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It is by now well established that noise itself can be useful for performing quantum information processing
tasks. We present results which show how one can effectively reduce the error rate associated with a noisy quantum
channel by counteracting its detrimental effects with another form of noise. In particular, we consider the effect
of adding on top of a purely Markovian (Lindblad) dynamics, a more general form of dissipation, which we
refer to as generalized-Markovian noise. This noise has an associated memory kernel and the resulting dynamics
are described by an integrodifferential equation. The overall dynamics are characterized by decay rates which
depend not only on the original dissipative time scales but also on the new integral kernel. We find that one can
engineer this kernel such that the overall rate of decay is lowered by the addition of this noise term. We illustrate
this technique for the case where the bare noise is described by a dephasing Pauli channel. We analytically solve
this model and show that one can effectively double (or even triple) the length of the channel, while achieving the
same fidelity, entanglement, and error threshold. We numerically verify this scheme can also be used to protect
against thermal Markovian noise (at nonzero temperature), which models spontaneous emission and excitation
processes. A physical interpretation of this scheme is discussed, whereby the added generalized-Markovian noise
causes the system to become periodically decoupled from the background Markovian noise.
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I. INTRODUCTION

Quantum systems interacting with an environment (open
systems) are of increasing relevance for the understanding
and practical application of quantum physics, in general. In
particular, one of the biggest challenges in the experimental
quantum computing community is designing devices which
are robust against environmental noise [1,2]. Combating such
noise has become itself a field of research and has led to the
development of pioneering techniques, broadly referred to as
quantum error correction or error suppression [3].

Recently, however, it has become clear that noise itself
can in fact be exploited to the end of performing quantum
information processing (QIP) tasks. The early work in this
area focused on encoding entangled states [4] and even the
output of a computation [5] in the steady state of a dissipative
dynamics. Since then other results have appeared which show
how one can enact simulations of quantum systems, both open
and closed [6–10], and even perform general computations
(robust to certain types of error) in the presence of strong
dissipation [11].

Motivated by the recent progress in simulating non-
Markov systems [12–16], we introduce a reservoir engineering
technique [17–23] whereby so-called generalized-Markovian
dissipative processes (studied variously in, e.g., Refs. [24–26])
can be exploited to the end of reducing the rate at which errors
accumulate over a dissipative Markovian evolution. We will
show that on adding generalized-Markovian noise on top of an
assumed background Markovian channel, the rate at which the
system approaches the steady state can be reduced; that is, it
will take longer for the system to relax to the steady state, and
one can, for example, preserve quantum information encoded
in arbitrary states for longer times.

The paper is organized as follows: We will first set up
and define the general class of noisy systems we will be
considering before outlining our error suppression technique

itself. Following this, we provide physically motivated exam-
ples which illustrate this method for evolution over a noisy
Pauli channel and the case of thermal noise. We provide some
analytic solutions to these models and numerically quantify
the success of the scheme in these situations. We finish with a
general discussion setting our results in a broader picture.

II. SET UP

We assume we have some noisy “background” quantum
channel which is to a good approximation described by a
time-independent master equation of the Lindblad type (i.e.,
the channel is Markovian). We write

ρ̇(t) = L0[ρ(t)], (1)

where L0 is a generator of Markovian dynamics [27,28]. We
will assume throughout the dimension of the Hilbert space of
the system is finite.

It is convenient to introduce the spectral (Jordan) decom-
position of L0 [29]:

L0 =
∑

i

λiPi + Di . (2)

The eigenprojectors Pi (
∑

Pi = 1) and eigen-nilpotents Di

satisfy PiPj = δi,jPi ,DiPj = PjDi = δi,jDi (with DiDj =
δi,jD2

i ). Also, there is an integer mi � 0 such that Dmi = 0
(and Dmi−1

i �= 0, when mi > 0).
If L0 is of the Lindblad form, we also have that Re λi � 0,

and there is guaranteed to be at least one zero eigenvalue (with
no eigen-nilpotent part) (see, e.g., Refs. [30,31]). The zero
eigenvalue states span the so-called steady-state space. If the
nonzero eigenvalues have negative real parts (i.e., not purely
imaginary), then the steady-state manifold is attractive and
the evolution over infinite time brings any initial state to the
steady-state space.
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Using Eq. (2) we can write the evolution (super) operator,
�0(t) := etL0 , and the resolvent, R(z) := (z − L0)−1, as

�0(t) =
∑

i

(
Pi +

mi−1∑
k=1

t kDk
i

k!

)
eλi t (3)

and

R(z) =
∑

i

[
Pi

z − λi

+
mi−1∑
k=1

Dk
i

(z − λi)k+1

]
. (4)

From Eq. (3) the decay rates of the channel �0(t) are
determined by the real part of the eigenvalues, in particular,
τ−1

0,i := |Reλi | defines the decay time in the ith block. Our
goal is to engineer a channel as close as possible to the
identity channel (given the above fixed background). As time
increases, a channel of the form of �0(t) departs (in a possibly
nonmonotonic way) from the ideal channel at t = 0. In this
sense we see that it is the short time dynamics that are important
for our purposes. In other words the behavior we are interested
in is characterized by the shortest time scale τ0 = mini τ0,i .
This is to be contrasted with another typical situation, where
one is interested in the approach to the steady state which is
instead dictated by the longest time scale.

