the label, and resolution of identity.

Having at our disposal two different sets of coherent states
for the same physical system, in the next section we calculate
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the mean values of the pair of canonically conjugate variables
(ξ,ρ) and compare their behavior.

C. Initial uncertainty relation of ξ and ρ for the linear
coherent states

1. Mean values of ξ and ρ

Using Eqs. (14), (15), (42), and (43), the mean values of ξ

and ρ on the states |z〉L, Eq. (50), are

〈ξ 〉z = 〈z|ξ |z〉L = L√
2
〈z|D + D†|z〉L =

√
2 L Re(z), (51)

〈ρ〉z = 〈z|ρ|z〉L = i
h̄

L
√

2
〈z|D† − D|z〉L =

√
2 h̄

L
Im(z),

(52)

where Re(z) and Im(z) mean the real and imaginary parts of
the complex number z.

2. Mean values of ξ 2 and ρ2

The averages of ξ 2 and ρ2 are

〈ξ 2〉z = 〈z|ξ 2|z〉L = L2

2
〈z|D2 + (D†)2 + DD† + D†D|z〉L

= L2

2
(z2 + z̄2 + 2|z|2 + 1), (53)

〈ρ2〉z =〈z|ρ2|z〉L = − h̄2

2 L2
〈z|D2 + (D†)2 − DD†

− D†D|z〉L

= − h̄2

2 L2
(z2 + z̄2 − 2|z|2 − 1). (54)

Note that the mean values (51)–(54) are exactly the same as the
mean values of the operators x, p, x2, and p2 for the coherent
states of the harmonic oscillator. In particular, as the coherent
state is defined for z belonging to the entire complex plane,
and the mean values of ξ and ρ, (51) and (52), are related to
the real and imaginary part of z, this implies that the respective
spectra of ξ and ρ are the whole real line.

3. Variances and uncertainty relation

The variances of ξ and ρ are

	ξ =
√

〈ξ 2〉z − 〈ξ 〉2
z = L√

2
, (55)

	ρ =
√

〈ρ2〉z − 〈ρ〉2
z = h̄

L
√

2
, (56)

what leads to the minimum Heisenberg uncertainty relation:

	ξ 	ρ = h̄

2
. (57)

This means that we can construct a wave packet (a linear
coherent state) obeying the minimum Heisenberg uncertainty
relation. Obviously, unlike the harmonic oscillator case, this
uncertainty will not remain the same under time evolution.

D. Time evolution of the mean values of ξ and ρ for the linear
coherent states

The time evolution of the states is obtained by the
application of the unitary operator,

U (t) = exp(−iHt/h̄), (58)

where H is given by Eq. (44).
We have for the time evolution of |z〉L,

U (t) |z〉L = e−iHt/h̄ |z〉L (59)

= e−|z|2/2
∑
n�1

zn−1

√
(n − 1)!

e−iHt/h̄ |n〉

= e−|z|2/2
∑
n�1

zn−1

√
(n − 1)!

e−ibn2t/h̄ |n〉. (60)

1. Time evolution of the uncertainty relation

The uncertainty relation for the canonical variables ξ,ρ as
functions of t is given by

	ξ 	ρ =
√

(〈ξ (t)2〉 − 〈ξ (t)〉2)(〈ρ(t)2〉 − 〈ρ(t)〉2). (61)

From now on we write z = reiϕ and the time evolution of
the mean values of the operators ξ and ρ become

〈ξ (t)〉 = (〈z|U †(t)) ξ (U (t)|z〉L)

= L√
2

(〈r,ϕ|U †(t)) (D + D†) (U (t)|r,ϕ〉L)

=
√

2 Le−r2
∑
n�1

r2n−1 cos[bt(2n + 1)/h̄ − ϕ]

(n − 1)!
, (62)

and

〈ρ(t)〉 = (〈z|U †(t)) ρ (U (t)|z〉L)

= i
h̄

L
√

2
(〈z|U †(t)) (D† − D) (U (t)|z〉L)

= − h̄
√

2

L
e−r2

∑
n�1

r2n−1 sin[bt(2n + 1)/h̄ − ϕ]

(n − 1)!
,

(63)

where |z〉L ≡ |r,ϕ〉L.
The time evolution of the mean values of the squares of

operators ξ and ρ is

〈ξ (t)2〉 = (〈r,ϕ|U †(t)) ξ 2 (U (t)|r,ϕ〉L)

= L2

2
(〈r,ϕ|U †(t)) (D2 + (D†)2 + D†D + DD†) (U (t)|r,ϕ〉L) (64)
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= L2

(
e−r2

∑
n�1

r2n

(n − 1)!
cos[4b(n + 1)t/h̄ − 2ϕ] + r2 + 1

2

)
, (65)

〈ρ(t)2〉 = (〈r,ϕ|U †(t)) ρ2 (U (t)|r,ϕ〉L)

= − h̄2

2L2
(〈r,ϕ|U †(t)) (D2 + (D†)2 − D†D − DD†) (U (t)|r,ϕ〉L)

= − h̄2

L2

(
e−r2

∑
n�1

r2n

(n − 1)!
cos[4b(n + 1)t/h̄ − 2ϕ] − r2 − 1

2

)
, (66)

and allows one to calculate the time evolution of the uncertainty, (61), for the linear coherent states.

