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Tight-binding methods for general longitudinally driven photonic lattices: Edge states and solitons
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A systematic approach for deriving tight-binding approximations in general longitudinally driven lattices is
presented. As prototypes, honeycomb and staggered square lattices are considered. Time-reversal symmetry is
broken by varying and/or rotating the waveguides, longitudinally, along the direction of propagation. Different
sublattice rotation and structure are allowed. Linear Floquet bands are constructed for intricate sublattice rotation
patterns such as counter-rotation, phase offset rotation, as well as different lattice sizes and frequencies. An
asymptotic analysis of the edge modes, valid in a rapid-spiraling regime, reveals linear and nonlinear envelopes
which are governed by linear and nonlinear Schrödinger equations, respectively. Nonlinear unidirectional edge
modes, referred to as topologically protected edge solitons, are identified. Direct numerical simulations for both
the linear and nonlinear edge states agree with asymptotic theory. Topologically protected modes are found; they
possess unidirectionality and do not scatter at lattice defect boundaries.
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I. INTRODUCTION

In recent years the study of topological edge and/or interface
and surface modes has been a very active area of research. Fun-
damental research in systems where time-reversal symmetry
is broken has been found to support unidirectional edge modes
that remain intact over long distance and against defects;
these systems include magneto-optics [1,2], photonics [3–5],
and acoustics [6]. While these systems have very different
underlying physics they all share some common properties;
they have a boundary that separates two distinct regions. A
boundary discontinuity alone can be enough to support edge
states, but to generate topologically protected modes in these
systems typically time-reversal symmetry must be broken. The
manner in which this is accomplished is different for each
system; here, however, we focus on optical beams propagating
through longitudinally driven waveguide arrays.

Some of the recent advances in topologically protected
systems include: PT -symmetry crystals [7], bianisotropic
metamaterials [8,9], and surface plasmons [10]. Higher-
dimensional systems have also been examined [11], where the
three-dimensional analog of Dirac points called Weyl points
has been reported [12,13]. Quasi-crystal-type arrays can also
support unidirectional edge states [14].

In photonic lattices, regions of high refractive index can
be carved into bulk silica using femtosecond laser etching
techniques [15,16] and act as waveguides for the beam.
One way to break time-reversal symmetry is to rotate these
waveguides longitudinally, creating an array configuration that
changes along the direction of beam propagation. Such lattices,
which are orthogonal to the direction of the beam propagation,
have been experimentally constructed at optical frequencies
and found to support topologically protected edge modes [5].

One of the special features topological edge modes exhibit
is their one-way scatter-free motion even when lattice defects
are encountered. Such traveling modes are said to be topo-
logically protected meaning that unidirectionality is preserved
even under significant deformations of the lattice. Topological
invariants, such as Chern number [17] or Zak phase [18],
can be associated with and used to identify these topological
modes. The robust nature of topologically protected edge

modes suggests that they will be useful in many applications
where small imperfections are always present.

Photonic lattices that can support linear edge modes include
honeycomb [5] and staggered square lattices [19,20] each of
which have two lattice sites per unit cell. We refer to any
lattice with two or more sites in a unit cell as nonsimple.
In this paper we provide a direct route for deriving tight-
binding equations that describe beam propagation in general
longitudinally varying lattices with either simple or nonsimple
configurations. As typical examples we analyze honeycomb
and staggered square lattices, though more complex lattices
can be considered within the framework we present. In
doing so, we are able to study a wide range of lattice
dynamics including periodic but nonsynchronized (out of
phase) waveguide motion with phase offset across the two
sublattices, or counter-rotating lattices, etc. The Floquet bands
and corresponding edge modes exhibit intriguing dynamics
which include flat (stationary), nonunidirectional, oscillatory,
and simultaneous topological and nontopological eigenstates.
These modes complement the well-known [5] traveling edge
states present when the lattice waveguides rotate in phase with
each other.

For a particular rotation pattern we find common structure
in the dispersion bands of both the honeycomb and staggered
square lattices. This suggests that for certain waveguide
rotation there is an associated edge wave dynamic that is
independent of the underlying lattice configuration. Addition-
ally, our tight-binding model incorporates the geometry of the
individual waveguides. When the waveguides are stretched in
a preferred direction we find nontopologically protected states
the edge modes of which reflect at lattice defects, rather than
simply moving around the defect like a protected mode.

We present an asymptotic analysis which reveal nonlinear
edge modes that are modulated by slowly-varying envelopes
which satisfy a one-dimensional (1D) nonlinear Schrödinger
(NLS) equation. Hence we refer to these traveling modes
as edge solitons, where applicable. The NLS equation is a
universal model for the envelope description of dispersive
waves in weakly nonlinear media, like the systems we consider
in this paper. The nonlinear edge mode envelope can be seen
as a balance between the lattice induced linear dispersion
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effects and sufficiently strong beam focusing. Indeed, many
properties associated with the NLS equation can be found in
photonic topological insulators, such as modulational insta-
bility [21], band-gap solitons [22], and soliton propagation
in helically driven photonic graphene [23]. Moreover, we
construct nonlinear modes that, to leading order, satisfy the
focusing NLS equation with corresponding linear dispersion
that is topologically protected. These modes travel stably
around defects. Hence we term these solutions topologically
protected edge solitons.

The outline of the paper is as follows. In Sec. II we
derive a tight-binding model that describes paraxial beams in
general longitudinally driven honeycomb and staggered square
lattices. The linear dispersion bands for one-dimensional edge
states are computed via Floquet theory in Sec. III. Here
we study several complex sublattice rotation patterns and
their effect on the edge mode dynamics. In Sec. IV we
consider nonlinear edge beams. Both linear and nonlinear edge
modes are found to be modulated by slowly varying envelope
functions that satisfy the linear and nonlinear Schrödinger
equations, respectively. In the nonlinear regime an asymptotic
analysis shows that edge solitons exist for solutions with
narrow spectral support around some central frequency. The
edge wave behavior across lattice defects is explored in Sec. V.
There we observe topologically protected modes to be scatter
free at lattice barriers, in contrast to nontopologically protected
modes. We conclude in Sec. VI.

II. DERIVATION OF TIGHT-BINDING APPROXIMATION

Nonlinear quasimonochromatic light beams propagating
through photonic lattices are described by the paraxial wave
or NLS equation

i
∂ψ

∂z
+ 1

2k0
∇2ψ − k0

n0
[n�(r,z) − n2|ψ |2]ψ = 0, (1)

where ∇2 ≡ ∂2
x + ∂2

y and ψ(r,z) is a complex envelope func-
tion defined on the transverse plane r = (x,y) and propagation
direction z. The function n�(r,z) is related to the lattice
potential and it models the variations in the refractive index.
The physical parameters are the wave number k0 = 2πn0/λ,
bulk index of refraction n0, beam wavelength λ, deviation from
bulk index |�n|, and Kerr coefficient n2.

We may think of a lattice with two generating sites per
unit cell as the combination of two interpenetrating sublattice
potentials V1(r) and V2(r). These two sublattices have regions
of high refractive index concentrated at the black and white
lattice sites, respectively, as shown in Figs. 1 and 2. To model
such a lattice configuration we employ the potential function

n�(r) = |�n|[1 − V1(r) − V2(r)], (2)

which consists of well-localized dips (minima) located at the
lattice sites. For relatively large potentials we approximate
these sublattices by the sum of Gaussians

V1(r) =
∑
rb∈B

Ṽ (r − rb), V2(r) =
∑

rw∈W
Ṽ (r − rw), (3)

Ṽ (r) = exp

(
− x2

σ 2
x

− y2

σ 2
y

)
σx,σy > 0,
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FIG. 1. The honeycomb lattice consists of two triangular sublat-
tices V1(r) and V2(r) with minima (zeros) located at the black circles
and white circles, respectively. The defining lattice vectors are given
in Eq. (15).

where the positions of the white and black lattice sites are
given, respectively, by the sets

B = {rb : V1(rb) = 1}, W = {rw : V2(rw) = 1}.
Asymmetry in the waveguide geometry can be explored by
adjusting the width parameters σx and σy. When σx = σy we
say the lattice is isotropic, whereas when σx �= σy the lattice
is anisotropic. Detuning (difference in the refractive index)
between the sublattices can be approximated by including

v2

v1

a2m−1,3a2m−1,1

a2m−3,3

a2m+1,3

a2m−3,1

a2m+1,1

b2m,2

b2m−2,2

b2m,0
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FIG. 2. The staggered square lattice consists of two interpenetrat-
ing square sublattices V1(r) and V2(r) with minima (zeros) located at
the black circles and white circles, respectively. The defining lattice
vectors are given in Eq. (16).