To quantify how much a channel � departs from the ideal
one, we use a fidelity-based measure: given a quantum channel
�, we define the minimum channel fidelity f as

f (�) := min
ρ

F (ρ,�(ρ)), (5)

where F (ρ,σ ) := (Tr (
√√

ρσ
√

ρ))2 is the fidelity between the
states ρ, σ . This essentially tells us the worst-case performance
of this channel over all states. Note that, by convexity, this
minimization can be carried out over pure states.

In general, one would like to set some minimum error
threshold ε such that only channels satisfying, f (�) � 1 − ε,
for some ε > 0 are tolerated. However, given some fixed
background channel (e.g., as above), finding necessary and
sufficient conditions to increase f is a very complicated task.
In the next section, we will show how one can decrease the
decay rates τ−1

0,i , thus improving the quality of the channel as a
whole. This, in particular, will increase the minimum channel
fidelity.

III. METHODS

On top of a Markovian, dissipative background we now add,
at the master equation level, a secondary form of noise, which
we refer to as generalized-Markovian noise. The dynamics are
now given by the following master equation:

ρ̇(t) = L0ρ(t) + L1

∫ t

0
k(t − t ′)ρ(t ′)dt ′, (6)

where L1 is time independent and also of the Lindblad form.
We refer to k(t) as the memory kernel. For convenience, we
also define K such that KX = ∫ t

0 k(t − t ′)X(t ′)dt ′.
Purely Markovian (Lindbladian) dynamics are recovered

if the kernel is of the form k(t − t ′) = δ(t − t ′). It is known
(see, e.g., Ref. [32]) that it is possible to find kernels such
that the resulting evolution operator is not completely positive
(CP). Here we require that Eq. (6) is such that the generated

dynamics are CP for all t � 0. The examples we provide below
all fulfill this important criterion. On physical grounds we also
assume thatL0 andL1K originate from separate processes, and
therefore we require that L1K must also generate a genuine
quantum (CP) map alone. With this constraint we are not
allowed to fulfill our goal by simply taking, e.g., L1 = −L0,
with k(t) = δ(t).

As is well known, if the Lindblad operators for L1 are self-
adjoint, a master equation of the form of Eq. (6) can be obtained
by coupling a suitable Hamiltonian to a (classical) stochastic
noise term (see, for example, Ref. [33]). In this approach, the
kernel k(t) originates as the autocorrelation function of the
classical, stochastic field. We provide a brief reminder of this
approach in subsection 1 in the Appendix.

We solve Eq. (6) by taking the Laplace transform:

ρ̃(s) = 1

s − L0 − k̃(s)L1
ρ(0) =: �̃(s)ρ(0), (7)

where

f̃ (s) = L[f (t)](s) =
∫ ∞

0
e−stf (t)dt (8)

is the notation for the Laplace transformation of f .
At this point, we make the important assumption that L0

and L1 have the same spectral decomposition. Note that this is
in principle not a necessary requirement for the success of our
scheme (e.g. as will be shown in Sec. V); however, it provides
a useful insight into its mechanism. In this case using Eq. (4)
we can write

�̃(s) =
∑

i

[
	̃i(s)Pi +

mi−1∑
k=1

[
	̃i(s)

]k+1
Dk

i

]
, (9)

with

	̃i(s) = 1

s − λi − k̃(s)μi

, (10)

where λi, μi are the eigenvalues of L0,L1, respectively,
associated with the ith eigenspace. The evolution operator
is then given by �(t) = L−1[�̃(s)](t).

Consider, for example, the case where k̃(s) = p(s)/q(s) is
a rational function with polynomials p,q. This corresponds to
a large class of kernels which are (finite) linear combinations
of functions of the form tneat for complex a and integer n. In
this case, one can write 	̃i(s) = Pi(s)/Qi(s) (with no common
roots between Pi and Qi). Note that, by construction, we have
deg(Pi) < deg(Qi), so one can always write 	̃i(s) as a partial
fraction decomposition

	̃i(s) =
∑

j

N
(i)
j∑

nj =1

c(i)
nj(

s − s
(i)
j

)nj
, (11)

where the roots s
(i)
j of Qi(s) occur with multiplicity N

(i)
j , and

the c are constants. Laplace transforming Eq. (11) back we
obtain:

	i(t) =
∑

j

⎡
⎢⎣

N
(i)
j∑

nj =1

c(i)
nj

tnj −1

(nj − 1)!

⎤
⎥⎦es

(i)
j t . (12)
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This function, in absence of the nilpotent terms, completely
specifies the full map �(t).

The real part of the roots s
(i)
j therefore determine the rate of

decay of the system. These roots will depend not only on the
eigenvalues λi but also on the specific nature of the integral
kernel k. The key observation we make is that for certain
choices of k, the decay rate of the “combined” system can in
fact be lower than that of the original “background” system.

