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Effective quantum state reconstruction using compressed sensing in NMR quantum computing
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Compressed sensing (CS) has been verified as an effective technique in the reconstruction of quantum state;
however, it is still unknown if CS can reconstruct quantum states given the incomplete data measured by nuclear
magnetic resonance (NMR). In this paper, we propose an effective NMR quantum state reconstruction method
based on CS. Different from the conventional CS-based quantum state reconstruction, our method uses the actual
observation data from NMR experiments rather than the data measured by the Pauli operators. We implement
measurements on quantum states in practical NMR computing experiments and reconstruct states of two, three,
and four qubits using fewer number of measurement settings, respectively. The proposed method is easy to
implement and performs more efficiently with the increase of the system dimension size. The performance
reveals both efficiency and accuracy, which provides an alternative for the quantum state reconstruction in
practical NMR.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) is one of the most
promising physical methods to realize quantum computing,
which has attracted tremendous interest in both the physics
and information science community [1–4]. In practical NMR
quantum computing experiments, the reconstruction of quan-
tum states occupies an important position. Conventional
quantum state tomography (QST) is a common method for
NMR quantum state reconstruction [5–7], which requires fully
informationally complete measurements of the quantum state
to be reconstructed. For an n-qubit state ρ, the number of
complete measurements is d2 = 4n. This number increases
exponentially with n and makes the reconstruction work
of the high-qubit NMR state become extremely difficult.
In order to reduce the number of measurements, people
sometimes use local quantum tomography [8] to reconstruct
the states. However, local quantum tomography requires a
sufficient amount of prior information before reconstructing,
which does not have universal applicability. Therefore, the
reconstruction of high-qubit NMR quantum states has great
challenge.

Compressed sensing (CS) [9] has attracted a great inter-
est as an effective approach of recovering sparse signals.
This approach is now widely applied in many fields, such
as image processing [10,11], wireless communication [12],
nuclear magnetic resonance imaging (MRI) [13,14], NMR
spectroscopy [15,16], and so on. CS also provides a new
idea for the reconstruction of quantum states. One necessary
condition of quantum compressed sensing used in QST is the
density matrix of the quantum state should be low rank, that is,
the rank r of the density matrix is much less than the dimension
d of the Hilbert space: r � d. The theory of CS indicates
that a low-rank-r density matrix can be reconstructed from
O(rd log d) randomly sampled measurements [17]. To achieve
such a reconstruction, one needs to solve an estimator of the
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convex optimization problem consisting of the sampled mea-
surement data [18]. People can use different styles of convex
optimization problems, such as the nuclear-norm minimiza-
tion, trace minimization, and least-square (LS) minimization.
The positivity constraint of the density matrix needs to be
included in the optimization to ensure the effectiveness of the
reconstruction [19]. Given the compressed number of samples
and an appropriate optimization algorithm, the solution of
the convex optimization problem with positivity constraint is
the reconstruction of the quantum state. Several optimization
algorithms have been used to solve the different optimization
problems of the density matrices in quantum systems, such as
LS, Dantzig, gradient projection, singular value thresholding,
and so on [18,20,21]. Li and Cong first applied the alternating
direction method of multipliers (ADMM) algorithm to QST
and showed that the ADMM algorithm has better performance
than the previous algorithms when considering the sparse
noises [22,23]. Zheng et al. combined the fixed point idea and
the ADMM algorithm and proposed the FP-ADMM algorithm,
which improves further the calculation efficiency and the
reconstruction accuracy [24].

By using CS, researchers obtained accurate quantum state
reconstructions in some physical systems such as atomic spins
[18], photons [25–27], and trapped ions [28,29]. However, it
is still not clear if CS can reconstruct quantum states provided
measurement data from NMR, because the measurements
of NMR are obtained in a different way. In practical NMR
computing experiments, the signal of each measurement is
sampled in the time domain and then transferred into the
frequency-domain spectrum. The spectrum contains a number
of resonance peaks, and each peak is associated with an
observable Oi of the system. The observables of the same
spectrum constitute an NMR observable group, which can
be measured simultaneously. When reconstructing an actual
NMR state ρ based on CS, due to the particularity of practical
NMR measurements, the observables are sampled in units of
observable groups rather than individual observables, which is
different from the sampling method in conventional quantum
compressed sensing [30–32].
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In this paper, we show that CS can also be applied to the
NMR quantum state reconstruction, and one can directly use
the observable groups. We theoretically prove that CS can be
applied to the reconstruction of actual NMR quantum states
and give the detailed reconstruction steps, which combine CS
and the characteristics of the practical NMR measurement.
FP-ADMM is used as the optimization algorithm to solve the
nuclear-norm optimization problem. We experimentally verify
the efficiency of the proposed method by the reconstruction of
actual NMR states with two, three, and four qubits and analyze
the effects of factors on the reconstruction performance.

