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We show that the essential properties of a Feshbach resonance in cold atomic gases can be tuned by dressing
the atomic states in different scattering channels through inter-channel couplings. Such a scheme can be readily
implemented in the orbital Feshbach resonance of alkaline-earth-metal-like atoms by coupling hyperfine states
in the clock-state manifolds. Using 173Yb atoms as an example, we find that both the resonance position and the
two-body bound-state energy depend sensitively on the inter-channel coupling strength, which offers control pa-
rameters in tuning the inter-atomic interactions. We also demonstrate the dramatic impact of the dressed Feshbach
resonance on many-body processes such as the polaron to molecule transition and the BCS-BEC crossover.
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Introduction. Feshbach resonance (FR) has been a key
element in the toolbox of quantum control in cold atomic gases
[1]. By making the strongly interacting regime accessible, FR
enables the preparation and investigation of strongly correlated
many-body quantum states in the highly controllable environ-
ment of cold atoms. The essential properties of FRs in cold
atomic gases can be grasped by considering a two-channel
scattering process, in which a scattering resonance occurs as a
bound molecular state in the so-called closed channel crosses
the continuum threshold of the open channel [see Fig. 1(a)].
As the interaction potentials associated with both scattering
channels typically depend on the internal states of atoms,
external magnetic or optical fields can be applied to shift the
potentials and tune the interatomic scattering length.

Previous studies have shown that FRs can be modified
either by dressing the molecular bound state in the closed
channel [2–9], or by coupling different atomic states in the
open channel [10–14]. Under these situations, the resonance
position as well as the atomic scattering length can be
tuned by additional parameters. In principle, interchannel
couplings between atomic states should also modify the
resonant scattering by shifting the relative position between
the continuum thresholds of the scattering channels. However,
in the conventional magnetic FR of alkali-metal atoms, the
open- and the closed-channel thresholds are far-detuned, such
that the scattering states in the closed channel are not accessed
in the low-energy scattering. This is not the case in the
recently discovered orbital Feshbach resonance (OFR) in
alkaline-earth-metal-like atoms [15–17], where the continuum
thresholds of the two scattering channels are close to one
another. This opens up the interesting possibility of dressing
FRs by interchannel couplings.

A typical OFR in alkaline-earth-metal-like atoms involves
four hyperfine states in the ground 1S0 (referred to as the |g〉
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orbital) and the metastable 3P 0 (the |e〉 orbital) manifolds [15].
In an OFR, the open channel corresponds to one atom in |g↓〉
and the other in |e↑〉, the closed channel corresponds to one
in |g↑〉 and the other in |e↓〉. Here, |↓〉 and |↑〉 represent
two different nuclear-spin states in the hyperfine manifolds
of the clock states 1S0 and 3P 0. As illustrated in Figs. 1(b)
and 1(c), the interchannel coupling can be implemented
either by imposing Raman lasers coupling the nuclear-spin
states in the same manifold (the Raman scheme), or by
directly driving the clock transition 1S0-3P0 (the Rabi scheme).
While coupling the clock states typically requires ultrastable
and high-power lasers, which can give rise to additional
heating due to the photon recoil, these difficulties should
be manageable with existing techniques, particularly in light
of the recent experimental realization of synthetic spin-orbit
coupling in alkaline-earth-metal-like atoms [18–21]. Note
that while the interchannel couplings also realize synthetic
spin-orbit coupling (SOC) within the clock-state manifolds,
as has recently been experimentally realized, the dressing of
the FR and the modification of the resonance properties are
related to the shifting of the continuum thresholds of the
scattering channels, rather than the momentum transfer of
the SOC. With the interchannel couplings, we will show that
the resonance position as well as the scattering length of the
OFR are drastically modified by the coupling strength. For
example, in 173Yb atoms, given a typical coupling strength,
the shift in the resonance position can be on the order of the
resonance width [22], which gives rise to resonant interactions
even at zero magnetic field. Thus, by providing additional
control parameters over the few-body and the associated
many-body states across the dressed FR, our scheme not
only holds the potential of extending the flexibility of FRs
in cold atomic gases, but also has immediate implications
for the quantum simulation using alkaline-earth-metal-like
atoms near the orbital FR. These include new routes toward
enhancing Kondo coupling [23–28], as well as the interesting
possibility of investigating many-body localization [29,30] or
the Floquet dynamics [31] by introducing spatial or temporal
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modulation of interaction potentials [32]. In the following,
before discussing the impact of interchannel couplings on the
few- and many-body properties of OFR, we first give a general
description of the dressed FR with a minimal two-channel
model.