In the ith eigenspace, for k(t) = 0, the decay is simply
of the form 	i(t) = eλi t . We see that if we can guarantee
|Re(s(i)

j )| < |Re(λi)|, ∀j , then the rate of decay associated
with this subspace will have effectively been reduced. This is
equivalent to τ−1

i < τ−1
0,i , where τ−1

i := maxj |Re(s(i)
j )|. This

can therefore result in an increase in the minimum channel
fidelity over some fixed evolution time (as will be illustrated
below).

We would like to remark here that if we set k(t) = δ(t), then
under the same conditions as above it is not possible to reduce
the decay rates τ−1

0,i . The nontrivial form of the memory kernel
k is completely central to this technique.

We now provide some examples to illustrate our scheme.

IV. EXAMPLE: PAULI CHANNEL

We consider the dynamics of an N qubit generalization
of the standard single qubit Pauli channel [34]. Note that
we take arbitrary N only for generality and that, in practice,
one is limited to N = 1,2 (since otherwise more than two-
body couplings would be required, which is experimentally
challenging). We mention that this is an important class
of noise since it is known that quantum error correction
techniques can correct against arbitrary errors given the ability
to correct against such dephasing errors [3].

With this in mind, we take our background Markovian
channel to be dephasing in the k direction (where k = 1,2,3),
via the Markovian generator

L0[X] = γ (AkXAk − X), (13)

where Ak = σ⊗N
k , σk is the kth Pauli matrix [35], and γ >

0. The solution of this dynamics is given by the following
quantum map:

�0(t)[X] = [1 − p0(t)]X + p0(t) AkXAk, (14)

where p0(t) = 1
2 (1 − e−2γ t ) is the probability of dephasing

[i.e., with probability p0(t), the state X will become AkXAk].
The minimum fidelity of this channel is f0(t) := f [�0(t)] =
1
2 (1 + e−t/τ0 ), with the associated decay rate τ−1

0 = 2γ .
In this case, there are no eigen-nilpotents, and one can write

the spectral projection as

L0 =
∑

n̄

λn̄Pn̄, (15)

where the sum is over all strings n̄ = (n1, . . . ,nN ), with ni ∈
{0,1,2,3}. The projectors are given by (see subsection 2 in the
Appendix)

Pn̄(X) = 1

2N
Tr(Xσn̄)σn̄, (16)

with σn̄ := ⊗N
i=1σni

(and σ0 = I, the 2 × 2 identity matrix),
while the eigenvalues are either 0 or −2γ . The evolution
operator can therefore be written as �0(t) = ∑

n̄ eλn̄tPn̄.
We define the projection to the steady state of the dynamics

(i.e., the infinite time limit of the evolution) as

P0 := lim
t→∞ �0(t) =

∑
n̄:λn̄=0

Pn̄. (17)

Note that for all quantum states ρ, the corresponding state P0ρ

is steady in the sense that it does not evolve under L0; one can
check [e.g., using Eq. (15)] that L0P0 = 0. We will exploit this
in our scheme, as will be seen more explicitly below.

A. Purely decaying noise

To this background channel, we add generalized-Markovian
noise as described above. We take L1 ∝ L0 (i.e., equal up to
a positive constant). We first take the memory kernel to be of
the form k(t − t ′) = B2e−|t−t ′ |/τk ⇒ k̃(s) = B2 1

s+τ−1
k

(note,

τk > 0). One can think of τk as the characteristic time over
which the memory associated with the added noise persists.
We will absorb the coupling constant of L1 into the kernel
strength B to avoid introducing a redundant parameter.

For the eigenvalue −2γ , Eq. (10) gives

	̃(s) = 1

s + 2γ + B2

s+τ−1
k

= c+
s − s+

+ c−
s − s−

, (18)

for constants given by

c± = 1

2

(
1 ± i

τk/τ0 − 1

2ωτk

)
, (19)

s± = −τ−1 ± i ω, (20)

ω =
√

B2 −
(

1

2τ0
− 1

2τk

)2

. (21)

Taking the inverse Laplace transform of Eq. (18), we obtain

	(t) = e−t/τ cos(ωt + φ)

cos φ
, (22)

where the new decay rate is τ−1 = 1
2 (τ−1

0 + τ−1
k ) and φ sat-

isfies cos φ = 2ωτk/
√

(2ωτk)2 + (τk/τ0 − 1)2. Note that for
ω = 0 the solution is slightly different (see subsection 3 in the
Appendix for more details). Note that if B = 0 (background
channel alone), then we recover 	(t) = e−t/τ0 .

The solution of this dynamics is therefore

�(t)[X] = [1 − p(t)]X + p(t) AkXAk, (23)

where p(t) = 1
2 [1 − 	(t)].

We show in subsection 4 in the Appendix that 0 � p(t) � 1
for all values of the parameters and t � 0, i.e., this indeed
generates a CP map. However, we will focus on the case where
ω ∈ R+ corresponding to the condition 2|B| > |1/τ0 − 1/τk|.

