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Angular momentum of a relativistic wave packet
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Quantum-mechanical spin is often thought of in terms of classical angular momentum. In fact spin is defined
by its commutation relations and the spin and orbital angular momentum operators are very different. Here
we solve the Dirac equation in a rotating frame of reference and create a localized wave packet from the
resulting wave functions to examine the consequences of the rotational motion. We highlight some unexpected
effects in the properties of the wave packet and show that the spin operator and orbital angular momentum
operator describe different aspects of the rotational properties of the wave packet. It is also observed that
neither quantum-mechanical spin nor orbital angular momentum can be fully understood within an inertial
frame.
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I. INTRODUCTION

Angular momentum is a fundamental quantity in quantum
theory. It forms the basis of much of our understanding of
atoms, molecules, and materials and is key to the interpretation
of many spectroscopies. Frequently there are spin and orbital
contributions to the total angular momentum which is con-
served. While orbital angular momentum is generally thought
of as a quantum analog of the classical angular momentum, the
physical manifestation spin is determined by the mathematical
properties and commutation relations of its operators.

Spin was postulated by Uhlenbeck and Goudsmit [1] as a
self-rotation of a particle, which they considered as a charged
sphere, to explain doublets seen in atomic spectra. Its quantum
nature was later verified in the Stern-Gerlach experiment [2].
This view of spin is now known to be unacceptable because
the speed of rotation required to produce the known electron
magnetic moment is much greater than the speed of light [3].
However the spin operator does obey nonrelativistic angular
momentum commutation relations which has led to a number
of researchers putting forward models of spin based on the
classical notion of rotation [4,5]. Spin does not arise naturally
in nonrelativistic quantum mechanics; it was introduced
phenomenologically by Pauli into nonrelativistic quantum
theory. His approach turned out to be the nonrelativistic
limit of relativistic quantum theory. This has led to many
applications of the nonrelativistic quantum-mechanical theory
of spin, particularly, and hugely successfully, in the theory of
magnetism in materials [6,7]. However such work does not
address the question of what is the fundamental nature of spin.
This has been investigated by a number of authors [8,9]. In
particular, Galindo and Sanchez Del Rio [9] have shown that
the magnetic moment of the electron drops out of a linearized
version of the nonrelativistic Schrodinger equation in the same
way as it does from the Dirac equation. However, as stated by
Kudryashova and Obukhov [5], “the true understanding of
spin as an essentially quantum property of matter is achieved
only through quantum theory.” As spin only arises naturally
in relativistic theory, this really refers to relativistic quantum
mechanics.
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In a number of papers recently spin and orbital angular
momentum have been discussed, particularly in the context of
the structure of vortices in relativistic wave packets [10,11].
The underlying view of spin has been that it takes on many
of the properties of a classical rotation. Indeed this is borne
out by the work of Chuu et al. [12] where a Gaussian wave
packet was set up and the current density was shown to be a
vector rotating about its center. Our purpose in this paper is
to address the question of how similar quantum-mechanical
spin and orbital angular momenta are and how they relate
to our classical notions of these quantities. We do this by
setting up a Dirac equation in a rotating frame of reference
and using its solutions to build wave packets whose angular
momentum properties can be analyzed. Throughout we retain
constants in our equations, but diagrams are drawn in units
where h̄ = c = m = 1.

This paper is set out as follows. First we discuss the
derivation of the Dirac equation for an observer in a rotating
frame of reference. Then we find the full solutions of it for
free particles, which introduces a time-dependent phase into
the wave functions. Next we solve the Dirac equation in
certain limiting cases to provide greater insight into the full
solutions. The next step is to create localized wave packets
from these solutions and analyze their properties as a function
of the angular momentum of the observer. Finally we draw
conclusions about the nature of spin and orbital angular
momentum in a relativistic context.