The structure of this paper is as follows. In Sec. II, after a
brief introduction to the practical NMR measurement method,
the CS theory, and the FP-ADMM algorithm, we prove our
reconstruction method and give specific steps of the method.
In Sec. III, the experimental reconstruction results are shown.
We perform reconstruction of actual two, three, and four qubits
NMR states, respectively, and analyze the reconstruction
performance through contrast experiments. The conclusion of
this paper is given in Sec. IV.

II. QUANTUM STATE RECONSTRUCTION BASED ON
COMPRESSED SENSING AND ACTUAL NMR

OBSERVATION DATA

As an indirect measurement process, the system to be
measured in NMR is an n-qubit quantum state consisting
of nuclear spins in the sample solution under a constant
z-direction magnetic field B0. There is a magnetic moment
of the nuclear spins in the magnetic field, whose direction
is the same as B0 and the magnitude is proportional to the
angular momentum of the spin. The external control field
is a radio frequency (rf) pulse magnetic field on the x − y

plane. When applying an rf pulse consisting of a plurality
of resonant frequencies to the sample solution, the nuclear
spins absorb the energy of the rf pulse, and the angle between
the magnetic moment and B0 changes, leading to a Larmor
precession. There is an induction coil winding on the surface
of the sample solution, and the nuclear precession results in a
free induction decay current signal s(t) in the induction coil:
s(t) = ∑

i M0e
i�i t e−t/T2 , where t stands for time, �i denotes

the resonant frequencies, and i is the flag, M0 is the value of
fixed rf field magnetization intensity vector, and T2 represents
the transverse relaxation time. S(ω) is a frequency-domain
spectrum which is obtained from the Fourier transform of s(t):
S(ω) = ∫ ∞

0 s(t)e−iωtdt = A(ω) + iB(ω), where ω stands for
the frequency, A(ω) = ∑

i M0T2
−1/(ω − �i)2 + T2

−2 and
B(ω) = ∑

i M0(ω − �i)/(ω − �i)2 + T2
−2 are the real and

imaginary parts of S(ω), respectively. The spectrums of A(ω)
and B(ω) near the resonant frequency �i are resonance peaks,
with the peaks of A(ω) being absorption peaks and those of
B(ω) being symmetric dispersion peaks.

When measuring an n-qubit quantum state ρ whose dimen-
sion is d = 2n, each resonance peak in S(ω) corresponds to an
observable Oi , and the observation value of Oi is proportional
to the area of the signals in the corresponding peak of A(ω):

〈Oi〉 = 1

P0

∫ �i+�ω

�i−�ω

A(ω)dω, (1)

where P0 is the scaling factor which can be determined by the
peak’s area of the eigenstate in the same sample solution,
and �ω is a fixed range value, which ensures all signals
of the selected format are included in the frequency range
[�i − �ω,�i + �ω].

As the spectrum S(ω) contains d resonance peaks, the
observation data of the corresponding d observables are
obtained simultaneously in one NMR measurement. Such
d observables constitute an NMR observable group, defined
as {Ok

j } = {Ok
1 ,Ok

2 , . . . ,Ok
d }, where j = 1,2, . . . ,d and k =

1,2, . . . ,v is the serial number of the group. Here v denotes
the total number of the observable groups which is determined
by the composition of the experimental sample and the actual
measurement scheme. For example, Ok

j represents the j th
observable in the kth group and is also expressed in the
subscript form as Ok

j = Okj . {Oi} (i = 1,2, . . . ,vd) is the
set of all the observables. In practical NMR experiments,
people design a measurement scheme of v different NMR
observable groups to measure the complete observables of ρ,
with some inevitably repetitive or linearly related observables
in different groups, meaning that the total observables of {Oi}
are overcomplete for ρ.