We note, importantly, that the decay rate of the new system,
τ−1, can in fact be less than the decay rate for the original
(Markov) system alone, τ−1

0 . This occurs when τk > τ0, so
that τ−1 < τ−1

0 . When this is the case, we find for certain times
along the evolution that p(t) < p0(t), i.e., the probability of a
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FIG. 1. Minimum channel fidelity f (t) = 1
2 [1 + 	(t)], as a func-

tion of time for the purely Markov (background channel) evolution
[blue (dashed), B = 0] and for the combined system aided by the
generalized-Markovian noise [red (solid), B > 0]. We also plot the
fidelity of the background channel, with γ rescaled to 1

2 (γ + 1/2τk)
[yellow (dot-dashed)], which intersects the B > 0 curve at times
t = 2

ω
(πn − φ) and 2πn/ω. Here γ = 1,τk = 25, and we set B such

that ωT = 2π (for T = 1). Note that the axis of dephasing is not
important here; f is the same for each direction (for fixed parameters).
Time is measured in units of 1/γ .

dephasing error occurring is reduced. This is equivalent to an
increase in the minimum channel fidelity f , see Fig. 1.

From Eq. (22), for times tn = 2πn/ω or tn = (2πn −
2φ)/ω (n = 1,2, . . . ), 	(tn) = e−tn/τ and the evolution is the
same as that generated by L0, but with τ0 being replaced by
τ . For example, the limit τk → ∞ is equivalent to replacing
γ with γ /2 (and evolving for time tn). In other words, we
are able to change (e.g., increase) the coherence time of the
channel without changing any other of its properties.

As an example of a direct application of this, if one has some
fixed length quantum channel of the form Eq. (14), i.e., t = T

is fixed (equivalently, p0 is fixed), then we have shown that on
the addition of this generalized-Markovian noise to the system,
the new channel will have error probability p = 1

2 (1 − 	(T )).
If we pick τk > τ0, i.e., the kernel decay time is longer than the
bare channel decay time, uon choosing B such that ωT = 2π ,
then we have

p = 1

2
(1 − e−T/τ ) <

1

2
(1 − e−T/τ0 ) = p0 (24)

or, equivalently, f > f0. Note that since our map is CP for all
parameter choices, we can always find such a choice for B.

In Fig. 1 we give an explicit example of this. We plot
the fidelity over the dynamical evolution of the background
channel and the combined channel. We see that along certain
points of the evolution, the fidelity of the combined system
surpasses that of the background [in the figure �f (T ) ≈ 0.1].

Figure 1 also shows that the minimum channel fidelity of the
background channel (blue) at time t = T is (approximately)
equal to the fidelity of the combined channel (red) at time
t = 2T . In other words, adding a noise term with a nontrivial
kernel can be beneficial for performing quantum information
processing tasks, for example, by allowing quantum states to be

(a) (b)

FIG. 2. Difference in the fidelity �F := F − F0 for all pure
states (single qubit), where F0 is the fidelity of the “background”
channel, and F the fidelity the “combined” channel, at time t = T

(cf. Fig. 1). The background channel here corresponds to dephasing
in the x direction. Left: θ,φ axes correspond to positions on the
Bloch sphere for a single qubit: |ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉.
Right: Spherical plot of �F (i.e., on the Bloch sphere). We see
for all nonstationary initial states, the fidelity increases. Parameters:
T = 1,γ = 1 (hence p0 ≈ 43%), and τk = 25, with B chosen so that
ωT = 2π (hence p ≈ 32%).

stored as a memory for a longer time (in this case, for nearly
twice as long, while achieving the same minimum channel
fidelity).

In Fig. 2, we plot the difference in fidelity �F between the
background channel (x dephasing), and the channel assisted
by the generalized-Markovian noise, for all single qubit pure
states, at a fixed time t = T (that is, we map �F at some fixed
instance in time of the evolution, where each initial state is
a single qubit pure state, as defined by the coordinates in the
figure). This shows that the fidelity always increases apart from
the steady states |+〉,|−〉 of the dynamics (which have maximal
fidelity of 1 by definition, under both channels). For our choice
of parameters, the error probability decreases from p0 ≈ 43%
to p ≈ 32% (i.e., the probability of an error occurring over the
channel is reduced by more than 10%).

We also consider the effect of sending a single qubit of
an entangled pair down the channel Eq. (23). We quantify
the success of the channel at preserving the entanglement by
computing the concurrence [36,37], C(ρ) = max(0,λ1 − λ2 −
λ3 − λ4), where λi are the eigenvalues in decreasing order of√√

ρYρ∗Y
√

ρ, where Y := σy ⊗ σy .
From Fig. 3, we again see that, for certain time intervals, the

entanglement of the channel with the added nontrivial memory
kernel outperforms the background channel. As before, we find
that we can double the channel length, while still achieving the
same level of entanglement.

At this point, before looking to more examples, we briefly
discuss, in the context of this example, the physical mechanism
which allows this type of generalized-Markovian noise to
protect our system (on some time scales).