II. DIRAC EQUATION

The Dirac equation in a general noninertial frame in
Cartesian and cylindrical coordinates has been derived by
Hehl and Ni [13] and Strange and Ryder [14] using standard
methods [15–18]. Here we restrict ourselves to Cartesian
coordinates and a rotating frame with no linear acceleration.
The Dirac equation in an observer’s noninertial frame is then
[13]

ih̄
∂

∂t
ψ(r,t) = (cα · p̂ + βmc2)ψ(r,t)

−ω ·
(

r̂ × p̂ + h̄

2
σ

)
ψ(r,t), (1)
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where ω is the vector angular frequency of the reference
frame (the observer) relative to an inertial frame and the other
symbols take on their usual meanings [19]. Equation (1) is
exact when we start from a rotating Minkowski metric. It is
interesting to note that the coupling to the angular frequency
of the observer is through the nonrelativistic orbital angular
momentum and spin operators,

L̂ = r̂ × p̂, Ŝ = h̄

2
σ, (2)

but care must be taken here because these identifications
are only truly correct in the nonrelativistic limit [20]. This
separation is reminiscent of the separation of spin and orbital
angular momentum of light which occurs in the paraxial limit
in optics [21,22]. Although the Dirac equation and the wave
equation differ substantially, the nonrelativistic limit of the
Dirac equation leads to the same physics as the paraxial
limit of the wave equation because the Schrodinger equation
and the paraxial wave equation are mathematically identical.
Furthermore the coupling of these nonrelativistic orbital and
spin angular momentum operators to the observers’ angular
frequency in Eq. (1) leads to the well-known Sagnac effects
[23] and Mashhoon effects [24,25] respectively.

We consider the case where both the orbital and spin angular
momenta are measured about the z axis. Equation (1) becomes

ih̄
∂

∂t
ψ(r,t) = (cα · p̂ + βmc2)ψ(r,t) − ω(L̂z + Ŝz)ψ(r,t).

(3)

This arrangement has been chosen because classically the
spin and orbital angular momentum become indistinguishable
when they are considered around the same axis. Given the
contrasting nature of the corresponding operators it seems
unlikely that their effect on the eigenfunction will be indis-
tinguishable. The probability and current densities associated
with this equation are respectively

ρ(r,t) = ψ†(r,t)ψ(r,t),
(4)

j (r,t) = ψ†(r,t)(cα + ω × r)ψ(r,t).

We find restricted solutions of Eq. (3). If we consider motion
only in the xy plane the Dirac equation partially decouples.
ψ(r,t) is a four-component quantity in general, but in this case
the first and fourth components become decoupled from the
second and third. Therefore we can solve for the cases where
either the second and third component of ψ(r,t) or the first and
fourth component are zero. This simplifies the mathematics,
but does not affect the physics we wish to describe.

III. SOLUTIONS

Equation (3) is derived from the most fundamental form
of the Dirac equation [13] and the space-time metric of our
rotating frame. Our next task is to find its free particle solutions.
First we find its full solutions. The angular frequency of the
observer couples to the particle through the spin and the
orbital angular momentum separately. This equation cannot
be changed in any realistic way. However to observe how spin
and orbital angular momentum terms contribute separately to
the full solution we have also solved Eq. (3) with the L̂z and

Ŝz operators set equal to zero in turn. These latter solutions
have no physical meaning in themselves. However they do
allow us to see how coupling of the angular frequency of the
observer through the spin operator and through the orbital
angular momentum operator individually contribute to the full
solution. Looked at in reverse, this enables us to gain insight
into the role of the orbital angular momentum operators, and
particularly the nonrelativistic spin operator, and hence gain
insight into what this operator actually tells us.

A. Full solution

First we look at the full solutions with the coupling to
the angular frequency of the observer through both L̂z and
Ŝz included. The positive energy solutions normalized to unit
volume are

ψ1(r,t) =
(

W + mc2

2W

)1/2

⎛
⎜⎜⎝

exp(iωt/2)
0
0

h̄c(k1+ik2)
W+mc2 exp(−iωt/2)

⎞
⎟⎟⎠

× ei(u−Wt/h̄), (5)

ψ2(r,t) =
(

W + mc2

2W

)1/2

⎛
⎜⎜⎜⎝

0
exp(−iωt/2)

h̄c(k1−ik2)
W+mc2 exp(iωt/2)

0

⎞
⎟⎟⎟⎠

× ei(u−Wt/h̄), (6)

where k1 and k2 are arbitrary wave vectors,

W =
√

m2c4 + h̄2c2
(
k2

1 + k2
2

)
(7)

is related, but not equal, to the total energy, and u is defined as

u = x(k1 cos ωt + k2 sin ωt) + y(k2 cos ωt − k1 sin ωt). (8)