Model. We consider a two-channel model for the scattering
of two atoms with mass m, where the two atomic internal
states in the closed channel labeled by {|u〉c,|d〉c} and the ones
in the open channel {|u〉o,|d〉o} are dressed by interchannel
couplings. The noninteracting Hamiltonian of the relative
motion is

H0 =
(

− h̄2∇2

m
+ δ0

)
|cc〉〈cc| − h̄2∇2

m
|oo〉〈oo|

+
(

− h̄2∇2

m
+ δ0

2

)
(|co〉〈co| + |oc〉〈oc|)

+
∑

n={u,d}
�0(|n〉c〈n|o + H.c.), (1)

where |cc〉 = |d〉c|u〉c, |oo〉 = |d〉o|u〉o, |co〉 = |d〉c|u〉o, and
|oc〉 = |d〉o|u〉c form the Hilbert space of two-body wave
functions. δ0/2 gives the single-particle energy detuning
between the scattering channels, and �0 is the interchannel
coupling strength. Without loss of generality, the interaction
Hamiltonian can be written in the form of the Huang-Yang
pseudopotential

Hint = 4πh̄2

m

∑
i,j

aij |ii〉〈jj |δ(r)
∂

∂r
(r·), (2)

where r is the relative coordinate, and aij (i,j = {o,c}) is the
corresponding s-wave scattering length.

Under the interchannel coupling, the single-particle in-
cident scattering states become |n〉1 = cos θ |n〉c − sin θ |n〉o
and |n〉2 = sin θ |n〉c + cos θ |n〉o, where the indices (1,2)
label the new incident scattering channels, and tan θ =
(δ0/4 +

√
(δ0/4)2 + �2

0)/�0. The noninteracting Hamilto-
nian H0 is diagonal under the basis {|d〉α|u〉β} (α,β =
1,2), with H0 = ∑

α,β(−h̄2∇2/m + εα + εβ)|αβ〉〈αβ|, where

|αβ〉 = |d〉α|u〉β , and ε1,2 = δ0/4 ∓
√

(δ0/4)2 + �2
0. The scat-

tering wave function can then be written as

|
(r)〉 =
[
eik·r + f11(k)

eikr

r

]
|d〉1|u〉1

+
∑

α,β 	=(1,1)

fαβ(k)
e−καβ r

r
|d〉α|u〉β, (3)

where καβ =
√

m�αβ/h̄2 − k2, �αβ = εα + εβ − 2ε1, and
fαβ is the scattering amplitude of the corresponding channel.
h̄k is the relative momentum with respect to the scattering
threshold 2ε1.

Substituting Eq. (3) into the Schrödinger’s equation (H0 +
Hint − h̄2k2/m − 2ε1)|
(r)〉 = 0, we get a set of coupled
equations for the scattering amplitudes. We may then extract
the low-energy scattering length from f11(k), which belongs

FIG. 1. (a) Left: illustration of the scattering channels in a typical
s-wave FR. Right: dressing the FR with interchannel couplings.
(b) Raman scheme for the interchannel coupling in an OFR. (c) Rabi
scheme for the interchannel coupling in an OFR. The labels for the
atomic states, the coupling parameters, and the detunings are defined
in the text.

to the lowest-energy scattering channel

a(11)
s = − lim

k→0
f11(k)

= − a1

√
R(2 + 4

√
2 cot2 2θ ) − a4

2
√

2Ra1 + (−√
2Ra3 − 2

√
Ra2) + 1

, (4)

where a1 = (accaoo − a2
co) sin2 θ cos2 θ, a2 = (acc +

aoo − 2aco) sin2 θ cos2 θ, a3 = acc sin4 θ + aoo cos4 θ +
2aco sin2 θ cos2 θ, a4 = acc cos4 θ + aoo sin4 θ +
2aco sin2 θ cos2 θ , and R = m

√
δ2

0/4 + 4�2
0/h̄

2. Note
we have assumed aco = aoc in the derivation. The scattering
resonance occurs when a(11)

s diverges. As the denominator
of Eq. (4) is dependent on �0 and δ0, both the scattering
length and the resonance location should depend on these
parameters.