Recall from Eq. (17) that the “infinite time” state P0ρ (∀ρ)
does not evolve (hence decohere) under action of L0 (since
L0P0 = 0). Moreover, from Eq. (14), we can see that

P0X = 1

2
(X + AkXAk). (25)

When we include generalized-Markovian noise in our
system, the dynamics now governed by Eq. (23) in fact
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FIG. 3. Concurrence as a function of time, for an initially
maximally entangled pure 2-qubit state, |ψ〉 = 1√

2
(|00〉 + |11〉). Here

the dephasing is in the z direction acting on one of the qubits. One can
show C(t) = |	(t)|. We plot for both the background channel [blue
(dashed)], and for the channel assisted by the generalized-Markovian
noise [red (solid)]. We see the peaks for the assisted channel
surpass the background channel. Here γ = 1, B = 5, τk = 5. Time
is measured in units of 1/γ .

periodically generate such a “protected” state, �(tn)ρ = P0ρ,
where (finite) tn is such that p(tn) = 1/2 or, equivalently,
	(tn) = 0 (i.e., cos(ωtn + φ) = 0). In other words, given some
arbitrary initial state ρ0, the time-evolved state ρ(t) = �(t)ρ0

is such that L0ρ(tn) = 0.
This shows the system is periodically driven through the

steady state of L0. At, and close to these times, the Markov
part of the dynamics (L0 alone) has no, or little, effect. In
particular, at these times, the system is essentially decoupled
from the environmental noise, which allows the system to
exhibit a lower leading decay rate as compared to a purely
Markov evolution, which is subject to the full effects of the
decoherence induced by L0 for all finite t .

B. Modulated decay noise

In this section we briefly study another type of generalized-
Markovian process for illustrative purposes, where the long-
time decay of the kernel has an additional modulation (i.e.,
we generalize the previous example). In other words, we take
k(t − t ′) = B2e−|t−t ′ |/τk cos[ν(t − t ′)] with Laplace transform
given by

k̃(s) = B2 s + τ−1
k(

s + τ−1
k

)2 + ν2
. (26)

In order to find the partial fraction decomposition of
Eq. (11) we need to find the roots of a third-order polynomial.
One can show (see subsection 5 in the Appendix) that taking

B2 = 2

9
(2γ − 1/τk)2 + 2ν2, (27)

these three roots are given by s∗ = −τ−1,−τ−1 ± iω, where

τ−1 = 1

3
(τ−1

0 + 2τ−1
k ), (28)

ω =
√

3ν2 − 1

9
(2γ − τ−1

k )2. (29)

Note that one is not restricted to taking this choice of
B; however, it is convenient to work with as the decay rate
associated with each root is identical (τ−1).

In fact, we have (see subsection 5 in the Appendix)

	(t) = e−t/τ

[
c0 + 1 − c0

cos φ
cos(ωt + φ)

]
, (30)

with

c0 = 1

9ω2

[
(2γ − τ−1

k )2 + 9ν2
]

(31)

and

cos φ = 1 − c0√
(1 − c0)2 + 4

9ω2 (2γ − τ−1
k )2

. (32)

Since the rate of decay is otherwise given by 2γ (under L0

alone), assuming parameters are chosen so that ω ∈ R, the rate
of decay can be reduced by up to a factor which approaches 3 in
the limit τk → ∞. In fact, after evolving the combined channel
for times tn = 2πn/ω (n = 0,1,2, . . . ), the system is exactly
as it would be under evolution of L0 alone, with γ → 1

3 (γ +
τ−1
k ) (see subsection 5 in the Appendix). We illustrate this in

Fig. 4, where we plot the minimum channel fidelity against
time. We have also numerically verified that the generated
dynamics are completely positive for our parameter choices
(see subsection 5 in the Appendix).

FIG. 4. Minimum channel fidelity against time for cosine mem-
ory kernel. We plot for the background channel (blue/dash, B = 0),
the combined channel (red/solid, B > 0), and for the background
channel with γ replaced by 1

3 (γ + 1/τk) (yellow/dot-dash). Here
γ = 0.5,ν = 10,τk = 25. For this parameter choice, the peaks occur
approximately at the times 2πn/ω. We numerically verify the
generated map is CP for all t � 0 (including the case when we set
γ = 0). Time is measured in units of 1/γ .
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V. EXAMPLE: THERMAL QUBIT

We provide a further example of our scheme, where the
Lindblad operators defining the Markovian “background”
noise are not self-adjoint. In the interest of providing an
example which is potentially experimentally verifiable, we
restrict our generalized-Markovian noise to the dephasing type
(i.e., with self-adjoint Lindblad operators, see subsection 1
in Appendix). Note, however, that this makes the analytic
solution more complicated (since L0 and L1 have different
spectra), and therefore we just provide numerics here. If one
does not make such restrictions, then a similar analysis as in
the previous examples can be carried out.

Explicitly, we consider an exponential memory kernel
k(t) = e−t/τk , and L0 = L− + L+, and L1 = Lz, which act
as

L±X = γ±
(
σ±Xσ∓ − 1

2 {σ∓σ±,X}), (33)

LzX = γz(σ3Xσ3 − X), (34)

where σ± := 1
2 (σ1 ± iσ2).

Note that evolution under L0 alone (i.e., γz = 0) indeed
generates a (unique) thermal (Gibbs) state (in the infinite time
limit) ρG = 1

Z
e−βH , at inverse temperature β for Hamiltonian

H = gσ3, where we identify γ+/γ− = e−βg (with normal-
ization Z = Tr[e−βH ]). We also provide a derivation of this
in subsection 6 in the Appendix. Also note that LzρG = 0
(thermal steady state is a steady state of Lz).

We study this system numerically, solving it by taking the
Laplace transformation [see Eq. (7)]. Note that we check the
resulting map �t is a genuine quantum map for our parameter
choices by checking positivity of the Choi matrix [30,38].