The ω dependence here interesting. It is the observer who is in a
noninertial frame rotating with angular frequency ω. Therefore
he sees the particle, which has constant velocity in an inertial
frame, as rotating. This is accounted for by the u in the expo-
nent. However there is an additional phase in the matrix part of
the wave function which differs for each component and which
is dependent on the angular frequency of the observer. This is a
surprising feature of these solutions. In an inertial frame (ω =
0) both components of the wave function have a well-defined
and constant phase relation, but if we move to a rotating frame
there is an additional phase which varies with time. This phase
is exp(iωt/2) in the spin-up channels of the eigenfunction
and exp(−iωt/2) in the spin-down channels, although it is
time dependent and depends on ω, which is unrelated to
the particle spin. As we show below this phase arises from
the orbital angular momentum operator in the Hamiltonian.
In the probability density these phases cancel. However, the
probability current density includes an off-diagonal matrix
operator which connects different components of the wave
function and in this case the time dependence does not cancel.
This tells us there is no frame in which the current density is
stationary. It is also noteworthy that ω does not appear outside
the exponents, even in the quantity W , so the probability
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density ρ(r,t) is independent of ω, although again, this is not
true for the current density. We note, for future reference, that
W takes on the same form as the total energy of a free particle
in an inertial frame of reference. Similar expressions to (5) and
(6) can easily be found for the negative energy solutions.

It is well known that if the inertial Dirac equation is solved
in an electromagnetic field and either the nonrelativistic limit
is taken or a Foldy-Wouthuysen transformation is performed
the magnetic moment (spin) of the electron drops out of the
calculation. The spin can also be deduced from Eq. (3). If we
let Ŝz = ah̄σz and minimize the sum of the W ’s for a spin-up
and a spin-down particle with respect to a we find a = 1/2.

B. Solution in the limit of zero spin

If we set Ŝz = 0 in Eq. (3) we no longer have a derived
equation. Our reason for setting Ŝz = 0 is simply to look at
the contribution of the orbital angular momentum to the full
solution. The probability density is still as given by Eq. (4).
Our positive energy wave functions are

ψ1(r,t) =
(

WL + mc2 + h̄ω/2

2WL

)1/2

×

⎛
⎜⎜⎝

exp(iωt/2)
0
0

h̄c(k1+ik2)
WL+mc2+h̄ω/2 exp(−iωt/2)

⎞
⎟⎟⎠ei(u−WLt/h̄), (9)

ψ2(r,t) =
(

WL + mc2 − h̄ω/2

2WL

)1/2

×

⎛
⎜⎜⎜⎝

0

e−iωt/2

h̄c(k1−ik2)
WL+mc2−h̄ω/2 exp(iωt/2)

0

⎞
⎟⎟⎟⎠ei(u−WLt/h̄), (10)

where WL is given by

WL =
√

m2c4 + h̄2c2
(
k2

1 + k2
2

) ± h̄ωmc2 + h̄2ω2/4. (11)

The only appreciable difference between this case and the
full solution is the occurrence of ω in the prefactors and
the definition of WL. We see here that the exp(±iωt/2) that
appeared in the full solutions also appears here, so it must arise
from the coupling of the angular frequency of the observer to
the orbital angular momentum. In the expression for WL the
+(−) refer to ψ1(ψ2) respectively. This means that WL depends
on whether ω is parallel or antiparallel to the spin direction.
The presence of the orbital angular momentum operator in
the Dirac equation means that it is not appropriate to separate
the time and spatial parts of the eigenfunctions and results
in the particular form of u given in Eq. (8). In turn, this
means WL cannot be identified with the total energy. As in the
full solutions the time dependence cancels in the probability
density, but not in the current density.

C. Solution in the limit of zero orbital angular momentum

Again, if we set L̂z = 0 we do not have a derived equation,
but setting L̂z = 0 allows us to look at the contribution of the

coupling of ω through the spin operator to the full solution.
The probability density remains as given by Eq. (4) but the
term in ω × r disappears in the current density. Our positive
energy eigenfunctions in this case are

ψ1(r,t) =
(

Ws + mc2 − h̄ω/2

2Ws

)1/2

⎛
⎜⎜⎝

1
0
0

h̄c(k1+ik2)
Ws+mc2−h̄ω/2

⎞
⎟⎟⎠

× ei(k1x+k2y−Wst/h̄), (12)