043868-2



TIGHT-BINDING METHODS FOR GENERAL . . . PHYSICAL REVIEW A 96, 043868 (2017)

a coefficient 0 < q < 1 in front of one of the sublattice
potentials, i.e., V2(r) → qV2(r). Investigation of detuned
lattices is beyond the scope of this paper and we do not
consider it here. We point out that this approach can be readily
extended to lattices with more than two lattice sites per unit cell
by adding an additional sublattice V3(r) function to potential
function (2) that is defined similarly to Eq. (3).

For well-separated lattice sites, and when r is near rw or
rb, the potential function (2) is approximated by the first few
terms of its Taylor series and thus takes a paraboloid form,
namely,

n�(r) ≈ |�n|
(

x2

σ 2
x

+ y2

σ 2
y

)
as r → rw,rb. (4)

The orbital functions used to construct the ansatz in Eq. (11) are
normalized Gaussians centered at the lattice sites and satisfy
a linear Schrödinger equation with potential functions of the
form in Eq. (4).

To break time-reversal symmetry the two sublattices V1(r)
and V2(r) are rotated according to the parametric functions
h1(z),h2(z), respectively, i.e.,

n�(r,z) = |�n|[1 − V1(r − h1(z)) − V2(r − h2(z))].

The only restrictions we place upon the functions h1(z),h2(z)
is that they are smooth. This is quite general. Below, we will
assume h1(z),h2(z) are periodic, but they need not be so. In
particular, we take

hi(z) = Ri( cos (	iz + χi), sin (	iz + χi)), i = 1,2 (5)

where Ri is the helix radius, 	i is the angular frequency of the
oscillation, and χi is a phase shift.

Next we move into a coordinate frame comoving with the
V1(r,z) sublattice by performing the change of variable

r′ = r − h1(z), z′ = z,

which (after the prime notation is dropped) gives the equation

i
∂ψ

∂z
− ih′

1(z) · ∇ψ + 1

2k0
∇2ψ

− k0

n0
[n�(r,z) − n2|ψ |2]ψ = 0. (6)

Introducing the phase transformation

ψ(r,z) = ψ̃(r,z) exp

(
−i

∫ z

0 |A(ζ )|2dζ

2

)
,

the pseudofield (vector potential) defined by A(z) = −k0h′
1(z)

yields (after dropping the tilde notation)

i
∂ψ

∂z
+ 1

2k0
[∇ + iA(z)]2ψ − k0

n0
[n�(r,z) − n2|ψ |2]ψ = 0.

(7)
We nondimensionalize by

x = lx ′,y = ly ′,z = z∗z′,

σx = lσ ′
x,σy = lσ ′

y,ψ =
√

I∗ψ ′,

where l is the distance between nearest-neighbor lattice
sites, z∗ = 2k0l

2 is the characteristic propagation distance,
I∗ is the peak input beam intensity, σ = 2k2

0 l
2I∗n2/n0 is the

nonlinearity coefficient, and V 2
0 = 2k2

0 l
2|�n|/n0 the lattice

amplitude. Dropping the ′ notation, these rescalings give the
dimensionless equation

i
∂ψ

∂z
+ [∇ + iA(z)]2ψ − V (r,z)ψ + γ |ψ |2ψ = 0, (8)

with the dimensionless potential

V (r,z) = V 2
0 [1 − V1(r) − V2(r − �h21(z))],

where �h21(z) = h2(z) − h1(z).
In this paper we focus on periodic rotation in z. The most

general form of the dimensionless rotation functions is taken
to be

hi(z) = ηi

(
cos

(
z

εi

+ χ̃i

)
, sin

(
z

εi

+ χ̃i

))
, i = 1,2

where ηi � 0 is the ratio of the helix radius to the distance be-
tween adjacent lattice sites, ε−1

i is the helix angular frequency,
and χ̃i is a phase shift. The sign of γ is taken to be positive
corresponding to self-focusing Kerr nonlinear media [24], e.g.,
fused silica. To simplify Eq. (8) the phase transformation
ψ(r,z) = φ(r,z)e−ir·A(z) is introduced and gives

i
∂φ

∂z
+ ∇2φ + r · Azφ − V (r,z)φ + γ |φ|2φ = 0. (9)

The dimensionless pseudofield is given by

A(z) = κ

(
sin

(
z

ε1
+ χ1

)
, − cos

(
z

ε1
+ χ1

))
, (10)

where κ = k0�R1	1 = η1/(2ε1). In the remainder of this
paper the lattice rotation is done relative to the rotating frame
parameters: 	1,R1,χ1. Below we simply drop the subscript
and call these parameters ε, η, and χ .

To simplify the analysis of Eq. (9) a tight-binding ap-
proximation is applied. From a physical point of view
this assumption is justified by the fact that many photonic
experiments are performed in strong lattice regimes where
V 2

0 
 1. In the deep lattice limit the scalar field φ(r,z) is
well approximated by coupled evanescent modes centered at
the (rotating) lattice sites. Rigorous studies of these types of
approximations were carried out in [25].

The translational symmetry of the lattice motivates the
following ansatz [26]:

φ(r,z) ∼
∑

v

[av(z)φ1,v(r) + bv(z)φ2,v(r,z)]eik·v−iEz, (11)

where the Gaussian functions φ1,v and φ2,v satisfy the
equations

[−∇2 + Ṽ (r − v)]φ1,v = Eφ1,v, (12)

[−∇2 + Ṽ (r − (d + v) − �h21)]φ2,v = Eφ2,v, (13)

for the local paraboloid potential

Ṽ (r) = V 2
0

(
x2

σ 2
x

+ y2

σ 2
y

)
, (14)

(see Appendix A for more details). One may think of expan-
sion (11) as representing the field φ(r,z) in terms of a basis
which consists of Gaussian orbitals centered at the position of
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the associated lattice site. The resulting coefficients express the
inner product (interaction) between nearest-neighbor orbitals.
The interactions are small due to our assumption of V 2

0 being
large.

The two nonsimple lattice configurations we consider in
detail are honeycomb (see Fig. 1) and staggered square (see
Fig. 2). The perfect interpenetrating square lattice, as shown
in Fig. 2, is actually simple, but becomes nonsimple when
there are necessarily different sublattices rotations, e.g., by
introducing a phase offset in one of the sublattices. Other
lattice configurations can be considered with the method we
present. The lattice sites for the honeycomb lattice are related
via the characteristic vectors

v1 =
(

3

2
,

√
3

2

)
, v2 =

(
3

2
, −

√
3

2

)
, d = (1,0), (15)

where |d| = 1 is the distance between nearest neighbors. The
staggered square lattice is defined by the basis vectors

v1 = 1√
2

(1,1), v2 = 1√
2

(1, − 1) (16)

and has a unit distance between neighboring lattice sites as
well.

We substitute ansatz (11) into governing equation (9)
and multiply the resulting equation by φ∗

i,p(r,z),i = 1,2,
where ∗ indicates complex conjugation. The resulting equa-
tion is integrated over the entire domain. For a static
isotropic lattice the interaction strengths are proportional
to [(V 2

0 |v|2)/(4σ 2
x )] exp [−(V0|v|2)/(4σx)], where |v| is the

distance between the different lattices sites. For a typical
set of honeycomb lattice parameters (e.g., V 2

0 = 45,σx =
3/10) the nearest-neighbor coefficients are on the order
of O(10−1), while next-nearest-neighbor interactions are
considerably smaller at O(10−5). In the case of the stag-
gered squared lattice the next-nearest-neighbor interaction
is on the order of O(10−3). For this reason we only con-
sider self- and nearest-neighbor interactions and neglect all
others.

A. Honeycomb tight-binding approximation

For the honeycomb lattice displayed in Fig. 1 we derive
a tight-binding approximation that takes into account the
interactions of a Gaussian orbital with itself and its three
nearest neighbors. However, we point out that next-nearest-
neighbor interactions could be taken into account. In order to
present the simplest picture possible, only the dominant terms
are retained. The tight-binding approximation for this system
is given by

Honeycomb :

i
damn

dz
+ eid·A(z)+iϕ(z)[L−(z)b]mn + σ |amn|2amn = 0, (17)

i
dbmn

dz
+ e−id·A(z)−iϕ(z)[L+(z)a]mn + σ |bmn|2bmn = 0, (18)

where ϕ(z) = ∫ z

0 [�h21(ζ ) · Aζ (ζ )]dζ, and

[L−(z)b]mn = [L0(z) − iR0(z)]bmn

+ [L1(z) − iR1(z)]bm−1,n−1e
−iθ1(z)

+ [L2(z) − iR2(z)]bm+1,n−1e
−iθ2(z),

[L+(z)a]mn = L0(z)amn

+ L1(z)am+1,n+1e
iθ1(z)

+ L2(z)am−1,n+1e
iθ2(z),

with θj (z) = [k + A(z)] · vj . Without loss of generality,
we take k = 0 [23]. The definitions for the coefficients
Lj (z),Rj (z),j = 0,1,2 are given in Appendix B1. The lattice
induced terms in Lj are numerically found to be on the
order O(1). The Rj terms are rotation corrections that go
to zero when h1(z) = h2(z), i.e., same rotation. When the two
sublattices have the same rotation, i.e., �h21 = 0, this system
reduces to that considered in [23] by a simple rescaling (see
Appendix A).