We consider the time evolution under �t of an initial
maximal superposition state and again find that one can reduce
the leading decay rate, e.g., see Fig. 5, which shows revivals in
the fidelity surpassing the background channel. Moreover, in
light of our discussion above, we plot in the inset the distance of
the state at time t under the full evolution (i.e., with the added
generalized-Markovian noise) to the corresponding (unique)
steady state of the background dynamics L0 = L− + L+, as
defined by the projector P0 := limt→∞ etL0 [see Eq. (17)].
Since the system periodically passes close to the steady
state of the background dynamics, periodically the system is
effectively decoupled from this thermal noise.

VI. DISCUSSION

Researchers into quantum information and open quantum
systems are realizing that in some situations, noise can in
fact be used to aid in information processing tasks. In this
work, we have introduced a technique whereby a generalized
type of Markovian quantum process can be used to aid in the
preservation of quantum information.

In particular, we show that on adding generalized-
Markovian noise on top of an assumed background Markovian
dynamics, the rate at which the system decays can in fact
be reduced. The mechanism behind this completely relies on
the appearance of the nontrivial memory kernel describing
the generalized-Markovian dynamics. One possible way of
engineering such dynamics is by introducing a Hamiltonian

FIG. 5. Fidelity overlap with initial pure state ρ0 = |ψ0〉〈ψ0| as a
function of time for thermal qubit, with [red (solid), γz = 2] and
without [blue (dashed), γz = 0] added protection by generalized
Markovian noise. Parameters: γ− = 1,γ+ = 1/2,τk = 5. Initial state:
|ψ0〉 = 1√

2
(|0〉 + |1〉). We numerically verify the dynamics are CP

(using the Choi matrix). Inset: Distance of the state at time t to the
corresponding steady state of L0. We see periodically the system
passes close to the steady state (when γz �= 0). When the distance
‖(�t − P0)ρ0‖ ≈ 0, the system is essentially decoupled from the
thermal noise. We use the maximum singular value norm. Time is
measured in units of 1/γ−.

coupled to a classical stochastic field whose correlation is
given by the memory kernel.

We explain this method by considering a Pauli channel,
which we analytically solve. We show how an exponential
memory kernel can be used to effectively double the length
of the channel, while still preserving the same threshold for
errors, while a cosine type of kernel has even greater error
suppressing capabilities. Moreover, we find similar results for
a qubit in a thermal environment.

We discussed a possible physical mechanism governing
these dynamics whereby the system is periodically driven to
(or close to) a steady state of the background dynamics (L0),
at which times the state is essentially decoupled from the
background noise.

Remarkably, we have found that the act of adding a certain
class of noise to an already-dissipative system can in fact
result in less decoherence. This particular technique opens
new avenues of study into both dissipation as a resource and
into open systems in general, in particular, at the interface of
Markov and non-Markov dynamics, of which there are still
many unanswered questions.

ACKNOWLEDGMENTS

The research is based on work partially supported by
the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA),
via the U.S. Army Research Office Contract No. W911NF-
17-C-0050. The views and conclusions contained herein
are those of the authors and should not be interpreted as

052113-6



NOISE SUPPRESSION VIA GENERALIZED-MARKOVIAN . . . PHYSICAL REVIEW A 96, 052113 (2017)

necessarily representing the official policies or endorsements,
either expressed or implied, of the ODNI, IARPA, or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. This work
was also partially supported by the ARO MURI Grant No.
W911NF-11-1-0268.

APPENDIX

1. Stochastic Hamiltonian derivation of Eq. (6)
for self-adjoint Lindblad operators

Let us consider adding a stochastic Hamiltonian, H (t) =
B(t)h, on top of our background dissipative dynamics so that
the time evolution is described by

ρ̇(t) = L0ρ(t) − i[H (t),ρ(t)], (A1)

where h = h† is time independent and B(t) ∈ R is a stochastic
variable (we use the convention that h̄ = 1). We assume the
statistics governing the underlying stochastic process is such
that 〈B(t)〉 = 0 and 〈B(t)B(t ′)〉 = k(t − t ′) [40], where the
angle brackets indicate averaging over independent trials.

We will average out the stochastic noise to arrive at a noise-
averaged description of the dynamics—we closely follow the
derivation in Ref. [33]. First, note that one can formally solve
Eq. (A1) as

ρ(t) = ρ(0) + L0

∫ t

0
ρ(t ′)dt ′ − i

∫ t

0
[H (t ′),ρ(t ′)]dt ′, (A2)

which can be reinserted into the right-hand side of Eq. (A1):

ρ̇(t) = L0ρ(t) − iB(t)[h,ρ(0)] − iL0

∫ t

0
B(t)[h,ρ(t ′)]dt ′

−
∫ t

0
B(t)B(t ′)[h,[h,ρ(t ′)]]dt ′. (A3)

If we assume that the state is sufficiently decorre-
lated from the random variables [e.g., 〈B(t)B(t ′)ρ(t ′)〉 ≈
〈B(t)B(t ′)〉〈ρ(t ′)〉], then performing the averaging as above,
we get an equation for the noise-averaged density operator (we
drop the angle bracket notation on ρ):

ρ̇(t) = L0ρ(t) + L1

∫ t

0
k(t − t ′)ρ(t ′)dt ′, (A4)

where L1X = 2hXh − {h2,X}. We note that the term L1 is in
Lindblad form, with self-adjoint Lindblad jump operator h.