ψ2(r,t) =
(

(Ws + mc2 + h̄ω/2

2Ws

)1/2

⎛
⎜⎜⎝

0
1

h̄c(k1−ik2)
Ws+mc2+h̄ω/2

0

⎞
⎟⎟⎠

× ei(k1x+k2y−Wst/h̄) (13)

with eigenvalue Ws given by

Ws =
√

m2c4 + h̄2c2
(
k2

1 + k2
2

) ∓ h̄ωmc2 + h̄2ω2/4. (14)

This looks very similar to WL, but with some signs reversed.
In this case the Dirac equation is separable into space- and
time-dependent equations and Ws is the total energy. The −(+)
inside the square root refers to ψ1(ψ2) respectively. This is the
opposite way around to the case when Ŝz = 0. These solutions
are very different to the previous cases. In particular there
is no direct coupling of the time dependence to the position
dependence in the exponential.

Remarkably, the prefactors here have the same dependence
on ω, but with opposite sign to the case when Ŝz = 0,L̂z �= 0
and these two dependencies cancel in the full solution. Apart
from the exp(±iωt/2) there is a symmetry between these
solutions and Eqs. (9) and (10). In particular we note that
the term in h̄ωmc2 appears inside the square root in the
expressions for Ws(L) with opposite sign and the full Dirac
equation combines the spin and orbital terms in such a way as
to exactly cancel these terms and give no ω dependence inside
the square root in the expression for the W .

In all our solutions we will refer to the upper nonzero
component of the wave function as the “large” component
and the lower nonzero component as the “small” component.
This is appropriate when c is large and ω → 0. We retain this
labeling under more extreme circumstances even though it may
not accurately reflect the relative sizes of the components.

IV. WAVE PACKETS

Next we create a wave packet

	(r,t) =
∫∫

a(k1,k2)(η1ψ1(r,t) + η2ψ2(r,t))dk1dk2, (15)

where η1 and η2 define how much the two positive energy
solutions contribute to the wave packet. a(k1,k2) is an envelope
function that determines the shape of the wave packet and is
taken as a Gaussian. ψ1 and ψ2 are defined above for the
different cases of interest.

While these wave packets are not eigenfunctions of Ŝz,
at low angular frequencies ψ1 is predominantly of spin-up
character and ψ2 is predominantly spin down. This is clearly
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FIG. 1. (a) The probability density and (b) the current density for the wave function (15) with η1 = 1, η2 = 0, ω = 0 and the width of the
Gaussian envelope σ = 0.4, evaluated at time t = 0.4. (c) The current density of (b) along the x axis. (d) The same as (b) but for η1 = 0 and
η2 = 1. All quantities are displayed in relativistic units (m = h̄ = c = 1).

shown in Fig. 1. In the upper left we show the probability
density as a function of position. It is circularly symmetric,
clearly has a peak at the origin, and is identical for the spin-up
and spin-down cases. In Figs. 1(b) and 1(d) we display the
current density where the spin-up and spin-down nature of
the two wave functions is evident in its direction of rotation.
Finally in Fig. 1(c) we show the current density along the x

axis for the case of Fig. 1(b). This figure is reversed for the
opposite spin case. The origin of the opposite senses of rotation
in these figures is the ±ik2 in the smaller component of the
eigenfunctions coupled to the signs of the nonzero elements
of αz in Eq. (4) and the fact that we have a wave packet that
is symmetric in k1 and k2. This gives the lower component of
the eigenfunctions a different phase from the upper component
and interference between the components when put together
as prescribed by Eq. (4) yields the rotational behavior shown
in Fig. 1. These figures look similar regardless of whether we
choose Eqs. (5) and (6) or (9) and (10) or (12) and (13) to
create the wave packet.