Here we focus on the evolution of edge modes along the
zig-zag edge of a semi-infinite strip domain, the left side of
which is shown in Fig. 1. As the beam evolves down the
waveguide it is assumed to be well confined inside the lattice
region and negligibly small outside. The boundary conditions
chosen to model edge modes on the left zig-zag boundary are

amn = 0 for n < 1, bmn = 0 for n < 0,

amn → 0 as n → ∞, bmn → 0 as n → ∞.

The boundary conditions for edge modes on the right zig-zag
edge mirror these. We consider solutions of the form

amn(z) = an(z; ω)eimω, bmn(z) = bn(z; ω)eimω, (19)

which reduce Eqs. (17) and (18) to

i
dan

dz
+ eid·A(z)+iϕ(z)[L̂−(z)b]n + σ |an|2an = 0, (20)

i
dbn

dz
+ e−id·A(z)−iϕ(z)[L̂+(z)a]n + σ |bn|2bn = 0, (21)

such that

[L̂−(z)b]n = [L0(z) − iR0(z)]bn

+ [L1(z) − iR1(z)]bn−1e
−iω−iθ1(z)

+ [L2(z) − iR2(z)]bn−1e
iω−iθ2(z),

[L̂+(z)a]n = L0(z)an

+ L1(z)an+1e
iω+iθ1(z)

+ L2(z)an+1e
−iω+iθ2(z).

B. Staggered square tight-binding approximation

Next we give a tight-binding approximation describing
beam propagation in the staggered square lattice shown in
Fig. 2. Only the dominant terms resulting from interactions of
a Gaussian orbital with itself and its four nearest neighbors
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are considered. We point out that the indexing given for the
square lattice in Fig. 2 is different than that of the honeycomb
lattice. Here the white lattice sites (the “b” sites) are all located
at even points, and black sites (the “a” sites) are located at odd
positions. This is due to the fact that the underlying lattice is
rectangular. The coupled system describing this is

Staggered square :

i
da2m+1,2n+1

dz
+ eiϕ(z)[L−(z)b]2m+1,2n+1

+ σ |a2m+1,2n+1|2a2m+1,2n+1 = 0, (22)

i
db2m,2n

dz
+ e−iϕ(z)[L+(z)a]2m,2n

+ σ |b2m,2n|2b2m,2n = 0, (23)

where ϕ(z) = ∫ z

0 [�h21(ζ ) · Aζ (ζ )]dζ, and

[L−(z)b]2m+1,2n+1 = [L1(z) − iR1(z)]b2m+2,2n+2e
iθ1(z)

+ [L−1(z) − iR−1(z)]b2m,2ne
−iθ1(z)

+ [L2(z) − iR2(z)]b2m,2n+2e
iθ2(z)

+ [L−2(z) − iR−2(z)]b2m+2,2ne
−iθ2(z),

[L+(z)a]2m,2n = L−1(z)a2m+1,2n+1e
iθ1(z)

+ L1(z)a2m−1,2n−1e
−iθ1(z)

+ L−2(z)a2m−1,2n+1e
iθ2(z)

+ L2(z)a2m+1,2n−1e
−iθ2(z),

with θj (z) = [k + A(z)] · vj . The definitions for the coeffi-
cients Lj (z),Rj (z),j = ±1, ± 2 are given in Appendix B2.
Again, for simplicity we take k = 0.

We focus on the edge modes propagating along the edge of
a semi-infinite strip domain. For localized modes traveling on
the left side of the domain we take the boundary conditions

a2m+1,2n+1 = 0 for n < 0, b2m,2n = 0 for n < 0,

a2m+1,2n+1 → 0 as n → ∞, b2m,2n → 0 as n → ∞.

The boundary conditions on the right side mirror these. We
take solutions of the form

a2m+1,2n+1(z) = a2n+1(z; ω)ei(2m+1)ω,

b2m,2n(z) = b2n(z; ω)ei2mω, (24)

for real ω which yield the following coupled system:

i
da2n+1

dz
+ eiϕ(z)[L̂−(z)b]2n+1 + σ |a2n+1|2a2n+1 = 0, (25)

i
db2n

dz
+ e−iϕ(z)[L̂+(z)a]2n + σ |b2n|2b2n = 0, (26)

where

[L̂−(z)b]2n+1 = [L1(z) − iR1(z)]b2n+2e
iω+iθ1(z)

+ [L−1(z) − iR−1(z)]b2ne
−iω−iθ1(z)

+ [L2(z) − iR2(z)]b2n+2e
−iω+iθ2(z)

+ [L−2(z) − iR−2(z)]b2ne
iω−iθ2(z),

[L̂+(z)a]2n = L−1(z)a2n+1e
iω+iθ1(z)

+ L1(z)a2n−1e
−iω−iθ1(z)

+ L−2(z)a2n+1e
−iω+iθ2(z)

+ L2(z)a2n−1e
iω−iθ2(z).

III. LINEAR FLOQUET BANDS AND EDGE
STATE DYNAMICS

In this section we consider a low amplitude linear limit
(i.e., |amn|2,|bmn|2 ≈ 0) of the full nonlinear systems given in
the previous section. The dispersion relation α(ω) is computed
numerically via Floquet theory [27]. The Floquet multipliers
γ = e−iαT +i2πτ ,τ ∈ Z are obtained from the eigenvalues of
the fundamental matrix solution at z = T , where T is the
period of the lattice. A fourth-order Runge-Kutta method is
used to integrate. For all band diagrams below, 40 lattice
sites (in both an and bn) are used. The Floquet exponent
is calculated up to an additive constant by

α(ω) = i ln[γ (ω)]

T
− 2πτ

T
, τ ∈ Z. (27)

To be specific we will focus on five different rotation patterns
among the sublattices: (1) same rotation, same phase,

h2(z) = h1(z) = η
(

cos
( z

ε

)
, sin

( z

ε

))
; (28)

(2) different radii, same phase,

h2(z) = Rah1(z) = Raη
(

cos
( z

ε

)
, sin

( z

ε

))
, Ra < 1; (29)

(3) π -phase offset rotation,

h2(z) = h1(z + επ ) = −η
(

cos
( z

ε

)
, sin

( z

ε

))
; (30)

(4) counter-rotation,

h2(z) = h1(−z) = η
(

cos
( z

ε

)
, − sin

( z

ε

))
; (31)

and (5) different frequency, same phase,

h2(z) = h1(2z) = η

(
cos

(
2z

ε

)
, sin

(
2z

ε

))
. (32)

We point out that only h2(z) is adjusted to take into
account the nonsynchronized sublattice motion above. The
pseudofield, A(z), is defined in Eq. (10). The physical
parameters chosen in the simulations below are presented in
Table I and reflect the experimental setup used in [5]. For
these values the dimensionless parameters are ε ≈ 0.75/π and
V 2

0 ≈ 45. Moreover, one unit in the dimensionless z is equal
to 6.5 mm in physical units.
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TABLE I. Physical parameters.

� (μm) n0 λ (nm) 	 (rad/cm) |�n|
15 1.45 633 2π 7 × 10−4

A. Honeycomb Floquet bands

In this section we explore the linear band structure induced
by various rotation patterns for the semi-infinite honeycomb
lattice shown in Fig. 1. The Floquet exponents defined in (27)
are determined for the linear one-dimensional system given in
Eqs. (20) and (21). The first Brillouin zone for several Floquet
bands is shown in Fig. 3. Each band structure consists of bulk or
extended (solid regions) and edge or localized (curves) modes.
The parameters used in the simulations are given in Fig. 3.