In order to implement the conventional QST in NMR,
people need to perform the following transformation to
the observables {Oi}: based on the d observables in each
group {Ok

j }, people transform {Ok
j } into a set of measure-

ment operators {Mk
j } = {Mk

1 ,Mk
2 , . . . ,Mk

d } according to the

transformation formula Mk
j = ∑2n−1

i hijO
k
j , where Mk

j is an
n-qubit Pauli operator that is the tensor product of Pauli
matrices {I,X,Y,Z} = {(1 0

0 1),(
0 1
1 0),(

0 −i

i 0 ),(1 0
0 −1)}, and

hij is one of the elements in the transformation matrix H
of {Ok

j } and {Mk
j }. Each column of H represents a linear

transformation from {Ok
j } to one operator of {Mk

j }. The
corresponding observation values {〈Ok

j 〉} can be transformed
to the measured values {〈Mk

j 〉} in the same way. Since the
observables of {Oi} are overcomplete, there are repetitions of
the measurement operators in different {Mk

j }. People need to
remove all the repetitions from {Mk

j } to get a complete set of
measurement operators {Mm} (m = 1,2, . . . ,d2), then one can
calculate the reconstructed density matrix ρ̂ of the state ρ with
{Mm} and {〈Mm〉}: ρ̂ = 1

2n

∑4n

m=1 (〈Mm〉Mm). However, as the
number of qubits n increases, the number of measurement
operators required for QST d2 increases exponentially, and the
corresponding actual NMR measurement becomes extremely
cumbersome.

Here we propose an effective reconstruction method of the
actual NMR quantum states based on CS, in which we directly
use observable groups {Ok

j } but not the transformed Pauli
measurement operators {Mm}. The reconstruction process can
be described as to solve the following convex optimization
problem of nuclear-norm minimization:

min ‖ρ‖∗, such that y = A vec(ρ), (2)

where ‖ρ‖∗ represents the nuclear norm of ρ, which equals
the sum of singular values; vec(·) represents the transformation
from a matrix to a vector by stacking the matrix’s columns in
order on top of one another. The sampling matrix A is the
matrix form of all the sampled observables and the sampling
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vector y is the vector form of the corresponding observation
values.

Considering the measurement method in NMR experi-
ments, it is not practical to use the transformed measurement
operators {Mm} as the observables because each Mm is
obtained by means of much more observables in groups in
practical NMR experiments. Thus we directly use the ran-
domly sampled observable groups {Ok

j } and the corresponding
actual observation values {〈Ok

j 〉} in the quantum compressed
sensing. Because the observables and observation values are
sampled in groups, here we defined a new sampling rate as

ηg = g/v, (3)

where g is the number of the sampled groups and v is the
total number of groups. It is worth mentioning that ηg is
different from the general sampling rate ηm = m/d2, where m

and d2 represent the sampled number and total number of the
measurement operators {Mm}, respectively, and ηg,ηm ∈ [0,1].

Without loss of generality, assuming that the randomly
sampled serial numbers are from 1 to g, then A and y in
NMR can be written as

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

vec
({

O1
j

})T

vec
({

O2
j

})T

...

vec
({

O
g

j

})T

⎞
⎟⎟⎟⎟⎟⎟⎠

/√
d (4)

and

y = ({〈
O1

j

〉}
,
{〈

O2
j

〉}
, . . . ,

{〈
O

g

j

〉})T
, (5)

where vec({Ok
j })T represents the transformation from the d

observables of {Ok
j } to d horizontal vectors arranged in vertical

order:

vec
({

Ok
j

})T =

⎛
⎜⎜⎜⎜⎜⎜⎝

vec
(
Ok

1

)T

vec
(
Ok

2

)T

...

vec
(
Ok

d

)T

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and y is the vector of the observation values corresponding to
the observables of A. In this case, the optimization problem (2)
is an equation group composed of g × d equations. It should be
noted that, since the total observables are overcomplete, there
may be some repeating equations in (2), but this repetition
does not affect the solution of (2).