Implementation. With long-lived excited states and flexible
controls over the clock states, OFR in alkaline-earth-metal-like
atoms offers a natural platform for the realization of the dressed
FR. As illustrated in Fig. 1, the interchannel couplings can
be achieved by either the Raman scheme [Fig. 1(b)] or the
Rabi scheme [Fig. 1(c)]. In particular, when the Raman lasers
in the Raman scheme are copropagating, the relative motion
of the noninteracting system corresponding to the setup in
Fig. 1(b) can be described by the minimal model Eq. (1),
with (u,d) corresponding to the so-called orbital degrees of
freedom (g,e). �0 is given by the effective Rabi frequency
of the Raman process, and the detuning δ0 is given by the
differential Zeeman shift of the clock-state manifolds [33,34].
In an OFR, the two-body interactions at the short range occur
either in the electronic spin-singlet and nuclear spin-triplet
channel, with s-wave scattering length a−; or in the electronic
spin-triplet and nuclear spin-singlet channel, with scattering
length a+ [35–37]. Thus, the scattering lengths a± associated
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with these short-range potentials are related to the scattering
lengths in Eq. (2) as acc = aoo = (a+ + a−)/2, aco = (a+ −
a−)/2. In this case, Eq. (4) can be directly applied to describe
the dressed OFR.

In the more general case of finite photon recoils in the
Raman process, or in the case of the Rabi scheme, where
photon recoils are inevitable, the minimal model discussed
above becomes inadequate. Furthermore, due to the narrow
linewidth of the states in the 3P 0 manifold, the heating in
the laser-coupling process should be significantly reduced in
the Rabi scheme, which makes it more appealing compared
to the Raman scheme. In the following, we will focus on the
dressed OFR under the Rabi scheme, using 173Yb atoms as a
concrete example.

Dressed resonance in the Rabi scheme. Due to the inevitable
momentum transfer in the Rabi scheme, the relative and the
center-of-mass motion of the scattering states are coupled,
which makes the characterization of the scattering process
rather cumbersome. However, one can still identify the reso-
nance from the two-body bound-state threshold. We start from
the noninteracting Hamiltonian in the second quantized form

H ′
0 =

∑
k,j

(
εk + ηj

h̄2k0kx

m

)
a
†
j,↓,kaj,↓,k

+
∑
k,j

(
εk + ηj

h̄2k0kx

m
+ �j

)
a
†
j,↑,kaj,↑,k

+�
∑
k,σ

(a†
g,σ,kae,σ,k + H.c.), (5)

where a
†
j,σ,k (aj,σ,k) creates (annihilates) an atom in the

corresponding pseudospin state e−iηj (k0x/2)|j,σ 〉 (j =
{g,e}, σ = {↑ , ↓}) with momentum k. Here, ηg/e = ±, k0

and � are, respectively, the wave vector and the Rabi frequency
of the coupling laser, εk = h̄2k2/2m, and the Zeeman shift
of the state |j 〉 (j = {g,e}) given by �j = gjμBB, with
μB the Bohr magneton, gj the Landé factor, and B the
external magnetic field. Here, for convenience, we have
taken the difference between the magnetic angular momenta
of the states | ↑〉 and | ↓〉 to be 1. We define the helicity
operators a±,σ,k = cos θ±

