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Wide-range-tunable Dirac-cone band structure in a chiral-time-symmetric non-Hermitian system
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We establish a connection between an arbitrary Hermitian tight-binding model with chiral (C) symmetry and
its non-Hermitian counterpart with chiral-time (CT ) symmetry. We show that such a non-Hermitian Hamiltonian
is pseudo-Hermitian. The eigenvalues and eigenvectors of the non-Hermitian Hamiltonian can be easily obtained
from those of its parent Hermitian Hamiltonian. It provides a way to generate a class of non-Hermitian models
with a tunable full real band structure by means of additional imaginary potentials. We also present an illustrative
example that could achieve a cone structure from the energy band of a two-layer Hermitian square lattice model.
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I. INTRODUCTION

Extra imaginary potentials induce many unusual fea-
tures even in certain simple or trivial systems, which in-
clude quantum phase transition occurred in a finite system
[1–20], unidirectional propagation and anomalous transport
[4,21–28], invisible defects [29–31], coherent absorption [32]
and self-sustained emission [33–37], loss-induced revival of
lasing [38], as well as laser-mode selection [39,40]. Most
of these phenomena are related to the critical behaviors
near exceptional or spectral singularity points. It opens a
way for exploring novel quantum states. The basis of such
approaches is to seek various non-Hermitian systems with
exact solutions. Recently, the graphene-like materials with
Dirac cones at the Fermi energy and a number of unique
mechanical, electrical, and optical properties have attracted
much attention [41]. Its linear-Dirac dispersion makes it an
active topic in various research fields. However, for materials
in nature, it is very hard to realize experimentally with tuneable
parameters. An artificial system, such as photonic simulator,
would provide a platform to simulate some aspects in various
band structures. Previous efforts mainly focus on the Hermitian
systems. A natural question would emerge that whether one
can find some artificial materials which have a cone band
structure.

In this paper, we consider a method of constructing a
variety of non-Hermitian systems which have full real spectra.
We focus on the connection between an arbitrary Hermitian
tight-binding model with chiral (C) symmetry and its non-
Hermitian counterpart with chiral-time (CT ) symmetry. We
show that such a kind of non-Hermitian Hamiltonian is pseudo-
Hermitian. The obtained result indicates that the eigenvalues
and eigenvectors of the non-Hermitian Hamiltonian can be
easily obtained from those of its parent Hermitian Hamiltonian
and the reality of the spectrum is robust to the disorder. It
also provides a way to generate a class of non-Hermitian
models with a tunable full real band structure by means of
additional imaginary potentials. We present an illustrative
example, which is a two-layer square lattice model. By adding
staggered imaginary potentials, exact result shows that a cone
band structure can be achieved.
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The remainder of this paper is organized as follows. In
Sec. II, we present a general formalism for the solution of an
arbitrary non-Hermitian CT -symmetric system. Section III is
devoted to present an illustrative example of a two-layer square
lattice model. Finally, we present a summary and discussion
in Sec. IV.

II. MODEL AND FORMALISM

The main interest of this work is focused on the relation
between an arbitrary Hermitian tight-binding model with C
symmetry and a non-Hermitian model which is constructed
based on the former by adding additional imaginary potentials.
The latter is a non-Hermitian counterpart of the former in the
context of this work.

Consider the Hamiltonian of a non-Hermitian tight-binding
model

H = H0 + Hγ , (1)

with

H0 =
∑
i,j

Jij |i〉A〈j |B + H.c., (2)

Hγ = iγ
∑

j

(|j 〉A〈j |A − |j 〉B〈j |B), (3)

on a bipartite lattice � = 2N which can be decomposed
into two sublattices �A and �B. Here we only consider the
case with identical sublattice numbers �A = �B = N for
simplicity. A schematic illustration of the model is presented
in Fig. 1(a). The Hamiltonian H0 has both C and time-reversal
(T ) symmetries, i.e.,

CH0C−1 = −H0,T H0T −1 = H0, (4)

where the operators C and T are defined as

C|j 〉A = |j 〉A, C|j 〉B = −|j 〉B, (5)

T
√−1T −1 = −√−1. (6)

The Hamiltonian H has CT symmetry, i.e.,

CHC−1 �= −H,T HT −1 �= H, (7)