E. Time evolution of the uncertainty relation for the GHA nonlinear coherent states

If we now replace the linear coherent state |r,ϕ〉L by the nonlinear one,

|r,ϕ〉NL = 1√
2I2(2|z|)

∞∑
n=1

rn−1ei(n−1)ϕ∏n
l=2(l2 − 1)

|n〉, (67)

whose time evolution is given by

U (t) |r,ϕ〉NL = e−iHt/h̄ |r,ϕ〉NL (68)

= 1√
2I2(2|z|)

∑
n�1

rn−1∏n
l=2(l2 − 1)

e−i(bn2t/h̄−(n−1)ϕ) |n〉, (69)

and repeat the calculations shown in Sec. IV D, we obtain

〈ξ (t)〉NL =
√

2 λ r2

I2(2r)

∞∑
n=1

r2n−1 cos((2n + 1)bt/h̄ − ϕ)√
(n + 2)�(n)�(n + 2)

, (70)

〈ρ(t)〉NL = −
√

2 h̄ r2

λI2(2r)

∞∑
n=1

r2n−1 sin((2n + 1)bt/h̄ − ϕ)√
(n + 2)�(n)�(n + 2)

, (71)

〈ξ (t)2〉NL = λ2r2

I2(2r)

⎛
⎝ ∞∑

n=1

√
n + 1 r2n cos(4(n + 1)bt/h̄ − 2ϕ)√

(n + 2)
(
n2 + 4n + 3

)
�(n)�(n + 2)

+
∞∑

n=1

(n − 1)r2(n−1)

�(n)�(n + 2)
+ I2(2r)

2r2

⎞
⎠, (72)

〈ρ(t)2〉NL = h̄2r2

λ2I2(2r)

⎛
⎝ ∞∑

n=1

√
n + 1 r2n sin(4(n + 1)bt/h̄ − 2ϕ)√

(n + 2)
(
n2 + 4n + 3

)
�(n)�(n + 2)

−
∞∑

n=1

(n − 1)r2(n−1)

�(n)�(n + 2)
+ I2(2r)

2r2

⎞
⎠. (73)

The uncertainty relation for the nonlinear case is given by Eq. (61) but now using the nonlinear averages given by Eqs. (70)–(73).

F. Phase-space trajectories for mean values of ξ and ρ

If we analyze the expressions for the time evolution of
the mean values of our canonical variables ξ and ρ, namely
expressions (62) and (63) or (70) and (71), respectively, for
the linear and GHA nonlinear coherent states, we can see that
they are a kind of generalization of the Rose algebraic curves
in the Cartesian parametric form, which are written as

x(t) =cos(k − 1)t + cos(k + 1)t

2
, (74)

y(t) =− sin(k − 1)t + sin(k + 1)t

2
, (75)

where k is an integer. By generalization we mean that the
number of terms is not equal to two but the relevant number of
terms increases with r; moreover, the coefficients are different

for each term and, finally, we have the ϕ phase. It is worthwhile
to note that looking at expressions (62) and (63) or (70) and
(71) we immediately see that if r is very small, only the first
term in the sum is relevant; in this case, the curve is simply an
ellipsis.

In fact, in Fig. 1 it is shown for the linear case that for a
very small r the curve is an ellipsis and for larger values of r

we have generalized Rose curves. The curves are similar for
the nonlinear case.