σ,kag,σ,k + sin θ±
σ,kae,σ,k, where

sin θ+
σ,k = �/

√
�2 + (h̄2k0kx/2m − ξσ )2, θ−

σ,k = θ+
σ,k + π/2,

with ξk,↑ =
√

�2 + (h̄2k0kx/2m − δ/2)2 + δ/2, ξk,↓ =√
�2 + (h̄2k0kx/2m)2, and δ = �g − �e. The

single-particle Hamiltonian can then be written
as H ′

0 = ∑
k,ν,σ Eν

k,σ a
†
ν,σ,kaν,σ,k, with E±

k,↓ = εk ±√
�2 + (h̄2k0kx/2m)2, and E±

k,↑ = εk + �e + δ/2 ±√
�2 + (h̄2k0kx/2m − δ/2)2. The interaction Hamiltonian is

[15]

H ′
int = g+

2

∑
q

A
†
+(q)A+(q) + g−

2

∑
q

A
†
−(q)A−(q), (6)

where we have A+(q) = ∑
k(ag,↑,q−kae,↓,k − ag,↓,q−kae,↑,k)

and A−(q) = ∑
k(ag,↑,q−kae,↓,k + ag,↓,q−kae,↑,k). The

interaction strength g± are related to the scattering lengths a±
as 1/g± = 1/g

p
± − ∑

k 1/2εk and g
p
± = 4πh̄2a±/m.
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FIG. 2. (a) The lowest two-body bound-state energies EM2 as
functions of the magnetic field B for the dressing parameters
�/E0 = 0.5 (red solid), �/E0 = 1 (blue dashed), and �/E0 =
1.5 (dash-dotted), respectively. The corresponding center-of-mass
momenta are aligned along the x direction with magnitude Qx

shown in the inset. (b) The two-body resonance point where the
bound-state energy reaches the threshold in the �−B plane. Here
k0 is the wave vector of the 578 nm clock transition 1S0 → 3P 0 in
173Yb, and we define the unit of energy through E0 = h̄2k2

0/2m.
For concreteness, we have taken the parameters of 173Yb for
our calculations, with a−

s = 219.5a0, a+
s = 1900a0, ggμB = 2πh̄ ×

207.15 Hz/G, geμB = 2πh̄ × 93.78 Hz/G, where a0 is the Bohr
radius [16,17,33,34].

The wave function of the two-body bound state can be
written as

|M2〉Q =
∑

k

∑
μ,ν=±

ψ
μν

k a
†
μ,↑,Q−ka

†
ν,↓,k|vac〉 (7)

with the bound-state wave function ψ
μν

k . From
the Schrödinger’s equation (H ′

0 + H ′
int)|M2〉Q =

(EM2 + E
(2)
th )|M2〉, we derive the closed equation for

the two-body bound state as det G = 0 with

G =
[

1
2 ( 1

g+
+ 1

g−
) − F11

1
2 ( 1

g+
− 1

g−
) − F12

1
2 ( 1

g+
− 1

g−
) − F21

1
2 ( 1

g+
+ 1

g−
) − F22

]
, (8)

and

Fmn =
∑

k

∑
μ,ν

f m
μν(Q,k)f n

μν(Q,k)

(EM2 − E
μ

Q−k,↑ − Eν
k,↓)

, (9)

and f 1
μν = sin θν

↓,k cos θ
μ

↑,Q−k, f 2
μν = cos θν

↓,k sin θ
μ

↑,Q−k. The
ground state can be solved by minimizing EM2 with respect to
the center-of-mass momentum Q. Here the two-body threshold
energy E

(2)
th = ε0

↑ + ε0
↓, with ε0

σ = min(E−
k,σ ). Note that ε0

↑ =
ε0
↓ at B = 0.

As shown in Fig. 2, both the bound-state energy and the
bound-state threshold (EM2 = 0) are functions of the magnetic
field B and the dressing parameter �. In particular, as demon-
strated in Fig. 2(b), the bound-state threshold can be reached
by tuning � even at zero magnetic field, which suggests a
scattering resonance by tuning the dressing parameter alone.