CT HT −1C−1 = −H. (8)
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FIG. 1. Schematics for the system with �A = �B = 4 to illus-
trate the connection between the systems of Eqs. (1) and (15). (a) A
bipartite lattice consists of sublattices A and B, which are connected
by bond Jij which is across the ith site in sublattice A and the j th site
in sublattice B. In the absence of imaginary potentials, i.e., γ = 0,
it has C symmetry, which ensures that the system has the spectrum
±ε0(n) (n = 1,2,3,4). In the presence of imaginary potentials, it
has CT symmetry and becomes a pseudo-Hermitian system. (b) An
ensemble of noninteracting half-spins in a complex external magnetic
field. It is an equivalent system of (a) when the local magnetic field

for spin n has the form
−→
B (n).

We note that Hamiltonian H0 has C symmetry, which is broken
in its non-Hermitian counterpart H in the presence of imagi-
nary potentials Hγ . The situation here is a little different from
the case associated with parity-time (PT ) symmetry, where
the combined operator PT commutes with the Hamiltonian.
In quantum mechanics, we say that a Hamiltonian H has a
symmetry represented by a operatorU if [H,U] = 0. The word
“symmetry” is also used in a different sense in condensed
matter physics. We say that a system with Hamiltonian
H has chiral symmetry, if {H,C} = 0. The physics of C
depends on the model discussed [42–47] . Here we emphasize
“chiral symmetry” due to its anticommutation relation with
its Hamiltonians. Specifically, the anticommutation relation
between operators CT and H results in the equations

H |ψ〉 = ε|ψ〉, (9)

HCT |ψ〉 = −ε∗CT |ψ〉. (10)

However, the CT symmetry is like anti-PT symmetry [46].
Actually, an anti-PT -symmetric Hamiltonian can be simply
constructed from a conventional PT -symmetric Hamiltonian
by multiplying i. Here the difference and connection between
CT and PT symmetry has been demonstrated in Table I.

Since the relation {CT ,H } = 0 cannot guarantee operators
CT and H possess a common complete set of eigensates, it is
difficult to define the CT symmetry of a state |ψ〉. In order to
define the CT symmetry of a state, we consider the operator iH

which obeys the relation [CT ,iH ] = 0. Then CT and H can
have a common complete set of eigensates. The CT symmetry
of a state |ψ〉 is defined as usual, CT |ψ〉 = c|ψ〉. Accordingly,
in the exact CT -symmetric region, all the eigenstate obeys
CT |ψ〉 = c|ψ〉 and iH has fully real spectrum. For the
concerned model, the eigenenergy of H is either real or pure
imaginary. When all the eigenstates break the CT symmetry,

TABLE I. The difference and connection between CT and PT
symmetry.

H |ψ〉 = ε|ψ〉 PT CT

Symmetry [PT ,H ] = 0 {CT ,H } = 0

Real ε HPT |ψ〉 = εPT |ψ〉 HCT |ψ〉 = −εCT |ψ〉
Imaginary ε HPT |ψ〉 = −εPT |ψ〉 HCT |ψ〉 = εCT |ψ〉

(a)

H
′ = iH PT CT

Symmetry {PT ,H
′ } = 0 [CT ,H

′
] = 0

Real ε H
′PT |ψ〉 = −εPT |ψ〉 H

′CT |ψ〉 = εCT |ψ〉
Imaginary ε H

′PT |ψ〉 = εPT |ψ〉 H
′CT |ψ〉 = −εCT |ψ〉

(b)

i.e., CT |ψ〉 �= c|ψ〉, the Hamiltonian has fully real spectrum,
and |ψ〉 and CT |ψ〉 have the opposite real eigenenergies.