It is instructive to look at both the probability density and
the current density as a function of ω. The probability density
is the sum of two terms. First there is a curve that reflects
a(k1,k2) arising from the large component of the eigenfunction.
Second there is a function that has a zero at the origin, and
two peaks either side close to where the large component has
the highest gradient, which arises from the small component.
These are shown in Fig. 2. If ω is small as in Fig. 1 the
probability density has a single peak at the origin. However
for large ω the small component can dominate and then there
is a circular maximum centered on the origin. The probability
current density as a function of ω for the full solutions is
illustrated in Fig. 3(a). Here we have chosen a point on the

line x = −y and plotted the x and y components of current
density at this point. The curves are equal in magnitude and of
opposite sign. The values of jx(r,t) and jy(r,t) depend linearly
on ω and pass through zero. In fact we find that for the wave
packet shown in Figs. 1(a) and 1(b) the rotation is clockwise for
ω � −0.110mc2/h̄ and anticlockwise for ω � −0.126mc2/h̄.
In the intermediate region the current flow is predominantly
radial reflecting the spreading of the wave packet. If we set
Ŝz = 0,L̂z �= 0 in the Dirac equation (3) and find the solutions,
the transitions take place in essentially the same frequency
range and the picture is very similar, so it is not shown in Fig. 3.
Very slight differences between the two cases are due to the
frequency dependence of the normalization in the Ŝz = 0 case.

FIG. 2. The components of the probability density on the line
y = 0. The wave packet is defined by Eq. (15) with a Gaussian
profile with σ = 0.4, ω = 0.2 and η1 = 1,η2 = 0 and evaluated at
t = 0. The full blue line is the contribution from the large component
of the wave function and the dotted green line is the contribution from
the small component (multiplied by 20 for clarity). All quantities are
in relativistic units (m = h̄ = c = 1).
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FIG. 3. The x and y components of the current density at a particular point in space as a function of angular frequency ω. All quantities
are in relativistic units h̄ = m = c = 1. The wave packet is defined by Eq. (15) with a Gaussian profile with σ = 0.4 and η1 = 1,η2 = 0 and
evaluated at t = 0. Left: when the observer interacts with the wave packet through both the spin and orbital angular momentum operators so
ψ1 is given by Eq. (5). Right: when the observer interacts with the wave packet only through the spin operator so ψ1 is given by Eq. (12).

This leads us to conclude that change in the sense of rotation of
the wave packet is due to the coupling of the angular frequency
of the observer to the L̂z operator.

Figure 3(b) shows the same quantity when we couple the
particle to the rotation through Ŝz only. Remarkably, in this
case neither jx(r,t) nor jy(r,t) are ever equal to zero as a
function of angular frequency of the observer and so do not
change sign; the direction of the current density is independent
of ω. The curves tend asymptotically to zero as ω → ±∞.
Although we apparently have rotational motion in Fig. 1,
there is no angular frequency of the observer at which the
wave packet appears to change its sense of rotation when
the rotation of the observer couples to the wave packet only
through the spin operator. The results shown in Fig. 3(b)
are due to a small but key detail in the eigenfunctions of
the spin-only equation. The coefficients of the exponential
in Eqs. (5) and (6) are independent of ω. This is not the
case for Eqs. (12) and (13) where both the large and small
components of the wave function depend weakly on ω, through
the normalization, and the denominator in the matrix part of
Eqs. (12) and (13). The quantity Ws + mc2 − h̄ω/2 is never
nonpositive, but becomes small for large ω. This means that
ω can be tuned to maximize the small component of the
eigenfunction when L̂z = 0. For example, in Eq. (12) when
ω is large and negative the probability density reflects the
Gaussian contribution (full blue curve in Fig. 2). As ω passes
through zero and becomes positive the small component of the
wave function begins to dominate and the probability density
becomes two-peaked (green dotted curve in Fig. 2). This occurs
because the −h̄ω/2 in the denominator of the small component
makes that denominator small and the contribution of that
component to the probability density becomes large. The same
happens in Eq. (13) at frequencies that are large and negative.
If we set Ŝz = 0, L̂z �= 0 we can see from Eqs. (9) and (10) that
a similar thing occurs with opposite signs. In the eigenfunction
of Eq. (9) it is when ω becomes large and negative that there
is a maximum in the small component of the eigenfunction.
Surprisingly, and despite the fact that the spin and the orbital
angular momentum operators are very different, when both Ŝz

and L̂z are included in the calculation, the ω dependence in
the prefactors cancels and the small component of the wave
function remains small for all values of ω. This is also the origin
of the anisotropy in the right-hand picture in Fig. 3. To the left
of this peak in this diagram the large component of the wave

function tends to dominate much of the wave packet, while to
the right of the peak the small component is more important.