Candes et al. proved that, if the sampling matrix A
satisfies the rank restricted isometry property (RIP) [33],
the convex optimization problem (2) has a unique optimal
solution equaling the true density matrix [34]. The sampling
matrix A consisting of O(rd log2d) randomly sampled Pauli
measurement operators satisfies rank RIP with very high
probability [20]. Since the transformation between the op-
erators of {Ok

j } and {Mk
j } is linear, if the sampling matrix

AM consisting of g different Pauli measurement operator
groups {Mk

j } satisfies rank RIP, then the sampling matrix AO

that consists of corresponding g observable groups {Ok
j } also

satisfies rank RIP. This means, in theory, our method sampling

the observable groups {Ok
j } is applicable to the reconstruction

of actual NMR quantum state ρ.
A mathematical principle in quantum mechanics is that

the eigenvalues of a physical quantum system must be non-
negative, which is called the positivity constraint. People must
consider the positivity constraint when reconstructing the state
by solving the optimization problem (2) [19,25], and the
positivity constraint can be mathematically formulated as the
following form: ρ � 0. Moreover, there are inevitable noises
in the measurement data y due to the system and measurement
error in practical NMR experiments. The experimental noises
are more likely to be reflected by sparse outlier entries in ρ

rather than Gaussian noise [24]. Using a sparse matrix S to
represent the noises, the optimization problem (2) becomes

min
ρ,S

‖ρ‖∗ + λ‖S‖1 + IC(ρ),

such that ‖y − A vec(ρ + S)‖2
2 � ε, ρ � 0,

(6)

where λ is a compromise factor λ > 0, ‖ · ‖1 is the (1,1) norm,
and IC(ρ) is the indictor function on a convex set C,

IC(ρ) =
{∞ if ρ†=ρ , ρ � 0,

0 otherwise.

The function of IC(ρ) is projecting ρ into a positive semidef-
inite Hermitian matrix. ε stands for the error-level parameter
of the reconstruction.

Conversional QST optimization algorithms such as LS
and maximum likelihood can barely handle S, because the
low-rank property will be significantly affected by these
small portions of outliers. In this paper, we use the FP-
ADMM algorithm proposed by Zheng et al. [24] to solve
the optimization problem (6). FP-ADMM algorithm is a
combination of the fixed point idea and ADMM algorithm,
which can handle both normal errors and sparse outliers S

in the density matrix. By leveraging the fixed point equation
approach to avoid the matrix inverse operation, FP-ADMM can
effectively reduce the computational complexity. The iterative
steps of the FP-ADMM algorithm are as follows:

ρk+1
1 = D

δ
1
μ

{
mat

[
(I − δA†A)vec

(
ρk

1

)

+ δA†
(

y − A vec(Sk) − Y k

μ

)]}
,

ρk+1 = 1

2

[
ρk+1

1 + (
ρk+1

1

)†]
,

S k+1 = S
δ

λ
μ

{
mat

[
(I − δA†A)vec(Sk)

+ δA†
(

y − A vec(ρk+1) − Y k

μ

)]}

Y k+1 = Y k + μ[A vec(ρk+1 + Sk+1) − y], (7)

where S is a sparse matrix representing interference terms,
which is updated alternatively with ρ in the iterative process,
mat(·) is the inverse operator of mat(·), and Dλ(X) is the singu-
lar value contraction operator defined as Dλ(X) = USλ(S)V T ,
where USV T is the singular value decomposition of X. In
every iteration, the singular values of the density matrix are
pushed to be positive to satisfy the positivity constraint [35].
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Sλ(X) is the soft threshold defined as

[Sλ(X)]ij =

⎧⎪⎪⎨
⎪⎪⎩

xi j − λ, if xi j > λ,

xi j + λ, if xi j < λ,

0, otherwise.

Y ∈ Rm is the Lagrange multiplier and δ ∈ [0, + ∞] is the
iterative step size, λ,μ > 0. In the reconstruction experiments
of this paper, the parameters of FP-ADMM algorithm are
selected as follows: δ = 1, λ = 1/

√
d , and μ = 0.5/‖y‖F

[22]; the initial values of ρ, S, and Y are taken as zero matrices.
The error-level parameter ε should be set according to the
amount of noise in the measurement data y [29,30], since a too
small ε may cause the optimization problem to be infeasible,
while a too big ε will reduce the precision of the reconstruction.
In this paper, the error-level parameter is set as ε = 10−7‖y‖F

and the stopping criterion is ‖y − A vec(ρk + Sk)‖F < ε or
the number of iterations k > 30.