Impurity problem. The dressing of the OFR on the few-body
level can lead to various interesting many-body effects. As an
exemplary case intervening few- and many-body scenarios,
we first study the impurity problem where an impurity atom
in the |↑〉 state interacts attractively with a Fermi sea of N

atoms in the |↓〉 state. In the presence of the coupling laser
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FIG. 3. (a) Molecule (red dashed) and polaron (blue solid)
energies as functions of the magnetic field B at �/E0 = 1. The inset
shows the center-of-mass momentum Qx of the polaron (blue solid
line) and the molecule (red dashed line), respectively. (b) Molecule
(red dashed line) and polaron energies (blue solid line) as functions
of � with B = 0. Here the center-of-mass momenta of both states
are zero. (c) Polaron-molecule transition on the �−B plane. (d) The
center-of-mass momentum Qx at the transition point for polaron
(blue solid line) and molecule (red dashed line), respectively. Here
the Fermi energy relative to the single-particle-dispersion minimum
ε0
↓ is taken as (EF − ε0

↓)/E0 = 0.25. The atomic parameters of 173Yb
are shown in the caption of Fig. 2.

in the Rabi scheme, the single-particle eigenstates for both
the majority atoms and the impurity are the helical states.
The many-body ground state of such a system can undergo
a polaron to molecule transition as the interaction strength
increases. In the absence of the coupling laser, it has been
shown that the transition occurs at a given magnetic field [38].
With a coupling laser dressing the OFR, we will show that this
is no longer the case, as the transition becomes dependent on
the dressing parameter �.

The molecule (|M〉Q) and the polaron (|P 〉Q) states can be
described using the Chevy-type ansatz [39,40]

|M〉Q =
∑
μ,ν

∑
Eν

k,↓>EF

φ
μν

k a
†
μ,↑,Q−ka

†
ν,↓,k|FS〉N−1, (10)

|P 〉Q =
∑

μ

ψ
μ

Qa
†
μ,↑,Q|FS〉N

+
∑
μνλ

∑
E

μ
q,↓<EF

Eν
k,↓>EF

ψ
μνλ

k,q a
†
λ,↑,Q+q−ka

†
ν,↓,kaμ,↓,q|FS〉N,

(11)

where φ
μν

k ,ψ
μ

Q,ψ
μνλ

k,q are the corresponding wave functions,
and Q is the center-of-mass momentum. For simplicity, we
have dropped higher-order terms in the particle-hole expan-
sions for both states. From the equations (H ′

0 + H ′
int)|α〉Q =

(Eα + Eth)|α〉Q (α = P,M), we can derive the closed equa-
tions for the molecule and the polaron states. The closed

equation for the molecular state takes the form det(G′) = 0,
where the definitions of G′ and F ′

mn are similar to those
in Eqs. (8) and (9), except that the summation over k is
constrained by Eν

k,↓ > EF and that EM2 is replaced by ẼM .
Here, we have ẼM = EM + EF + ε0

↑. The closed equation for
the polaron state has the form

det(KT ) + Tr(KσzσxT σxσz) = 1, (12)

where σx and σz are the Pauli matrices and the matrix elements
of K and T are

Kmn =
∑

μ

β
m,μ

↑,Q β
n,μ

↑,Q

(ẼP − E
μ

Q,↑)
,

Tmn =
∑

μ,E
μ
q,↓<EF

β
m,μ

↓,q β
n,μ

↓,q

det G′(ẼP + E
μ

q,↓,Q + q)

×G′
mn(ẼP + E

μ

q,↓,Q + q), (13)

with β
1,±
σ,k = sin θ±

σ,k, β
2,±
σ,k = cos θ±

σ,k, and ẼP = EP + ε0
↑.

The energies of the polaron and the molecule state can be
obtained by solving the closed equations above and looking for
the Q sector with the lowest energy. Here the threshold energies
are Eth = ε0

↑ + ∑
E−

k,↓<EF
E−

k,↓, where EF is the Fermi energy.
For simplicity, we only consider the case where the Fermi sea
|FS〉 is entirely in the lower helicity branch. As shown in Fig. 3,
the polaron-molecule transition is now a function of both B

and �. In the zero-magnetic-field limit, a polaron-molecule
transition can be tranversed by tuning the dressing parameter
� alone.