The first case we consider is that of isotropic waveguides
rotating in phase with each other [Eq. (28), see Fig. 3(a)].
We find this case supports unidirectional edge states. Typical
eigenfunctions from both curve branches are displayed in
Fig. 4. The eigenmode shown in Fig. 4(a) corresponds to the
left zig-zag edge and has strictly negative group velocity, i.e.,
α′(ω) < 0. The situation is reversed for edge modes on the
right zig-zag edge, shown in Fig. 4(b), that have positive group
velocity [α′(ω) > 0]. Taken together, this indicates that the
edge modes on a finite domain propagate along the boundary of
the lattice in a counterclockwise fashion, the same orientation
of the rotating waveguides. Moreover, the outer boundary
modes [|b0| in Fig. 4(a)] are found to have approximately
20 times larger magnitude than the inner boundary mode [|a1|
in Fig. 4(a)].

An asymptotic theory, given in Appendix C, yields (to
leading order) zig-zag modes on the left edge of

amn(z; ω0) = 0, bmn(z; ω0) = C(z)bs
n(ω0)eimω0 , (33)

evaluated at the wave mode ω0, where C(z) = C0 exp (−iεα̃z)
for constant C0 and α̃(ω0) is found explicitly in terms of
integrals; it is given in Eq. (C10). The εα̃ term is an asymptotic
approximation to the exact Floquet value of α. The theory
is valid in the regime where the waveguides are rapidly
oscillating (|ε| � 1) and describes edge modes in the central
gap near α = 0; we refer to this point as the Floquet center.
Where applicable, the asymptotic solutions are compared
against those computed numerically.

Next we consider when the waveguides are rotating in phase
with each other (28) but are anisotropic (σx �= σy). The band
structure in Fig. 3(b) has lost its topologically protected edge
character and we expect backscatter. This observation comes
from the fact that the slopes of edge curves are no longer
sign definite in one Brillouin zone. We point out that this
structure only occurs when σx > σy , i.e., when the waveguides
are elliptical with the major axis in the x direction (also the n

direction). In terms of the results presented in [23], this regime
corresponds to ρ < 1/2.

We now examine when the two sublattices have the
same phase, but one of the waveguides has a radius that is
three-quarters or half the size of the other (29) [Figs. 3(c)
and 3(d)]. In the first case (Ra = 3/4), the crossing bands
observed in Fig. 3(a) have deformed into the noncrossing
curves seen in Fig 3(c), which still have a sign-definite slope.

FIG. 3. The honeycomb lattice linear band structure (27) of
Eqs. (20) and (21) for different sublattice rotation patterns. The
value of η is (a–d) 2/3, (e) 1.7/15, (f) 2/15, (g) 1/10, and (h) 2/15.
The lattice parameters are V 2

0 = 45,ε = 0.75/π,and σx = σy = 0.3,
except (b) where σx = 0.5,σy = 0.25. Red curves correspond to the
asymptotic solution given in Eq. (C10).

The fundamental Floquet exponent, τ = 0, as well as the first
nonfundamental Floquet bands, τ = ±1, defined in Eq. (27)
are shown in Fig. 3(d). The point at which these two branches
meet is α = ±π/T . We refer to this point as the Floquet edge.
We see that there is a family of edge modes that live in this
Floquet edge gap, and the modes in this gap are unidirectional.

Now let us consider a π -phase offset between the two
sublattices (30). The band structure for this arrangement is
shown in Figs. 3(e) and 3(f). Included is the fundamental
Floquet band (τ = 0) as well as its periodic extensions,
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FIG. 4. Honeycomb lattice edge modes corresponding to the (a)
left and (b) right zig-zag edges of Fig. 1. The lattice parameters are the
same as those used to generate Fig. 3(a) at ω = 5π/8 and correspond
to the curves with (a) negative and (b) positive slope.

τ = ±1. Presentation of the different branches of the Floquet
bands in Fig. 5 illustrates how one can understand the
meeting/merging of the interband curves near the Floquet edge.
At sufficiently small helix radii the band structure consists of
bulk bands separated by gaps and exhibits no edge modes.
As the radius of the lattice helix, measured by η, increases,
the gap between the adjacent Floquet bands begins to close
until the bands “kiss” each other at a single point in Fig. 3(e).
This point marks a transition from which any additional driving
introduces a new family of topologically protected edge modes
at the Floquet edge [see Fig. 3(f)]. We point out that these edge
states are distinct from those at the Floquet center. Another
feature that we observe in this case, unlike the case in Fig. 3(a),
is that the edge states do not remain as ε → 0, i.e., rapid helical
rotation (this is shown in Fig. 11).

The next case examined is that of counter-rotation (31). The
bands corresponding to this case are shown in Fig. 3(g). We
find two flat bands, separated by a small gap, that correspond
to nontraveling states. The opposing motions of the two
sublattices evidently cancel each other out yielding zero net
movement, i.e., essentially a stationary state. The final scenario
is when one sublattice has twice the frequency of the other
sublattice (32). The band structure, displayed in Fig. 3(h),
exhibits a set of topologically protected edge modes. We find
that this configuration may possess a weak instability, namely,
|Im{α}| = O(10−3); i.e., it would be a weak exponentially
growing or decaying mode that would only manifest itself
after a long distance.

- /2 0 /2
-4

-2

0

2

4

(
)

(a)

- /2 0 /2
-4

-2

0

2

4
(b)

- /2 0 /2
-4

-2

0

2

4
(c)

 = 0
 = 1

 = -1

+ =

FIG. 5. Floquet bands (27) used to create the π -phase offset band
structure shown in Fig. 3(f). The fundamental (τ = 0) and its periodic
extensions (τ = ±1) are combined at the Floquet edge α = ±π/T ≈
±2.09.

B. Linear edge mode dynamics in the honeycomb lattice

In this section we explore the dynamics of the linear edge
states found in Fig. 3. Specifically, we numerically integrate
the full tight-binding system (17) and (18) corresponding to
solutions of the form given in Eq. (33). In all simulations we
omit nonlinearity: σ = 0. The solutions are initialized at a
chosen frequency, ω0, by

amn(0) = 0, bmn(0) = sech (μm) bn(ω0) eimω0 , (34)

where μ = 0.3 denotes a slowly varying envelope and bn(ω0)
is the numerically computed mode the Floquet bands of which
are shown in Fig. 3. For consistency, we normalize all edge
modes so the two-norm is one, namely, ||bn||22 = 1 via the
discrete inner product ||fn||22 = ∑

n |fn|2. We take periodic
boundary conditions in the m direction and zero boundary
conditions in the n direction. For all z evolutions shown in this
paper we take N = 100 sites in the n direction to ensure the
mode has sufficiently decayed. The system is integrated using
a fourth-order Runge-Kutta method.

Several typical evolutions are displayed in Fig. 6. In the left
column we show the solution magnitude at the left boundary
of the domain, i.e., n = 0. In the right column the maximum
magnitudes for both amn(z) (in blue) and bmn(z) (in black)
over the entire domain are given. In Figs. 6(a) and 6(b)
the propagation of a topologically protected edge mode, the
dispersion curves of which are given in Fig. 3(a), is shown.
The traveling mode moves in the negative direction at a
constant speed. At a point of inflection, α′′(ω) = 0, a method
of stationary phase calculation shows that the edge mode
decays like ∼ z−1/3. Next in Figs. 6(c) and 6(d) a stationary
edge state that is not topologically protected [corresponding
to the bands in Fig. 3(b)] is shown. In contrast to the
previous case, this state is diffracting and losing amplitude at a
rapid pace. Asymptotically, when α′′(ω) �= 0 the mode decays
like ∼z−1/2.

The next mode we consider is located near the Floquet
edge in Fig. 3(f) and corresponds to π -offset rotation. Unlike
the previous two cases, the energy of which is always in the
bm0 lattice sites, this solution [shown in Figs. 6(e) and 6(f)] is
observed to oscillate back and forth between the bm0 and am1

lattice sites. Energy is regularly transferred back and forth each
cycle of the lattice waveguides (here the period is T = 1.5). A
similar evolution pattern (not shown here) was found to occur
for the edge state mode corresponding to different sublattice
radii the Floquet bands of which are shown in Fig. 3(d).