Note that taking a sum H (t) = ∑
Bi(t)hi , with

〈Bi(t)Bj (t ′)〉 = δij k(t − t ′), allows one to generate a sum of
such Lindbladian generators (each with self-adjoint Lindblad
operators).

2. Derivation of Eqs. (15) and (16)

The easiest way to see the spectral projection for generator
Eq. (13) is to note that L0 acts on the space of linear operators
defined over the joint Hilbert space H⊗N

1/2 , where H1/2 � C2,
and as such we can represent an operator as X = ∑

n̄ μn̄σn̄,
where μn̄ = 1

2N Tr[Xσn̄] (we use the same notation as in the

main text). Then, by linearity,

L0[X] =
∑

n̄

μn̄ L0[σn̄]

= 1

2N

∑
n̄

λn̄Tr[Xσn̄]σn̄ =:
∑

n̄

λn̄Pn̄[X], (A5)

where in the second line we have used that σn̄ is an eigenstate
of L0 (with value λn̄ ∈ {0,−2γ }). In the last step we defined
the projector which acts as Pn̄[X] = 1

2N Tr[Xσn̄]σn̄.
We now show Pn̄ is indeed a genuine projector. We take

X ∈ L(H⊗N
1/2 ) as above, an arbitrary linear operator over the

joint Hilbert space. First,

Pn̄Pm̄[X] = 1

2N

∑
p̄

μp̄Pn̄Tr[σm̄σp̄]σm̄

= 1

2N
μm̄Tr[σm̄σn̄]σn̄ = δm̄n̄μn̄σn̄ = δm̄n̄Pn̄[X],

(A6)

where we used Tr[σm̄σn̄] = 2Nδm̄n̄. Since X is arbitrary, we
have Pn̄Pm̄ = δm̄n̄Pn̄.

Second,∑
m̄

Pm̄[X] =
∑
m̄,n̄

μn̄Pm̄[σn̄]

= 1

2N

∑
m̄,n̄

μn̄Tr[σm̄σn̄]σm̄ =
∑

n̄

μn̄σn̄ = X

(A7)

so that
∑

m̄ Pm̄ = I.

3. Derivation of �(t) [Eq. (22)]

We assume ω ∈ R>0 defined in the main text is real and
nonzero. Apart from steady states, the eigenvalues of L0 are
λ = −2γ . Recall we have L1 ∝ L0 (the same up to a positive
constant), and we absorb the (magnitude of the) nonzero
eigenvalue of L1 in B (to avoid introducing a redundant
parameter). We compute the 	̃(s) [as in Eq. (9)], for these
eigenvalues:

	̃(s) = 1

s + 2γ + B2

s+τ−1
k

= s + τ−1
k

(s − s+)(s − s−)

= c+
s − s+

+ c−
s − s−

, (A8)

where s± = −τ−1 ± iω and c± = 1
2 (1 ± i

2γ τk−1
2ωτk

).
Therefore, 	(t) = c+es+t + c−es−t . We can write c± =

|c|e±iφ , which gives

	(t) = |c|e−t/τ (eiφeiωt + e−iφe−iωt )

= 2|c|e−t/τ cos(ωt + φ), (A9)

where 2|c| =
√

1 + (2γ τk − 1)2/(2ωτk)2 = 1/ cos φ.
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Note that, by expanding the cosine function, this can also
be written as

	(t) = e−t/τ [cos(ωt) − tan φ sin(ωt)], (A10)

where tan φ = γ−1/2τk

ω
. One can in fact use the form Eq. (A10)

to easily derive 	 in the limit ω → 0, or when ω = i|ω|.
Note that at times T = 2

ω
πn, and 2

ω
(πn − φ) (n =

1,2, . . . ), we have 	(T ) = e−T/τ , and therefore the evolution
operator is

�′
T =

∑
n̄

e−λ′
n̄TPn̄, (A11)

where λ′
n̄ = 1

2 (λn̄ + 1/τk), where λn̄ is either 0 or −2γ . We
see that the evolution of this system (for time T ) is equivalent
to evolution under the background channel L0 alone, with γ

replaced by 1
2 (γ + 1/2τk). We demonstrate this in the main

text in Fig. 1, where we set τk → ∞.

4. Conditions for complete positivity

For map Eq. (23) to be CP, we require 0 � p(t) � 1, and
therefore −1 � 	(t) � 1,∀t � 0. First, we consider ω ∈ R>0

(see below for the imaginary case) [41], and therefore we have
	(t) = e−t/τ cos(ωt + φ)/ cos φ.