Now we investigate the Hamiltonian H in a pseudospin
representation. We will show that H is a pseudo-Hermitian
Hamiltonian and there is a simple relation between the spectra
of H and H0. Due to the C symmetry, the Hamiltonian H0 can
be diagonalized as the form

H0 =
N∑

n=1

ε0(n)(|ϕ+
n 〉〈ϕ+

n | − |ϕ−
n 〉〈ϕ−

n |), (11)

where ε0(n) > 0 is the positive energy spectrum with n ∈
[1,N ], and

|ϕ±
n 〉 = 1√

2
(|φn〉A ± |φn〉B), (12)

are eigenstates with eigenenergies ±ε0(n). Here states |φn〉A
and |φn〉B are single-particle states with particle probability
only distributed on sublattices A and B, respectively. Due to the
C symmetry of H0, it is easy to check that |ϕ−

n 〉 = C|ϕ+
n 〉. One

can express the Hamiltonian in the representation of pseudo
spins

H0 =
N∑

n=1

ε0(n)σx
n , (13)

where

σx
n = |φn〉B〈φn|A + |φn〉A〈φn|B (14)

is the x component of the Pauli matrix. Accordingly, we could
rewrite the Hamiltonian H as the form

H =
N∑

n=1

−→
B (n) · −→σ n, (15)

which describes an ensemble of noninteracting half-spins in a
complex external magnetic field. Here the field and the Pauli
matrices are

−→
B (n) = [ε0(n),0,iγ ], (16)

σ z
n = |φn〉A〈φn|A − |φn〉B〈φn|B, (17)

σy
n = i|φn〉B〈φn|A − i|φn〉A〈φn|B. (18)
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Based on this analysis, the eigenstates and eigenenergies of
Hamiltonian H are

|ψ±
n 〉 = 1√

	±
(|φn〉A ± e∓iθ |φn〉B), (19)

ε(n) = ±
√

[ε0(n)]2 − γ 2, (20)

where θ = arccos
√

1 − [γ /ε0(n)]2 and the Dirac normalized
coefficients are 	± = 1 + exp (±2Imθ ).

This result has many implications. (i) Non-Hermitian
Hamiltonian H is pseudo-Hermitian, since it has either a
real spectrum or else its complex eigenvalues always occur
in complex conjugate pairs [48]. (ii) It explicitly connects
the complete set {ε(n), |ψ±

n 〉} to {±ε0(n), |ϕ±
n 〉}. Only an extra

phase is added in |ψ±
n 〉 from |ϕ±

n 〉, which indicates that the two
states have the same Dirac probability distribution when ε(n)
is real. (iii) The exceptional points occur at γ = γc = ±ε0(n),
which correspond to the CT symmetry breaking of states |ψ±

n 〉.
It allows a variety of non-Hermitian models with a wide range
of disorder parameters to have a full real spectrum and the
modulation of band structure is due to the non-Hermiticity.
In the next section, we will show its application in an
example.

To demonstrate these features, we consider an example
model, a generalized non-Hermitian Rice-Mele model, which
has been investigated in Refs. [49,50]. The corresponding
Hermitian Hamiltonian has the form

H0 =
N∑

j=1

(J2j−1|j 〉A〈j |B + J2j |j 〉B〈j + 1|A) + H.c. (21)

with the periodic boundary condition |2N + 1〉A = |1〉A. The
hopping amplitude between two sublattices is Jj = 1 +
(−1)j δ, where δ is the dimerization factor. The generalized
non-Hermitian Rice-Mele Hamiltonian has been completely
solved and the obtained result can be recovered by the present
method. In this case, we have

ε(k) = ±
√

[ε0(k)]2 − γ 2, (22)

ε0(k) = 2
√

δ2 + (1 − δ2) cos2(k/2), (23)

with k = 2πn/N , n ∈ [1,N ]. In the absence of γ , the energy
gap is 4δ, which determines the exceptional point occurring at
γ = γc = ±2δ for the non-Hermitian Rice-Mele Hamiltonian.
In other words, the energy gap of H0 protects the CT symmetry
of the eigenstates of H . This is still true in the presence of noise
in Jj . In contrast to a PT symmetric system, the reality of the
spectrum for a CT symmetric one is more robust to the disorder
of coupling constants.

III. CONE STRUCTURE

The connection between H0 and H can be employed to
modulate the band structure of H , which has some intriguing
properties induced by the non-Hermitian term Hγ . In tradi-
tional condensed matter theories, the energy band structure
plays a crucial role in the theory of electron conductivity in
the solid state and explains why materials can be classified as
insulators, conductors, and semiconductors. Moreover, much
attention has been paid to the honeycomb lattice [41], which

FIG. 2. (a) Schematic illustration of a bilayer square lattice with
staggered imaginary potentials. The two sublattices are denoted by A
(red) and B (green), respectively. The intra- and interlayer hopping
strengths are J and T , respectively. For γ = 0, the system has both
C and T symmetries, while nonzero γ breaks the C symmetry but
maintains the CT symmetry. The additional staggered imaginary
potentials make the simple lattice have a tunable cone band structure.

is relevant to high electron mobility and topological phase, as
exemplified by the graphene.