Floquet theory does tell us something about this coupled-
mode dynamic. Typically, the 1D honeycomb Eqs. (20) and
(21) are integrated over the period [0,T ] to find the monodromy
matrix. The corresponding edge mode eigenfunction [similar
to that in Fig. 4(a)] has considerably more energy in the
outer bn sites than those of an. If we instead calculate the
Floquet multipliers over the interval [T/2,3T/2], then the
energy is primarily concentrated in the an sites, rather than
bn. From this observation we infer that these solutions are not
of the form given in Eq. (33), but instead have the structure
an(z) = An(z) exp(−iαz) and bn(z) = Bn(z) exp(−iαz) where
|An|,|Bn| → 0 as n → ∞ and An(z) and Bn(z) are T periodic
out-of-phase functions. In other words, the modes are truly
coupled (an �= 0) and cannot be assumed to be scalar (an ≈ 0).
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FIG. 6. Left column: Evolution of linear edge mode magnitude
|bm,0(z)| in the honeycomb lattice. Right column: Corresponding
evolution of maxm,n |amn(z)| (blue curve) and maxm,n |bmn(z)| (black
curve). The corresponding Floquet bands are (a,b) Fig. 3(a), (c,d)
Fig. 3(b), and (e,f) Fig. 3(f).

C. Staggered square Floquet bands

In this section the Floquet bands for the staggered square
lattice in Fig. 2 are computed for the rotation patterns described
earlier in Eqs. (28)–(32). The Floquet exponent (27) is
computed from 1D staggered square system (25) and (26).
Several band structures are shown in Fig. 7.

The first lattice configuration we examine is when the two
sublattices rotate in phase with each other given in Eq. (28). In
this case, the system given in Eqs. (25) and (26) is degenerate
and reduces to a single equation. In terms of the lattice
structure, the lattice sites form a simple lattice. There are no
edge modes at all, as indicated in Fig. 7(a); there are only
extended bulk modes. One way to create a nonsimple lattice
configuration is to make the radius of one sublattice smaller
than the other. The dispersion bands for this scenario are
shown in Figs. 7(c) and 7(d) where the radii of one sublattice
is 75% and 60%, respectively, the size of the other. As the
radius disparity grows, localized edge state curves manifest

FIG. 7. The staggered square lattice linear band structure (27) of
Eqs. (25) and (26) for different rotation patterns. The value of η is (a)
2/3, (b) 2/15, (c) 2/3, (d) 2/3, (e) 1.1/15, (f) 1.7/15, and (g) 2/15.
The lattice parameters are V 2

0 = 45,ε = 0.75/π, and σx = σy = 0.3.

themselves in the gap at the Floquet edge. This latter band
structure is distinguished from other cases in that for certain
positive ω values there exist two different Floquet exponents:
one topologically protected near the Floquet edge and the other
nonprotected near the Floquet center. In most of the topological
systems we investigated, either one or the other mode type
exists at a fixed ω, but not both.

The two rotation patterns we consider next are counter-
rotation [see Eq. (31)] and π -phase offset rotation [see
Eq. (30)]. First, we examine the counter-rotation case the
Floquet bands of which are shown in Fig. 7(b). If the radius
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of the sublattices are driven hard enough, then, similar to the
honeycomb case, the bulk band splits apart and inside the
central gap an edge mode corresponding to a nearly flat band
is found to exist. Next we consider a π -offset rotation. We point
out that this scenario was explored in [19,20]. Qualitatively,
our results agree with theirs, namely, there is a transition point
in the topological structure of the bands that is displayed
in Fig. 7(e). Below this transition point, in a weak rotation
regime, the band structure takes a “trivial” form similar to
that seen in Fig. 7(a). If, on the other hand, the spiral radius is
increased beyond this threshold a set of topologically protected
edge modes emerges and gives the “nontrivial” band structure
shown in Fig. 7(f). This transition point in the band structure
resembles the honeycomb cases given in Figs. 3(e) and 3(f).

The final case we consider is that of different frequency
between the two sublattices [see Eq. (32)]. For a large enough
helix radius, edge states are found to occur near the Floquet
edge. Similar to the honeycomb case in Fig. 3(h), these states
appear to possess a weak instability [|Im{α}| = O(10−3)] that
could become relevant over very long propagation distances.

At this point we summarize the commonalities in the
linear band structures between the honeycomb and staggered
square lattices. In the case of same rotation patterns we
find that edge modes are present if the underlying lattice
is fundamentally nonsimple (like honeycomb, or staggered
with different sublattice size or frequency). Taking sufficiently
different radii among the sublattices creates edge states at the
Floquet edges, for both lattice types. Stationary (or nearly
stationary) edge modes are generated in the case of counter-
rotating sublattices. A family of edge modes is found to exist
between different branches of Floquet bands (27) for π -offset
rotation when the waveguide parameters exceed a certain
threshold. When the two sublattices have different frequencies
edge modes can be found (with a possible weak instability).

D. Linear edge mode dynamics in the staggered square lattice

In this section we propagate the linear modes associated
with the dispersion curves shown in Fig. 7. The governing
equations (22) and (23) are integrated using initial conditions
of the form

a2m+1,2n+1(0) = 0, b2m,2n(0) = sech (2mμ) b2n(ω0) ei2mω0 ,

(35)

where μ = 0.3 and the decaying mode b2n is numerically
computed from the 1D system (25) and (26). As was the case
in the honeycomb lattice, we take N = 100 lattice sites in
the n direction for both b2m,2n and a2m+1,2n+1. For all cases
considered here we display the edge magnitude as well as the
maximum magnitude over the domain as a function of z.

The first nontrivial case we consider is that of counter-
rotation, the corresponding dispersion curves of which are
shown in Fig. 7(b). The Floquet bands are nearly flat and
so very little translation of a mode is expected. The edge
mode evolution is shown in Figs. 8(a) and 8(b) and indeed the
mode has a small positive velocity, and most of the energy
is in the b mode. Next we look at the case of different radii
among the sublattices corresponding to the bands displayed in
Fig. 7(d). The edge wave propagation and magnitude evolution
are shown in Figs. 8(c) and 8(d). Similar to the honeycomb

FIG. 8. Left column: Evolution of linear edge mode magnitude
|bm,0(z)| in the staggered square lattice. Right column: Corresponding
evolution of maxm,n |amn(z)| (blue curve) and maxm,n |bmn(z)| (black
curve). The corresponding Floquet bands are (a,b) Fig. 7(b), (c,d)
Fig. 7(d), and (e,f) Fig. 7(f).

dynamics above, the edge modes whose Floquet exponents
reside in the Floquet edge gap are observed to pivot back and
forth among the b2m,0 and a2m+1,1 lattice sites. The energy is
observed to oscillate with the same frequency as the lattice,
T = 1.5. There is an additional submode excited in Fig. 8(c)
that is moving left to right and corresponds to the mode
located near α(π/10) ≈ −0.6 in Fig. 7(d). Moreover, this
right-moving mode is not a protected solution, i.e., it will
scatter at defects. It was numerically verified that the left-
moving mode interacted with a defect like the topologically
protected mode shown in the top row of Fig. 12; i.e., this
mode traveled through the defect. On the other hand, the
right-traveling mode was found to scatter off a defect like
the mode displayed in the bottom row of Fig. 12. For the cases
we studied it was unusual to have a system that simultaneously
supports both topological and nontopological edge states.

In Figs. 8(e) and 8(f), which corresponds to Fig. 7(f), the π -
offset edge profile is found to oscillate back and forth between
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the a and b sites in one lattice period (T = 1.5). This dynamics
pattern resembles the π -offset honeycomb evolution shown
in Fig. 6(e) and 6(f). Between the honeycomb and square
evolutions we can see that similar lattice rotation patterns often
yield similar edge mode evolutions, when the underlying band
structures are similar.

IV. EDGE SOLITONS

In this section we explore the nonlinear (σ �= 0) equations
given in Sec. II. Using an asymptotic analysis, valid in the
small ε regime, we find true edge soliton solutions, i.e., edge
modes modulated by a slowly varying envelope function that
satisfies the NLS equation. Direct numerical simulations are
used to validate our asymptotic results. On the other hand,
this asymptotic theory does not describe every possible edge
mode found in Sec. III. As we will show, modes located at
the Floquet edge can disappear as ε → 0, and therefore are
outside the scope of our small ε analysis.