We differentiate this which shows at the turning points, t̂ ,
we have cos(ωt̂ + φ) = ±τω√

1+(τω)2
, and therefore

|cos(ωt̂ + φ)|
cos φ

=
√

1 + χ2−
1 + χ2+

< 1, (A12)

where χ± = 2γ τk±1
2ωτk

. Thus, 	(t̂) � 1. Since also 	(0) =
1,	(∞) = 0, it is clear that |	(t)| � 1 for all parameters,
and all t � 0.

a. The case ω = i|ω|
We define for convenience η = 2γ τk .
If ω is not real, then it is purely imaginary of the form

ω = i|ω| (this occurs when |B| < γ |1 − 1/η|). In this case
the analysis is simple since we can see that, from Eq. (A10)
above,

	(t) = e−t/τ

[
cosh |ω|t + −γ + 1/2τk

|ω| sinh |ω|t
]

(A13)

and therefore

|	(t)| � 	∗(t) := e−t/τ

[
cosh |ω|t + 1

|ω|τ sinh |ω|t
]
.

(A14)

We see

d	∗

dt
= e−t/τ |ω| sinh(|ω|t)

(
1 − 1

|ω|2τ 2

)
� 0, (A15)

where the inequality comes from the observation that |ω|2 =
γ 2(1 − 1/η)2 − B2 < γ 2(1 + 1/η)2 = τ−2.

Since 	∗(0) = 1, and is decreasing for all times, it is clear
that 	∗(t) � 1,∀t � 0.

5. Modulated decay noise: Derivations

As described in the main text, we have

k̃(s) = B2 s + τ−1
k

(s + τ−1
k )2 + ν2

. (A16)

Note, as before, that we can absorb any redundant (positive)
constants into the definition of B. Therefore, the poles of 	̃(s)
are the roots of

s3 + 2s2
(
γ + τ−1

k

) + s
(
ν2 + B2 + 4γ τ−1

k + τ−2
k

)
+ 2γ

(
τ−2
k + ν2

) + B2τ−1
k . (A17)

We take B2 = 2
9 (2γ − τ−1

k )2 + 2ν2, which means the roots
of Eq. (A17) are simply

s∗ = −τ−1,−τ−1 ± iω, (A18)

where τ−1 and ω are given in the main text.
Therefore, we can write using partial fractions

	̃(s) = c0

s + τ−1
+ c1

s + τ−1 − iω
+ c∗

1

s + τ−1 + iω
(A19)

for constants

c0 = 1

9ω2

[
(2γ − τ−1

k )2 + 9ν2
]
,

c1 = 1 − c0

2 cos φ
eiφ

cos φ = 1 − c0√
(1 − c0)2 + 4

9ω2 (2γ − τ−1
k )2

. (A20)

Inverting this, one gets

	(t) = e−t/τ
[
c0 + c1e

iωt + c∗
1e

−iωt
]

= e−t/τ

[
c0 + 1 − c0

cos φ
cos(ωt + φ)

]
. (A21)

We note that the dynamics generate a genuine quantum
map if |	(t)| � 1, ∀t � 0. For a given parameter set, one
can numerically check this by, for example, differentiating
Eq. (A21), to find the first minima and maxima of 	(t)
[subsequent minima (maxima) will be lower (upper) bounded
by the first due to the exponential]. If at these turning points
|	(t)| � 1, then the map is CP for all times. Note, as per the
main text, that for a choice of ν,τk , one must also check that
setting γ = 0 still generates a CP map.

Last, notice that at times T = 2
ω
πn, and 2

ω
(πn − φ) (n =

1,2, . . . ), then 	(T ) = e−T/τ , and the resulting evolution
(operator) is equivalent to that under L0 alone, with γ replaced
by 1

3 (γ + τ−1
k ). For large τk , we can reduce the decay rate by

nearly a factor of three (as compared to a factor of two with
the purely exponential kernel).
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6. Thermal spectral theorem

We provide a reminder of the dynamics for a qubit in a
thermal (Markov) environment.

For our dissipative model, let us consider a qubit in a thermal
environment, which we describe by the generator L0 = L− +
L+, where, for α = ±,

Lα[X] = γα

(
σαXσ †

α − 1

2
{σ †

ασα,X}
)

, (A22)

with σ± = 1
2 (σ1 ± iσ2).

Similarly to the Pauli channel, this has no eigen-nilpotents
and can therefore be written L0 = ∑3

i=0 λiPi (and λi ∈ R�0).
We can therefore introduce the left Li and right Ri eigenvectors
of L0, which form an orthonormal basis (see below).

Defining � := γ− + γ+, x := γ+/γ−, one can show

Pi[X] = Tr[LiX]Ri, (A23)

where

{λi} =
{

0,−1

2
�,−1

2
�,−�

}

{Ri} =
{
σ0 − 1 − x

1 + x
σ3,σ−,σ+,−1

2
σ3

}

{Li} =
{

1

2
σ0,σ+,σ−,

x − 1

x + 1
σ0 − σ3)

}
. (A24)

One can check orthonormality in the sense Tr[LiRj ] = δi,j .
We use this to study the infinite time dynamics. For any

quantum state ρ, we have ρ∞ := �t→∞ρ = P0ρ = R0. More
concisely, the unique steady state of the dynamics is ρ∞ =

1
1+x

(|0〉〈0| + x|1〉〈1|).
This unique steady state can be written as a thermal (Gibbs)

state, where we identify an inverse temperature β such that
ρ∞ = 1

Z
e−βH , where H = gσ3 (and Z = Tr[e−βH ]), with x =

e−βg .
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