BCS-BEC crossover. To demonstrate the impact of dressed
FR in the fully many-body environment, we now study the
BCS-BEC crossover near an OFR under the Rabi scheme. For
simplicity, we will focus on the case of zero magnetic field, and
show that by adjusting the dressing parameter, the system can
be tuned through the crossover region and into the BCS regime.
In the case of nonzero magnetic fields, the asymmetry in the
single-particle dispersion induced by the differential Zeeman
shifts should give rise to interesting Fulde-Ferrell pairing states
[41,42].
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FIG. 4. (a) Pairing-order parameter �− as a function of � at
B = 0. Note �+ = 0 at B = 0. (b) The chemical potential relative to
the single-particle dispersion minimum ε0

↓ at B = 0. We have fixed
the total particle density n = k3

0/3π 2. The atomic parameters of 173Yb
are shown in the caption of Fig. 2.
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Following the BCS-type mean-field approach, we write the
mean-field interaction Hamiltonian as

H MF
int = [�+A

†
+(0) + H.c.] + [�−A

†
−(0) + H.c.]

− 2

g−
�2

− − 2

g+
�2

+, (14)

where the order parameters are defined as �− =
(g−/2)〈A−(0)〉 and �+ = (g+/2)〈A+(0)〉. We have assumed
zero center-of-mass momentum for the pairing mean fields,

which is consistent with results for the two-body and the
molecule states at B = 0. The effective Hamiltonian Heff =
H ′

0 + H MF
int − μN is then

Heff =
∑

k


†(k)M(k)
(k) − 2

g−
�2

− − 2

g+
�2

+

+
∑

k

2(εk − μ), (15)

where μ is the chemical potential, N is the total particle
number in the relevant clock states, and

M(k) =

⎛
⎜⎜⎝

εk + k0kx

2m
− μ � 0 �+ + �−

� εk − k0kx

2m
− μ �+ − �− 0

0 �+ − �− −(εk − k0kx

2m
− μ) −�

�+ + �− 0 −� −(εk + k0kx

2m
− μ)

⎞
⎟⎟⎠, (16)

and 
†(k) is defined as (a†
e,↓, ka

†
g,↓, kae,↑, −kag,↑,−k).

We then diagonalize M(k) with the Bogoliubov trans-
formation M(k)Xα = Eα(k)Xα (α = 1,2,3,4), and obtain
the quasiparticle energy Eα(k) together with the vectors of
Bogoliubov coefficients Xα . This leads to the zero-temperature
thermodynamic potential K = 〈Heff〉BCS (here the expectation
value is taken with respect to the BCS ground state),

K =
∑
kα

�[−Eα(k)]Eα(k) +
∑

k

2(εk − μ)

− 2

g−
�2

− − 2

g+
�2

+, (17)

where �(x) is the Heaviside step function. The gap and the
number equations can be obtained, respectively, from the
conditions ∂K/∂�± = 0, and ∂K/∂μ = −N , from which it
is straightforward to solve �± and μ.

In Fig. 4(a), we see that as the dressing parameter �

increases, the pairing mean field �− decreases monotonically,
which suggests that the system is approaching the BCS regime.
This picture is confirmed in Fig. 4(b), where the chemical
potential relative to single-particle dispersion minimum ε0

↓
is shown. With increasing �, the relative chemical potential
changes its sign from negative to positive, and eventu-
ally approaches E0. As E0, by definition, is the Fermi

energy of a noninteracting two-component Fermi sea (see
Fig. 4 caption), the behavior of the chemical potential is
a clear signature that the system changes from bosonic to
fermionic, and reaches the deep BCS regime in the large-�
limit.

Final remarks. We have shown that by coupling atomic
modes in the two relevant scattering channels of a Feshbach
resonance, the resonance position can be made sensitively
dependent on the coupling parameters. This provides further
tunability to prepare atoms in the strongly interacting
regime. In light of the recent experimental realization of
spin-orbit couplings in alkaline-earth-metal atoms, our
prediction can be readily observed experimentally, and
offers exciting possibilities for the quantum simulation using
alkaline-earth-metal-like atoms.
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