To leading order, we find two-dimensional (2D) zig-zag
edge mode solutions to Eqs. (17) and (18) of the form

amn(z) = 0, bmn(z) = C(y,z) bn(ω0)eimω0 , (36)

where the envelope function, C(y,z), satisfies the NLS-type
equation

i
∂C

∂z
− α0C + iα′

0Cy + α′′
0

2
Cyy − i

α′′′
0

6
Cyyy + . . .

+ αnl(ω0)|C|2C + · · · = 0, (37)

such that α
(j )
0 = dj α

dωj |ω=ω0
,αnl = σ ||bn||4/||bn||2, and the

function C(y,z) varies slowly in y, i.e., |∂yC| � 1. The
variable y is slowly varying in the m direction. The details
of the analysis are given in Appendix C. In the direction
perpendicular to the zig-zag edge, the solution in (36) decays
like the stationary mode bs

n = rn, n � 0 for |r| < 1 [the value
of r(ω0) is defined in Eq. (C6)]. This solution is derived under
a narrow-band approximation, which assumes that only the
frequencies, ω, near ω0 make substantial contributions to the
solution. Then by setting C(y,Z) = C̃(y,Z)e−iα0Z we obtain
(to leading order) the NLS equation

i
∂C̃

∂z
+ iα′

0C̃y + α′′
0

2
C̃yy + αnl(ω0)|C̃|2C̃ = 0, (38)

which for α′′
0 > 0 (self-focusing) has the traveling soliton

solution

C̃(y,z) = μ

√
α′′

0

αnl
sech

[
μ(y − α′

0z)
]
ei

μ2α′′
0

2 z, (39)

with μ � 0. At points of inflection [like at ω = π/2 in
Fig. 3(a)], α′′

0 = 0 and therefore the leading-order dispersive
term is now third order and we get the higher-order NLS
equation

i
∂C̃

∂Z
+ iα′

0C̃y − i
α′′′

0

6
C̃yyy + αnl(ω0)|C̃|2C̃ = 0, (40)

which does not support solitons.
In the event that a soliton mode is not well localized, i.e.,

|ν| �� 1, then this analysis breaks down. Given the asymptotic
limit we consider here covering a few lattice sites should be

FIG. 9. Evolution of nonlinear edge magnitude, |bm,0(z)|, found
by solving (17) and (18) using initial condition (36). The parameters
in panels (a) and (b) are the same as those in Figs. 3(a) and
3(b), respectively, except σ = ε,ν = 0.2, and (a) ω0 = π/2,α′

0 =
−0.190,α′′

0 = 0,α′′′
0 = 0.748,αnl = 0.238 and (b) ω0 = 3π/4,α′

0 =
0,α′′

0 = 0.362,α′′′
0 = 0,αnl = 0.172.

sufficient [5]. Highly localized and very discrete edge modes
could suffer from a “Peierls-Nabarro” type barrier [28,29].
In the discrete (nonintegrable) NLS equation traveling soliton
solutions do not exist for very discrete grids. As a result, all
traveling solitons eventually stop due to the presence of a
discretization induced energy barrier [30].

Next, we numerically verify these asymptotic results by
direct numerical simulations performed on the full tight-
binding system (17) and (18). We restrict our attention
to the nonlinear modes found using our asymptotic theory
(corresponding to red curves in Fig. 3). Analysis of the
remaining modes is outside the scope of this paper. Here
we consider weak nonlinearity |σ | = ε. In physical units,
this corresponds to a beam intensity of I∗ = 7.73 × 1013 W

m2

in fused silica n2 = 1.35 × 10−20 m2

W .
To initialize the simulations we take functions of the form

in Eq. (36). For the figures shown here the linear decaying
mode, bs

n, was computed numerically, but we did check that
the asymptotic solution, bs

n = rn, gave similar results. We
normalize the edge mode two-norm so that ||bn||22 = 1. The
envelope is initialized by the localized function

C(y = νm,z) = Asech(νm), A � 0, (41)

for an amplitude, A, chosen to balance the leading-order
dispersion effect (either α′′

0ν2 or α′′′
0 ν3) with the cubic

nonlinearity, A2αnl.

Two nonlinear evolutions are displayed in Fig. 9. In the first
case, a traveling mode whose corresponding linear edge mode
[located at ω0 = π/2 in Fig. 3(a)] lies at a point of inflection
(α′′

0 = 0) is shown. This implies that the envelope is governed
by the higher-order NLS Eq. (40) which does not support pure
soliton modes. A closer comparison of the discrete solution
profile, bm0, and the envelope C(y,z) is shown in Fig. 10, where
the initial and final solution profiles are shown in Figs. 10(a)
and 10(b), respectively. The envelope captures the translation
and a small dispersive tail which becomes more pronounced
as z grows.

The next case we consider is when the envelope function
satisfies the classic NLS equation (38). We choose the same
lattice parameters that correspond to the linear Floquet bands
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FIG. 10. Profile comparison between the discrete solution (blue
stems), bm,0(z), and envelope (red curve), C(y,z). The parameters in
panels (a) and (b) are the same as those in Fig. 9(a), and similarly for
panels (c) and (d) and Fig. 9(b).

shown in Fig. 3(b). At the point ω0 = 3π/4 the value of α′′
0 is

positive, indicating that the NLS equation (38) is focusing and
thus admits soliton modes. The evolution of such a nonlinear
edge mode is shown in Fig. 9(b). The mode is stationary
because α′

0 = 0. A closer look at the initial and final edge
soliton profiles is given in Figs. 10(c) and 10(d). Comparing
these two figures we see that the final magnitude is nearly the
same as that which was initially injected. In both this case and
the previous one there is a small gap between the envelope and
discrete mode peaks that may be attributed to some energy
being transferred from the bmn mode into the amn mode. We
also remark that in the latter case it so happens that |b0| < 1,
so there is also an initial gap at z = 0.

The asymptotic results shown here only cover edge modes
located near the Floquet center. Moreover, the curves at the
Floquet edges in Figs. 3 and 7 are the result of finite ε and disap-
pear as ε → 0. This is highlighted in Fig. 11. In this case there
are two distinct families of edge modes: one that bifurcates
from the stationary mode [located near α = 0 in Fig. 11(a)]

-1 0 1
-4

-2

0

2

4

(
)

(a)

-1 0 1
-5

0

5
(b)

-1 0 1

-5

0

5
(c)

FIG. 11. Floquet bands for a π -offset honeycomb lattice rotation.
The value of ε is (a) 0.75/π ≈ 0.239, (b) 0.2, and (c) 0.18. The other
parameters are the same as those in Fig. 3(f).

FIG. 12. Intensity snapshots, |bmn(z)|2, for a (top row) topolog-
ically protected mode and (bottom row) nontopologically protected
linear modes. The defect barrier is located in the region [−46, −
40] × [0,4].

and another [located near α = ±π/T in Fig. 11(a)]separate
one that arises when the helix period is not necessarily small
in comparison to the characteristic propagation distance scale
(not oscillating too fast). As ε approaches zero the edge modes
at the Floquet edge are observed to disappear, leaving only
those modes predicted by the asymptotic theory in Appendix C.
Indeed, to understand a mode that oscillates like the linear edge
state in Fig. 6(e) requires a true coupled-mode theory, i.e.,
not setting amn = 0, to account for this back-and-forth energy
transfer. To understand this finite ε edge mode is beyond the
scope of this paper.

V. LATTICE DEFECTS

Lattice defects and imperfections are common in any
real photonic lattice. Here we consider a scenario where
many lattice sites are absent along the boundary, thereby
introducing a boundary notch, or wall. The absence of any
lattice sites along the boundary means the wave field is
effectively zero there. To implement these boundary effects
into the tight-binding model above we set amn = bmn = 0 at
the lattice defect locations. To track the evolution dynamics
of the edge mode as it confronts the defect two quantities are
monitored: the maximum intensities, |amn(z)|2 and |bmn(z)|2,
and the “participation” ratio

Pb(z) =
(∑

m,n |bmn|2
)2∑

m,n |bmn|4 . (42)

The first quantity measures the edge mode peaks, while
the latter gives a measure of the pulse width since (42) is
proportional to it.

We focus our attention on three illuminating examples. In
the first situation we evolve a linear (σ = 0) topologically
protected edge mode the corresponding Floquet exponent of
which is given in Fig. 3(a) at ω0 = π/2. The evolution of
the edge mode when it comes into contact with the lattice
defect is shown in Fig. 12. In most nontopological systems
significant scattering would be expected. Here, however, the
edge mode tracks around the boundary notch and exhibits no
backscattering. The intensity and participation ratio evolutions
in Fig. 13 shed some light on the edge mode-defect dynamics.
Along the defect boundaries perpendicular to the n = 0 axis
the boundaries have armchair configurations. It is here that
the energy begins to evenly distribute between the modes [see
Fig. 13(a)]. In addition, the outer edge mode, bm0, is found to
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FIG. 13. Maximum intensity evolution of |amn(z)|2 (blue curve)
and |bmn(z)|2 (black curve) for the (a) topologically and (c) non-
topologically protected modes shown in Fig. 12. The corresponding
participation ratios (42) are displayed in panels (b) and (d), respec-
tively. Vertical red lines correspond to the snapshots in Fig. 12.

spread to many sites (become wider) [see Fig. 13(b)] along
these armchair boundaries. The outgoing intensity is observed
to have nearly the same magnitude and width as the incoming
value.