In general, the process of reconstructing NMR quantum
states with the method proposed can be summarized as
follows: randomly sample a certain number of {Ok

j } and
{〈Ok

j 〉}, construct the convex optimization problem (6) with the
sampled {Ok

j } and {〈Ok
j 〉}, and solve (6) with the FP-ADMM

algorithm. The final optimal solution ρ̂ is the reconstruction
result of the state ρ.

The fidelity is used as the performance index of state
reconstruction and is defined as f :

f = Tr(ρ̂ρ†)/
√

Tr(ρ̂2)Tr(ρ2), (8)

where ρ̂ and ρ represent the experimentally reconstructed
density matrix and the corresponding ideal density matrix,
respectively, and f ∈ [0,1].

III. EXPERIMENTAL STATES RECONSTRUCTION
IN NMR AND ANALYSIS

We implement practical NMR experiments to reconstruct
the states of n = 2,3,4 qubits, respectively, in order to examine
the reduction performance of the number of measurements
of our method. The experiments are carried out on a Bruker
AV-400 spectrometer (9.4 T) at a room temperature of 303.0 K
[8]. The physical systems of n = 2,3,4 qubits states are 13C-
labeled chloroform (CHCL3) dissolved in deuterated acetone,
Diethyl-fluoromalonate (C7H11FO4) dissolved in 2H-labeled
chloroform, and iodotrifiuoroethylene (C2F3I) dissolved in
d-chloroform, respectively. One 1H and one 13C are used for
the first and second qubit of n = 2, and one 1H, 13C, and 19F
are used for the first, second, and third qubit of n = 3. For
n = 4, one 13C is labeled as the first qubit, and 19F1, 19F2, and
19F3 as the second, third, and fourth qubits, respectively. The
systems are first prepared into pseudopure states (PPS) using
the line selective-transition method [17] in the experiment
device. Then, by adjusting the pulse rf, the pseudopure states
are manipulated into the target quantum state |ψ2〉, |ψ3〉, and
|ψ4〉 [7,8].

The state vectors associated with these three kinds of
states are

|ψ2〉 = |00〉, (9)

|ψ3〉 = 4

5
|000〉 − 3

5
|001〉, (10)

|ψ4〉 = 1√
2

(|0101〉 + |1010〉), (11)

in which |0〉 = (1
0) and |1〉 = (0

1) represent the ground state
and the excited state of the nucleus, respectively. |ψ2〉 is an
eigenstate, and |ψ3〉 and |ψ4〉 are superposition states.

Let ρ2 = |ψ2〉〈ψ2|, ρ3 = |ψ3〉〈ψ3|, and ρ4 = |ψ4〉〈ψ4| be
the corresponding density matrices of |ψ2〉, |ψ3〉, and |ψ4〉.
In order to accurately reconstruct ρ2, ρ3, and ρ4, the states
|ψ2〉, |ψ3〉, and |ψ4〉 need to be prepared and observed
repeatedly for the complete observation data. In practical NMR
experiments, the total number of observable groups used in
our method are v2 = 6, v3 = 16, and v4 = 44 for n = 2,3,4,
respectively. The corresponding numbers of observables in
each group are d2 = 22 = 4, d3 = 23 = 8, and d4 = 24 = 16.
Thus the total number of observables Oi for |ψ2〉, |ψ3〉,
and |ψ4〉 are 6 × 4 = 24, 16 × 8 = 128, and 44 × 16 = 704,
respectively. After doing the transformation, the same number
of measurement operators Mm are obtained, in which most
of the obtained measurement operators are repeated. The
complete d2 measurement operators {Mm} are selected from
the obtained operators by removing all the repetitions, with d2

being 16, 64, and 256 for n = 2,3,4, respectively. This means
that when using m randomly sampled measurement operators
{Mm} to reconstruct the state, the actual number of operators
needed to be measured in NMR is much greater than m, and
many measurement results are not fully utilized. That’s why
we use the directly measured observable groups {Ok

j } and the
corresponding actual observation values {〈Ok

j 〉} as the sampled
measurement data in the proposed method, which also im-
proves the efficiency by omitting the transformation process.