In the Hermitian realm, the band structures of most kinds of
systems have been well studied. Nevertheless, non-Hermitian
parameters may induce an unusual band structure which is
difficult to achieve in a Hermitian system. As an example,
Eq. (20) provides a way to accomplish this task that imaginary
potentials can deform the shape of a given band structure
without altering its topology except the situation when the
system contains the exceptional points. In the following, we
will present an example which realizes a cone structure on a
square lattice.

We consider a bilayer square lattice model which is shown
in Fig. 2. The corresponding Hermitian Hamiltonian has the
form

H0 = H1 + H2 + H12, (24)

Hλ = J

N∑
j,l=1

|λ,j,l〉(〈λ,j + 1,l|

+〈λ,j,l + 1|) + H.c., (25)

H12 = T

N∑
j,l=1

|1,j,l〉〈2,j,l| + H.c., (26)

where λ = 1 or 2 is the index that respectively labels the
position in the top or bottom layers, and (j,l) is the in-plane
site index. Parameters J and T of this model are intra- and
interlayer hopping strengths. In this paper, we only consider the
case of T > 4J . And the distribution of imaginary potentials
is given as the form

Hγ = iγ

2∑
λ=1

N∑
j,l=1

(−1)λ+j+l |λ,j,l〉〈λ,j,l|. (27)

The Hamiltonian H0 can be easily diagonalized via Fourier
transformation. Let us consider an individual rung, i.e., two
sites with the same in-plane site index on the opposite layers.
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FIG. 3. Three-dimensional plots of band structures of bilayer square lattice with periodic boundary condition. Staggered imaginary
potentials ±iγ are applied throughout the lattice and here we set λ = ±. The parameters are (a) T = 5J,γ = 0; (b) T = 5J,γ = 0.98J ; (c)
T = 5J,γ = J. Here the key difference between the cases for (a) and (c) is that the dispersion relation in the bottom of band is quadratic for
(a) but linear (cone) for (c). The band structure in case (a) is trivial in the context that Dirac cone in lattice system has been shown to exhibit
some novel features. Although a Hermitian system can support Dirac dispersion (e.g., honeycomb lattice), the speed of electron (slope of the
cone) is not tunable.

An occupied rung has two possible states that are bond and
antibond states. The bond (antibond) state of a rung can only
be transited to the bond (antibond) state next to it. Therefore it
can be decomposed into two independent single layer square
lattices with on-site potentials T and −T , respectively. The
spectra and eigenvectors are

ε±
0 (kx,ky) = ±{

2J [cos(kx) + cos(ky)] + T
}

(28)

and

|ϕ±(kx,ky)〉 =
N∑

j,l=1

ei(kxj+ky l)

N
√

2
(|λA,j,l〉 ± |λB,j,l〉), (29)

where ± denotes the two independent single layers, and
kx = 2nxπ/N , ky = 2nyπ/N with nx , ny ∈ [1,N ]. States
|λA,j,l〉 and |λB,j,l〉 are the position states of sublattices A
and B with the layer labels λA = [3 + (−1)j+l]/2 and λB =
[3 − (−1)j+l]/2. This band structure is trivial, but it would be
a good parent to construct a cone structure by adding staggered
imaginary potentials. Now we consider the corresponding
non-Hermitian Hamiltonian H = H0 + Hγ . According to the
above result, the spectra and eigenvectors of H are

ε±(kx,ky) = ±
√

[ε±
0 (kx,ky)]2 − γ 2 (30)
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FIG. 4. DOS per unit cell as a function of energy (in units of J )
computed from the energy dispersion Eq. (30) with several typical
values of γ = 0 (blue), 0.98J (red), J (black). And here we set
T = 5J . Also shown is a zoom-in of the densities of states close
to the zero-energy point, which can be approximated by D(ε) ∝ |ε|.
The approximate expression in Eq. (36) is also plotted (solid green)
as comparison.