The second case we consider is that of a nontopologically
protected mode. The corresponding Floquet exponent is shown
in Fig. 3(b) at ω0 = π/2. Recall that this mode resulted
from elongating the waveguide geometries in the direction
perpendicular to the zig-zag boundary. The edge mode
dynamics shown in Fig. 12 contrast from those in the previous
case. Upon making contact with the defect boundary the edge
mode scatters back in the opposite direction. From Fig. 13(c)
the mode intensity is found to double at the defect corner,
meanwhile Fig. 13(d) shows that the pulse width is cut in half
(narrows).

Finally, we consider the interaction of a nonlinear edge
mode with a defect. In particular, we focus on states we
refer to as topologically protected edge solitons. These modes
are characterized by associated linear Floquet bands with
sign-invariant group velocity [see Fig. 3(a)] the envelopes of
which, to leading order, satisfy the NLS equation (38). In

FIG. 14. Intensity snapshots, |bmn(z)|2, for a topologically pro-
tected edge soliton (σ = ε). The defect barrier is located in the region
[−46, − 40] × [0,4].
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FIG. 15. (a) Maximum intensity evolution of |amn(z)|2 (blue
curve) and |bmn(z)|2 (black curve) for the topologically protected
edge soliton shown in Fig. 14. (b) The corresponding participa-
tion ratio (42). Vertical red lines correspond to the snapshots in
Fig. 14.

general, we expect these states to combine the robustness
of solitons with the unidirectionality of a protected state.
An NLS soliton mode that decays to zero at infinity is
known to be highly stable against perturbations [31]. Consider
dispersion bands like those shown in Fig. 3(a). At the point
ω = 5π/8 ≈ 1.963 we have α′′

0 > 0 and |α′′′
0 | � 1, yet α′

0 < 0.

In this case the traveling envelope satisfies the focusing NLS
equation and therefore it is a true soliton. One example is
displayed in Fig. 14. This nonlinear edge mode is observed to
track around the defect just like the linear protected mode in
Fig. 12. The outgoing soliton intensity is found to be nearly
the same as the incoming magnitude. The maximum intensity
and the participation ratio for this case are shown in Fig. 15.
These values closely resemble the linear ones in Figs. 13(a) and
13(b). One difference is that some magnitude loss is observed
in the nonlinear case. This may be attributed to the fact that
we are not in the case of the pure NLS equation (38), but
instead in that of a small amount of higher-order dispersion,
since α′′′

0 �= 0. This extra dispersion results in a small amount
of radiation being emitted from the mode. Decreasing the
value of ν (wider envelope) will improve the asymptotic NLS
approximation.

VI. CONCLUSIONS

We have introduced a direct method for deriving tight-
binding approximations of beam propagation in general
2D longitudinally driven waveguide arrays. As prototypes
we examined periodically driven honeycomb and staggered
square lattices. The set of governing equations we derived
allows us to find and examine unexplored edge modes with
rather complicated sublattice rotation patterns such as counter-
rotation, different radii, different frequency, different structure,
and π -phase offset. We computed the linear Floquet bands for
these rotation configurations and also examined the evolution
of their associated edge modes.

An asymptotic theory was developed; it showed that the
nonlinear edge modes behave as linear edge states modulated
by a slowly varying envelope that satisfies the 1D nonlinear
Schrödinger equation. Ideal nonlinear edge modes combine
the scatter-free topological properties of the linear problem
with the robust nature of solitons.
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Finally, topologically protected modes, both linear and
nonlinear, were shown to possess unidirectionality (absence
of backscatter), even when encountering strong lattice defects.
In the absence of topological protection the mode simply
reflects off a barrier. This approach for deriving tight-binding
equations and analyzing photonic topological insulators al-
lows the exploration of Floquet and non-Floquet lattice
systems.
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APPENDIX A: ADDITIONAL TIGHT-BINDING DETAILS

Here we provide some additional comments and details on
deriving the honeycomb lattice tight-binding approximation
in Sec. II. The derivation for the staggered square lattice
follows in a similar manner. For V 2

0 
 1 the ansatz in
Eq. (11) is defined in terms of a basis of Gaussian orbital
functions φ1,v(r,z) and φ2,v(r,z) centered at the points v and
v + d + �h12(z), respectively. These evanescent functions are
taken to satisfy the equations

Eφ1,v + ∇2φ1,v − Ṽ (r − v)φ1,v = 0, (A1)

Eφ2,v + ∇2φ2,v − Ṽ (r − (d + v) − �h21(z))φ2,v = 0,

(A2)

where

Ṽ (r) = V 2
0

(
x2

σ 2
x

+ y2

σ 2
y

)
. (A3)

In particular, the normalized orbital functions used are

φ̂1,v(r,z) = φ1,v(r)e−iEz, (A4)

φ̂2,v(r,z) = φ2,v(r,z)e−iEz, (A5)

where φ1,v(r) = φ(r − v) and φ2,v(r,z) = φ(r − (d + v) −
�h21(z)) for

φ(r) =
√

V0

π
√

σxσy

e
− V0

2 [ x2

σx
+ y2

σy
]
, E = V0

(
1

σx

+ 1

σy

)
. (A6)

Substituting ansatz (11) into Eq. (9) for the Gaussian orbitals
that satisfy Eqs. (A1) and (A2) yields

∑
v

[(
i
dav

dz
φ1,v + i

dbv

dz
φ2,v

)

+ iV0
[�h′

21(z)]x[r − (v + d) − �h21(z)]x
σx

bvφ2,v

+ iV0
[�h′

21(z)]y[r − (v + d) − �h21(z)]y
σy

bvφ2,v

+ r · Az[avφ1,v + bvφ2,v]

− avφ1,v[V (r,z) − Ṽ (r − v)]

−bvφ2,v{V (r,z) − Ṽ [r − (v + d) − �h21(z)]}
]
eik·v

= 0, (A7)

in the absence of nonlinearity where subscripts x and y denote
the ı̂ and ĵ vector components, respectively. We next multiply
this equation by φ1,p(r) and φ2,p(r,z) and integrate to get the a
and b mode equations given in Eqs. (17) and (18), respectively.
For deep lattices (V0 
 1) we may consider only the self-
and nearest-neighbor interactions to good approximation. To
obtain a more accurate approximation, next-nearest-neighbor
interactions can be included.

Following integration of the orbital functions, several
simplifications to the remaining equations can be made. All
self-interaction phase terms can be removed by the simple
phase transformations ap+v(z) = ãp+v(z) exp[i�p+v(z)] and
bp+v(z) = b̃p+v(z) exp[i�p+v(z)] where

�p+v(z) = (p + v) · A(z) − z

[
V 2

0 − V0

2

(
1

σx

+ 1

σy

)
− V 3

0

√
σxσy

(1 + σxV0)(1 + σyV0)

]
, (A8)

�p+v(z) = (p + d + v) · A(z) +
∫ z

0
�h21(ζ ) · Aζ (ζ )dζ

− z

[
V 2

0 − V0

2

(
1

σx

+ 1

σy

)
− V 3

0

√
σxσy

(1 + σxV0)(1 + σyV0)

]
. (A9)

Next it is observed that |dap/dz| = |dbp/dz| =
O{exp[−V0|d|2/(4σx)]}. Since the off-diagonal derivative
terms are of the form exp[−V0|d|2/(4σx)]dap/dz they are
exponentially smaller than all other terms and may be
neglected. We only consider the remaining dominant terms.
These terms are numerically identified to be those with a
coefficient of V0 or V 2

0 (since we are in the deep lattice
limit) and all other terms are dropped. Finally, to simplify
working with these equations we relabel our grid in terms of a
two-dimensional square lattice indexed as in Fig. 1.