The ability of reconstructing quantum states using less
sampling rate is very significant. We do the experiments
to demonstrate this ability in different cases. We carry out
the experiments for three scenarios by using two kinds of
optimization algorithms and using two kinds of sampling
matrices for the comparisons: randomly sampling from the
observable groups {Ok

j } by solving (A) optimization problem
(6) using FP-ADMM algorithm and (B) non-negative least-
square minimization: minρ ‖A vec(ρ) − y‖2 such that Trρ =
1,ρ � 0 [19]; (C) randomly sampling from the Pauli mea-
surement operators Mm by solving optimization problem (6)
using FP-ADMM algorithm. It should be noted that in scenario
(C) the measurement values of all Mm are obtained before
doing the reconstruction experiments, because Mm cannot be
sampled separately in practical NMR experiments as described
in Sec. II. The sampling rate ηg in (3) is usually used to
demonstrate the reduction performance of the number of
the observable groups {Ok

j }, and ηm = m/d2 is used for the
measurement operators {Mm}. The performance index of state
reconstruction is the fidelity in (7). Under each sampling
rate, we reconstruct each state 100 times and average over
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FIG. 1. Experimental results of reconstruction fidelities of ρ2, ρ3,
and ρ4 with different sampling rates in three different cases. The blue
dot-dash line, red dashed line, and black solid line correspond to
ρ2, ρ3, and ρ4, and the triangle, circle, and square mark correspond
to the cases of (A), (B), and (C), respectively. For cases (A) and
(B), the incremental step of sampling rates are selected as �ηg =
1/6, 1/16, and 1/22 of ρ2, ρ3, and ρ4, respectively, and for case (C)
the incremental step of sampling rate is fixed as �ηm = 0.1.

the resulting fidelities as the final average fidelity favg. The
experimental results of reconstruction fidelities of ρ2, ρ3, and
ρ4 with different sampling rates in three cases are shown in
Fig. 1, which shows the reconstruction fidelities of two kinds of
estimators consisting of the sampled observable groups {Ok

j }:
(A) Eq. (6) of nuclear-norm minimization with FP-ADMM
algorithm and (B) the non-negative least-square minimization,
and the fidelities of two kinds of sampling matrices: (A) {Ok

j }
and (C) {Mm} using compressed estimator (6) and FP-ADMM
algorithm.

It can be seen from Fig. 1 that for the two kinds of sampling
matrices {Ok

j } and {Mm}, the reconstruction fidelity of {Ok
j }

becomes close to that of {Mm} as the qubit number n increases
for 2 to 4, and shows almost the same performance when
n = 4. This experimental result indicates the sampling method
of NMR proposed in this paper performs more and more
efficiently with the increase of the system dimension size,
which is more suitable for the reconstruction of high-qubit
quantum states in NMR. Under the same observable groups
{Ok

j }, because the sparse matrix of noise S is considered and
optimized in the state reconstruction, the state reconstruction
fidelities obtained by the FP-ADMM algorithm illustrate more
accuracy than those of the LS algorithm without such a
consideration. The experiment shows that, when n � 3, the
proposed method can obtain high reconstruction fidelity with
much less measurement data than the fully informationally
complete measurement.

The mean-square error not only reflects the degree of
discretization of the fidelities, but also responds to success
probability of reconstruction at the corresponding sampling
rate. We also do the experiments to study the mean-square
error of the fidelity at the different sampling rates of the
proposed method by solving (6) with sampling matrices
{Ok

j } using compressed FP-ADMM algorithm (referred to as
QST-FP-ADMM). Here we use ζ to represent the value of

FIG. 2. Reconstruction average fidelity favg and mean-square
error ζ at different sampling rates using QST-FP-ADMM. The blue
dot-dash line with the inverted triangle, the red dash line with
the left triangle, and the black solid line with the right triangle
correspond to ρ2, ρ3, and ρ4, respectively, while the star, plus, and
dash symbols represent the corresponding error bars. The green dash
line represents the reconstruction fidelity f = 0.95. The length of the
error bar represents the mean-square error of the 100 experimental
reconstruction fidelities.