G. Uncertainty relations for linear and nonlinear
coherent states

We now analyze the time evolution of the uncertainty
relation for both cases, linear and nonlinear ones. In Figs. 2–4
we compare the time evolution of both linear and nonlinear
uncertainty relations, for r = 0.5, r = 1, and r = 1.5; ϕ = 0
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FIG. 1. ξ/λ and (ρλ/h̄) phase-space cycles. In all graphs, h̄ =
1,λ = 1.5,ϕ = 0. (a) r = 0.05; (b) r = 0.5; (c) r = 1; (d) r = 4. ξ/λ

is the horizontal axis and ρλ/h̄ is the vertical axis.

for all three cases. In these numerical simulations we have
taken b/h̄ = 1. Note that this choice implies that the product
mL2 has a specific well-determined value. Looking at the
three figures we see that the uncertainty oscillates between 0.5
and a maximum value which increases with r both for linear
and GHA nonlinear coherent states. We can also see that the
uncertainty is always smaller or equal for the nonlinear than
for the linear case. In fact, they are equal only in a few points
and for the maximum there is approximately a factor two. The
original idea behind the concept of coherent states [1] is to
construct a wave packet whose behavior is as close as possible
to the classical trajectory. In this sense the best coherent state
in our case is the nonlinear one.

In Fig. 5 we can see numerically how the maximum
uncertainty increases with r for the nonlinear case. For high
values of r this behavior is approximately linear.

Figures 2–5 show that the time evolution of the coherent
state along the trajectory in the ξ -ρ phase space, like in Fig. 1,
presents a fluctuation in the variance, which oscillates between
a minimum (that is always equal to 1/2) and a maximum
value, exhibiting then a localized behavior. In Figs. 2–5 we are
plotting 	ξ	ρ/h̄, which is dimensionless.

V. FOURTH-ORDER HAMILTONIAN

Let us take the variable ξ as the “position” and ρ as the
“momentum.” As these variables are canonically conjugate,

FIG. 2. Time evolution of the uncertainty relation for r = 0.5,
ϕ = 0, and b/h̄ = 1. Continuous (blue) line refers to nonlinear
coherent state and dashed (red) line refers to linear coherent state.

FIG. 3. Time evolution of the uncertainty relation for r = 1, ϕ =
0, and b/h̄ = 1. Continuous (blue) line refers to nonlinear coherent
state and dashed (red) line refers to linear coherent state.

Eq. (18), and following the usual operator equivalence of
quantum mechanics, the momentum ρ can be written as the
differential operator given by

ρ = −ih̄
d

dξ
. (76)

In these variables, the operators D and D† now read

D = 1√
2L

ξ + L√
2

d

dξ
, (77)

D† = 1√
2L

ξ − L√
2

d

dξ
. (78)

So, in the canonically conjugate variables(ξ,−ih̄ d
dξ

), the
Hamiltonian (44) is

H = π2h̄2

2mL2

[
−L2

2

d2

dξ 2
+ 1

2L2
ξ 2 + ν + 1

2

]2

, (79)

which is just

H = π2h̄2

2mL2

[
HHO + ν + 1

2

]2

, (80)

FIG. 4. Time evolution of the uncertainty relation for r = 1.5,
ϕ = 0, and b/h̄ = 1. Continuous (blue) line refers to nonlinear
coherent state and dashed (red) line refers to linear coherent state.
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FIG. 5. Behavior of the nonlinear coherent state maximum of
uncertainty for increasing values of r . The continuous line is a guide
to the eye.

where HHO is the dimensionless harmonic oscillator Hamilto-
nian. In terms of the dimensional one,

HHO =
[
− h̄2

2m

d2

dξ 2
+ mω2

2
ξ 2

]
, (81)

where

ω ≡ h̄

mL2
, (82)

we have

H = π2mL2

2h̄2

[
HHO + h̄2

mL2

(
ν + 1

2

)]2

. (83)

The time-independent Schrödinger equation in the variable ξ ,
H�n = En�n, where En are the energies of levels n (n � 0),
is then

π2mL2

2h̄2

[
HHO + h̄ω

(
ν + 1

2

)]2

�n = En�n, (84)

which is a fourth-order differential equation. But this is an
equation of the type (L.L)�, where the linear differential
operator L = HHO + ν + 1/2. So, the solutions of the fourth-
order differential equation (84) are linear combinations of
the two solutions of L�n = εn�n, where εn = n + ν + 1 are
the energy levels of the harmonic oscillator. As one of these
solutions is nonphysical, we have just

�n(y) = (πL2)−1/4 1

2nn!
Hn(y)e−y2/2, (85)

where y = ξ

L
and Hn are the Hermite polynomials; the energy

levels of the fourth-order Hamiltonian associated with the
Pöschl-Teller potential are then

En =
(

π2h̄2

2mL2

)
(n + ν + 1)2. (86)

This is an interesting result because given a quantum
system described by a GHA, we can find variables of the
(ξ,ρ) type (14,15) that obey the commutation relations of
the position and momentum of the harmonic oscillator. This
means that we have two different systems with the same energy
spectrum, in this case, namely εn = (n + ν + 1)2: The first is

the system described by the second-order Hamiltonian (23)
whose solutions are of the form (25) and the other is the system
described by the fourth-order Hamiltonian (79) with solutions
given by (85).