and

|ψ±(kx,ky)〉 =
N∑

j,l=1

ei(kxj+ky l)

N
√

	±
(|λA,j,l〉 ± e∓iθ |λB,j,l〉),

(31)
where

θ = arccos
√

1 − (γ /ε±
0 )2 (32)

is real when the symmetry is not broken. In the exact CT
-symmetric region, there are local maxima (minima) on the va-
lence (conduction) band at points (kc

x,k
c
y) = (σπ,σ ′π ) (σ,σ ′ =

odd). The energy band gap is 2
√

(T − 4J )2 − γ 2 and the
exceptional points occur at γ = γc = ε0(kc

x,k
c
y) = T − 4J . In

the vicinity of kc and considering the case 0 < γc − γ � J ,
we have an approximate relation(

kx − kc
x

)2

a2
+

(
ky − kc

y

)2

b2
− (ε±)2

c2
= −1, (33)

with c = √
γ 2

c − γ 2 and a = b = c/
√

2Jγc, which indicates
that the band structure is a hyperboloid of two sheets. For
γ = γc, it reduces to a Dirac cone. Note that the difference
between the cases for γ = 0 and γ = γc is that the dispersion
relation in the bottom of band is quadratic for γ = 0 but
linear (cone) for γ = γc. Although a Hermitian system can
support Dirac dispersion (e.g., honeycomb lattice), the speed
of electron (slope of the cone) is less tunable. In contrast, the
group velocity at the linear region for our model is

vg = J
√

2(T/J − 4), (34)

which indicates that vg strongly depends on the ratio of J and T

(γc = T − 4J ), while it only depends on the hopping strength
in a honeycomb lattice. In this sense, imaginary extension may
make something easier to achieve than that in a Hermitian
system. Furthermore, it seems that it has a similar band
structure with that of graphene near the zero-energy plane.
The difference between them is that the vertices of the cone of
graphene are degenerate points, while the ones in the present
model are exceptional points. For γ < γc, the energy gap and
the group velocity are tunable by γ , J , and T . The cone band
structures for different γ are plotted in Fig. 3.
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We introduce density of states (DOS) to characterize the
band structure. DOS is essentially the number of different
states at a particular energy level that electrons are allowed to
occupy, i.e., the number of electron states per unit volume per
unit energy. DOS calculations allow one to capture various
electronic properties, such as specific heat, paramagnetic
susceptibility, and other transport phenomena of conductive
solids. The DOS D(ε) of energy bands for a square lattice can
be expressed as follows:

D(ε) = 1

4π2

∫∫
B

δ[ε − ε±(kx,ky)]dkxdky, (35)

which describes the number of states per unit energy per
unit cell and therefore the function is properly normalized
to

∫
B D(ε)dε = 2. Due to the symmetry of spectrum, we have

D(ε) = D(−ε). Here the densities of states for different γ

are plotted in Fig. 4. In the vicinity of kc and considering
the case 0 ≤ γc − γ � J , Eq. (33) allows us to derive an
approximate expression for the density of states

D(ε) =
{

1
4πJγc

|ε|, |ε| ≥ √
γ 2

c − γ 2

0, |ε| <
√

γ 2
c − γ 2

, (36)

which is a linear function of energy. We plot this expression
in Fig. 4 as comparison. It indicates that D(ε) shows a
semimetallic behavior as that in graphene.

IV. SUMMARY

In conclusion, we have studied the connection between
an arbitrary Hermitian tight-binding model with C symmetry
and its non-Hermitian counterpart with CT symmetry. It has
been shown that such a kind of non-Hermitian Hamiltonian
is pseudo-Hermitian, providing a way to generate a class of
non-Hermitian models with a tunable full real band structure
by adding additional imaginary potentials. Based on the exact
results, it is found that the eigenvalues and eigenvectors of the
non-Hermitian Hamiltonian can be easily obtained from those
of its parent Hermitian Hamiltonian. The reality of the spec-
trum is robust to the disorder due to the protection of energy
gap. Furthermore, as an illustrative example, we investigate the
band structure of a two-layer square lattice model with stag-
gered imaginary potentials. We find that a tunable cone band
structure can be achieved. It should have wide applications in
non-Hermitian synthetic graphene-like materials.
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