mean-square error. In the experiments, we choose f � 0.95
as the criterion that the reconstruction is successful. When
the average fidelity favg is near 0.95, the smaller of ζ , the
more concentrated the fidelity distribution, and the higher
the success probability of reconstruction, and vice versa. The
reconstruction average fidelity favg and mean-square error ζ

at different sampling rates using QST-FP-ADMM are shown
in Fig. 2, which shows that the mean-square error ζ decreases
with the increase of qubit number at the same sampling rate,
e.g., the mean-square errors are ζ = 0.33, 0.17, and 0.07 of
n = 2, 3, and 4 with ηg = 0.5. ζ also tends to decrease with
the increase of ηg at the same qubit number.

We set the mean-square error ζ � 0.1 to get a sufficiently
high success probability of reconstruction (the probability that
f � 0.95). The least sampling rates for ζ � 0.1 of n = 2, 3,
and 4 are ηg = 1, 0.75, and 0.5, with the mean-square errors
being ζ = 0, 0.08, and 0.07, respectively. The least sampling
rates are decreasing with the increase of qubit number.
The average fidelities of reconstruction at these sampling
rates are favg = 1.0, 0.97, and 0.96 and the corresponding
success probabilities of reconstruction are 100%, 92%, and
97%. The experimental results show that we can carry out
high-probability reconstruction of the quantum states in NMR
with rather low sampling rates using the proposed method,
especially for high-qubit quantum states.

The experimental reconstruction results of ρ2, ρ3, and ρ4

by QST-LS and QST-FP-ADMM are shown in Fig. 3, and
the reconstruction fidelities of Fig. 3 are shown in Table I.

TABLE I. Reconstruction fidelities of Fig. 3.

Fidelity ρ2 ρ3 ρ4

QST-LS 0.9942 0.9838 0.9606
QST-FP-ADMM 0.9999 0.9896 0.9679
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(a)

(b)

FIG. 3. Experimental results of reconstructed density matrices
of ρ2, ρ3, and ρ4. (a) The reconstruction by QST-LS with the
sampling rate ηm = 1 and (b) the reconstruction by QST-FP-ADMM
with the sampling rates ηg2 = 1.0, ηg3 = 0.75, and ηg4 = 0.50. The
three histograms from left to right in (a) and (b) correspond to the
reconstructed density matrices of ρ2, ρ3, and ρ4, respectively. Only
the real parts of the reconstructed density matrices are given and
the imaginary parts are ignored, because the imaginary parts of the
elements in the ideal density matrices ρ2, ρ3, and ρ4 are all zero.

In order to ensure a sufficiently high success probability
of reconstruction, according to the experimental results of
Fig. 2, we choose the sampling rates of ρ2, ρ3, and ρ4 as
ηg2 = 1.0, ηg3 = 0.75, and ηg4 = 0.50, with the corresponding
numbers of the sampled groups being g2 = 6, g3 = 12, and
g4 = 22.

The experimental results show that our method can recon-
struct the actual NMR quantum states more accurately and ef-
fectively with only a small amount of observation data directly.
The method proposed in this paper is the optimal reconstruc-
tion method under the existing conditions and can instruct the
reconstructions of high-qubit quantum states in NMR.

IV. CONCLUSION

In this paper, we first reconstructed actual NMR quantum
states via compressed sensing. We also proposed an effective
NMR quantum state reconstruction method based on CS and
gave a detailed derivation of the method in both theoretical and
experimental aspects. The observation data is directly used
in our method so as to save the transformation process of
QST, which effectively enhances the efficiency of the state
reconstruction in practical NMR experiments. We validated
our method with actual measurement data of different qubit
states and analyzed the effect of different factors on the
reconstruction performance. The reconstruction performance
reveals both efficiency and accuracy with the increase of
system dimension size. The method proposed in this paper is
both feasible in implementation and accurate in reconstruction
and can greatly reduce the number of measurements required,
which provides a protocol for the state reconstruction with
higher qubits in practical NMR computing experiments.
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