We have calculated 〈Sz〉 = 〈h̄σz/2〉 as a function of ω for
identical wave packets composed of solutions of Eqs. (5),
(9), and (12) and display the results in Fig. 4. The angular
frequencies shown on this figure are huge and most are not
experimentally accessible. Nevertheless we show it to illustrate
the mathematics. For the full solution 〈Sz〉 is constant. This
is shown as the full red line in Fig. 4. Mathematically this
is because the exponentials cancel when we calculate the
expectation value and the angular frequency does not appear
anywhere else in the eigenfunctions (5). The rotation of the
observer causes the apparent orbital angular momentum of
the particle to change, but not its spin. This is as expected.
The short dashed blue line in Fig. 4 is the value of 〈Sz〉
when we couple the angular frequency of the observer to the
particle through the spin operator only. Clearly this gives a
value close to 〈Sz〉 = 1/2 for negative angular frequencies
but falls off rapidly for positive values of ω. Finally the long
dashed green line in Fig. 4 is 〈Sz〉 when we couple the angular
frequency of the observer to the particle through the orbital
angular momentum operator only. In this case the results are
good for positive frequencies, but fall off rapidly for negative
frequencies. Figure 4 is unexpectedly symmetric about ω = 0.
In fact we can see from the eigenfunctions that Eq. (9)
with negative frequency and Eq. (12) with positive frequency
are identical at t = 0. This symmetry remains at later times
because the time only appears in exponential which cancels

FIG. 4. The expectation value 〈Sz〉 in units of h̄ for the wave
function in Eq. (5) (red full line), Eq. (9) (green long dashed line),
and Eq. (12) (blue short dashed line) as a function of ω in units of
mc2/h̄.
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when we evaluate the expectation value of diagonal operators.
These latter results have no meaning by themselves, but they
do show that there is a remarkable cancellation between the
effects of the spin and orbital angular momentum terms in
Eq. (3) to give 〈Sz〉 independent of the angular frequency of
the observer. In the case where the coupling is through the
spin operator, 〈Sz〉 changes sign as a function of ω, but the
angular rotation of the current density does not. This is not
consistent with Figs. 1(b) and 1(d) where 〈Sz〉 changes sign
and spin-up and spin-down wave packets are represented by
the current rotating in opposite directions. We attribute this
discrepancy to h̄σ/2 being a good operator to describe spin
at low angular frequencies, but at high angular frequencies,
when relativistic effects become important, it is no longer the
appropriate operator. This supports the well-known fact that
Sz = h̄σz/2 needs to be modified because it does not commute
with the Dirac free particle Hamiltonian and so does not
represent a conserved quantity; a new spin operator is needed.

V. CONCLUSIONS

The Dirac equation for an observer in a rotating frame of
reference (1) contains terms coupling the rotational motion
of the observer to the system under observation through the
nonrelativistic orbital angular momentum and spin operators.
We have solved this equation for free particles exactly and used
the solutions to create localized wave packets. Reassuringly the
magnitude of the particle spin emerges correctly from these
equations even without an electromagnetic field being present.
We have demonstrated unexpected behavior of relativistic
wave packets. In particular we have shown that the coupling
through the orbital angular momentum operator leads to the
wave functions having a time-dependent phase which differs
between the components of the wave function. It is the

orbital angular momentum operator which directly couples
the rotation of the observer to the particle. The fact that the
apparent direction of the rotation of the current density can
be reversed by adjusting the observer’s angular frequency
relative to the wave packet through this operator illustrates and
proves this point. On top of this classical rotation of the wave
packet, the orbital angular momentum operator also changes
the weight of the spin-up and spin-down character in the wave
packets causing a secondary change in apparent magnitude of
the rotation.

The coupling of the rotational motion of the observer to the
wave packet through the spin operator does not mechanically
change the direction of rotation directly. It only changes the
relative amounts of spin-up and spin-down character in the
wave packet, thus changing the magnitude of the rotation
indirectly. Remarkably it does this at exactly the right level to
cancel the changes in the weight of the spin-up and spin-down
character in the wave packets caused by the orbital angular
momentum operator as shown by our calculation of 〈Sz〉. It is
only this cancellation that keeps the small component of the
wave function actually small at all angular frequencies. It is
also this cancellation that means the effect of the combined spin
and orbital angular momentum operators in the Dirac equation
(3) is to produce a simple classical rotation of the wave packet.
Neither the spin nor the orbital angular momentum operators
yield a completely classical rotation themselves, but together
it seems that they do.
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