VI. FINAL COMMENTS

In this paper we use the Pöschl-Teller system in order to
discuss the following important theoretical issues. First, for
that system we realize physically ladder operators which have
the same behavior as the creation and annihilation operators in
the harmonic oscillator case. These ladder operators satisfy
an algebra called generalized Heisenberg algebra (GHA).
Second, using the GHA annihilation operator we have a
GHA nonlinear coherent state; next, constructing another
annihilation operator, we are able to define, for the same
Pöschl-Teller system, a linear coherent state. We analyze the
time evolution of those coherent states and find that both
present an oscillating and nonspreading behavior and that the
nonlinear one is always more localized. Third, by means of
some operator transformations, we arrive at a new pair of
canonically conjugate operators for the Pöschl-Teller system.
Finally, using this pair of canonically conjugate operators
we construct a fourth-order Hamiltonian which has the same
energy spectrum (isospectral) as the Pöschl-Teller system.

We show that given a physical system and its associated
GHA, whose generators are the ladder operators A and A†

and its characteristic function f (H ), we can always introduce
the operator D (10), and its Hermitian conjugate D†, in terms
of that particular algebra. D, D†, and N present the same
algebraic structure of the harmonic oscillators operators a, a†,
and N . Departing from D and D† we define another pair of
canonically conjugate position and momentumlike operators
(ξ , ρ) (14) and (15).

As a GHA algebraic structure depends only on the energy
spectrum, in order to fully connect it to a given physical system
we must realize the GHA generators A, A† in terms of x, d/dx,
and H ; this is done for the Pöschl-Teller system in Eqs. (35)
and (36). In this way, the canonically conjugate operators ξ

and ρ given in (40) and (41) are operators acting on the Hilbert
space of a particle in a Pöschl-Teller potential.

We show that for a system described by a given GHA two
different coherent states can be constructed, namely linear (19)
and nonlinear ones (20). We analyze the physical consequences
of the new canonically conjugate operators for the case of a
particle in a Pöschl-Teller potential. To this end we calculate
the time evolution of their mean values for both linear and
GHA nonlinear coherent states and find that they evolve in the
phase space (〈ξ 〉, 〈ρ〉) according to the kinds of generalizations
of the Rose algebraic curves (see Fig. 1). We also study the
time evolution of the uncertainty relation and we see that it
oscillates between h̄/2 and a maximum value which increases
with the radial label r of the coherent states both for linear
and GHA nonlinear coherent states. An interesting result is
that the uncertainty is either equal or smaller for the GHA
nonlinear coherent states than for the linear ones. Therefore
GHA nonlinear coherent states take to wave packets with a
closer behavior to the classical trajectory than the wave packet
constructed with linear ones. Anyhow, in both cases our wave
packets are always localized.
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The existence of operators D and D† for the Pöschl-Teller
allowed the definition of appropriate linear coherent states for
that system. The fact of having two types of coherent states
enlarges the possibility of constructing them experimentally
for that system. Thus, the behavior of any relevant quantum
variables can be compared for both types. In fact, linear and
nonlinear ([9,34–36]) coherent states are currently constructed
in the laboratory for optical systems. Concerning molecular
systems, in [37] the authors have described two molecular
systems by numerically modeling them by Morse and Pöschl-
Teller potentials. In particular, the Pöschl-Teller potential
could describe, approximately, the homonuclear diatomic
molecule H2. Therefore, using the first 10 bound states of the
molecule of H2, their nonlinear coherent states of the Morse
and Pöschl-Teller systems are approximations for the coherent
states of those molecules. This can be a first step in the attempt
to obtain nonlinear coherent states for a molecular system in
the laboratory. We hope that this will be addressed in the near
future.

It is important to comment that whenever the operator
D and its adjoint D† can be defined for a GHA sys-

tem there will be canonically conjugate variables ξ and ρ

for which the mean values 〈n|ξ 2|n〉 and 〈n|ρ2|n〉 increase
with n. This is an interesting feature and these opera-
tors deserve further investigation, namely on their physical
meaning.

Finally, using the fact that the operators ξ and ρ satisfy
the relation (18) and assuming the expression ρ = −ih̄d/dξ

(the traditional form of canonically conjugate operators), we
can construct a new physical system having a fourth-order
Hamiltonian in d/dξ (83). This Hamiltonian, in spite of acting
in a different Hilbert space of the Pöschl-Teller Hilbert space
[see Eqs. (84)–(86)], has the same energy spectrum as the
Pöschl-Teller Hamiltonian (22) and (23). These two systems
are then isospectral.
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