APPENDIX B: TIGHT-BINDING
APPROXIMATION COEFFICIENTS

In this section the tight-binding approximation coefficients
for the honeycomb lattice given in Eqs. (17) and (18), and
the staggered square lattice (22) and (23), are presented. The
subscripts x and y denote the ı̂ and ĵ vector components,
respectively. The nonlinearity coefficient in both cases is
given by

σ = γV0

2π
√

σxσy

. (B1)
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1. Honeycomb lattice

The terms composing the honeycomb linear operator
defined below Eqs. (17) and (18) are

Lj (z) =
[
V 3

0

√
σxσy

(1 + σxV0)(1 + σyV0)

×
{

2e
− V0

4 [
[d−vj +�h21(z)]2x

σx (1+V0σx ) + [d−vj +�h21(z)]2y
σy (1+V0σy ) ] − 1

}
+ V 2

0

4

{
[d−vj+�h21(z)]2

x

σ 2
x

+ [d − vj+�h21(z)]2
y

σ 2
y

}]

× e
− V0

4 [
[d−vj +�h21(z)]2x

σx
+ [d−vj +�h21(z)]2y

σy
]
,

Rj (z) =
[
V0

2

{{
�h′

21(z) · [d − vj + �h21(z)]
}

x

σx

+
[
�h′

21(z) · (d − vj + �h21(z))
]
y

σy

}]
× e

− V0
4 [

[d−vj +�h21(z)]2x
σx

+ [d−vj +�h21(z)]2y
σy

]
,

where �h21(z) = h2(z) − h1(z), and the vectors d =
(1,0),v0 = 0,v1 = (3,

√
3)/2, and v2 = (3, − √

3)/2.
In the special case of same rotation and phase the following

occur: �h21(z) = 0,Rj (z) = 0, and Lj (z) is constant for each
j . Rescaling Eqs. (17) and (18) by Z = L0z gives the system
considered in [23], namely,

i
damn

dZ
+ eid·A(Z)[L−(Z)b]mn + σ |amn|2amn = 0, (B2)

i
dbmn

dZ
+ e−id·A(Z)[L+(Z)a]mn + σ |bmn|2bmn = 0, (B3)

where

[L−(Z)b]mn = bmn

+ ρ
[
bm−1,n−1e

−iθ1(Z) + bm+1,n−1e
−iθ2(Z)

]
,

[L+(Z)a]mn = amn

+ ρ
[
am+1,n+1e

iθ1(Z) + am−1,n+1e
iθ2(Z)

]
,

for the geometric deformation parameter

ρ = L1

L0
= L2

L0
. (B4)

The anisotropic Floquet bands considered in Fig. 3(b) corre-
spond to ρ < 1/2 or 2Lj < L0 for j = 1,2.

2. Staggered square lattice

Here we give the definitions for the linear terms defined
below Eqs. (22) and (23):

Lj (z) =
[
V 3

0

√
σxσy

(1 + σxV0)(1 + σyV0)

×
{

2e
− V0

4 [
[vj +�h21(z)]2x
σx (1+V0σx ) + [vj +�h21(z)]2y

σy (1+V0σy ) ] − 1

}

+ V 2
0

4

(
[vj + �h21(z)]2

x

σ 2
x

+ [vj + �h21(z)]2
y

σ 2
y

)]

× e
− V0

4 [
[vj +�h21(z)]2x

σx
+ [vj +�h21(z)]2y

σy
]
,

Rj (z) =
[
V0

2

{ {�h′
21(z) · [vj + �h21(z)]}x

σx

+ {�h′
21(z) · [vj + �h21(z)]}y

σy

}]
× e

− V0
4 [

[vj +�h21(z)]2x
σx

+ [vj +�h21(z)]2y
σy

]
,

for j = ±1, ± 2 and �h21(z) = h2(z) − h1(z). Here we adopt
the convention v−j ≡ −vj . The lattice vectors are defined by
v1 = (1,1)/

√
2 and v2 = (1, − 1)/

√
2.

APPENDIX C: ASYMPTOTIC ANALYSIS

Details for deriving asymptotic solution (36) to the hon-
eycomb lattice system (17) and (18) are presented here. This
analysis generalizes the calculation performed in [23] to cover
the more general nonsynchronized rotation patterns discussed
in this paper. The periodic functions �h21,ϕ and A are all
assumed to depend only on the fast variable ζ = z/ε, where
|ε| � 1 and weak nonlinearity of σ = εσ̃ is assumed. To
begin, we take functions of the form given in Eq. (19) and
then expand

an =
∞∑

j=0

εja(j )
n (z,ζ ), bn =

∞∑
j=0

εjb(j )
n (z,ζ ). (C1)

For convenience, we gather all linear terms in the
definitions (L̃−b)n ≡ eid·A(ζ )+iϕ(ζ )[L−(ζ )b]n and (L̃+a)n ≡
e−id·A(ζ )−iϕ(ζ )[L+(ζ )a]n. Substituting expansions (C1) into
Eqs. (17) and (18) and keeping the leading-order terms gives

O(1/ε) : i
∂a(0)

n

∂ζ
= 0, i

∂b(0)
n

∂ζ
= 0, (C2)

which implies that a(0)
n (z,ζ ) = a(0)

n (z) and b(0)
n (z,ζ ) = b(0)

n (z).
At the next order we get

O(1) : i
∂a(1)

n

∂ζ
= −i

da(0)
n

dz
− [L̃−b(0)]n, (C3)

i
∂b(1)

n

∂ζ
= −i

db(0)
n

dz
− [L̃+a(0)]n.

To eliminate secularities these equations are rewritten as

i
∂a(1)

n

∂ζ
= −[[L̃−b(0)]n − [L̃−b(0)]n] − f−,

i
∂b(1)

n

∂ζ
= −[[L̃+a(0)]n − [L̃+a(0)]n] − f+, (C4)

where the forcing functions

f− = i
∂a(0)

n

∂z
+ [L̃−b(0)]n,

f+ = i
∂b(0)

n

∂z
+ [L̃+a(0)]n (C5)
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are taken to be zero at this order and we define the average:
c = [

∫ T

0 c(ζ )dζ ]/T , where T is the lattice period. We consider
solutions a(0)

n = 0 which imply b(1)
n = 0 (since it may be

absorbed into b(0)
n ) and [L̃−b(0)]n = 0. This latter equation

implies solutions of the form b(0)
n (z) = Ĉ(Z)bs

n = Ĉ(Z)rn, for
Z = εz and

r = −κ1(ζ,ω)

κ0(ζ,ω)
, (C6)

where

κ0(ζ,ω) = eid·A+iϕ(L0 − iR0),

κ1(ζ,ω) = eid·A+iϕ{(L1 − iR1)e−iω−iθ1

+ (L2 − iR2)eiω−iθ2}.
The terms f± are expanded in series of ε and at the next

order we get

O(ε) : i
∂b(2)

n

∂ζ
= −i

db(0)
n

dZ
− [L̃+a(1)]n − σ̃

∣∣b(0)
n

∣∣2
b(0)

n , (C7)

where we have rescaled Z = εz. Removing secularities, as we
did in Eqs. (C3) and (C4), yields

i
db(0)

n

dZ
+ [L̃+a(1)]n + σ̃

∣∣b(0)
n

∣∣2
b(0)

n = 0, (C8)

where Eq. (C4) gives a(1)
n = i

∫ ζ

0 [L̃+(ζ ′)b(0)]ndζ ′. Taking the
inner product of this equation with the stationary mode bs

n

gives the equation

i
dĈ

dZ
− α̃(ω)Ĉ + α̃nl(ω)|Ĉ|2Ĉ = 0 (C9)

(where Z = εz) for the Floquet exponent

α̃(ω) = − i

T

∫ T

0

∫ ζ

0
P∗(ζ ; ω)N (ζ ′; ω)dζ ′dζ, (C10)

defined in terms of the functions

P = eid·A+iϕ[L0r + L1e
−iω−iθ1 + L2e

iω−iθ2 ], (C11)

N = eid·A+iϕ[(L0 − iR0)r

+ (L1 − iR1)e−iω−iθ1 + (L2 − iR2)eiω−iθ2 ], (C12)

and

α̃nl(ω) =
∣∣∣∣bs

n

∣∣∣∣4
4∣∣∣∣bs

n

∣∣∣∣2
2

σ̃ , (C13)

using the discrete norm ||fn||pp = ∑
n |fn|p. We point out

that the linear and nonlinear coefficients given in Eq. (37)
are related to these asymptotic terms by α = εα̃ and
αnl = εα̃nl.

We now convert the spectral NLS equation (C9) into its
corresponding spatial version. To begin, we expand the Floquet
exponent in a Taylor series expansion around the central
frequency, ω = ω0, by

α̃(ω) = α̃0 + (ω − ω0)

1!
α̃′

0 + (ω − ω0)2

2!
α̃′′

0 + · · · . (C14)

Next we take the inverse Fourier transform of this equa-
tion. When a narrow band is taken in ω this corre-
sponds to a wide spatial profile. In other words, the spa-
tial mode is slowly varying along the zig-zag boundary.
Hence we take a Fourier transform that is continuous in
space and replace the term (ω − ω0) with the derivative
−i∂y. Doing this yields the nonlinear Schrödinger-type
equation

i
∂C

∂Z
− α̃0C + iα̃′

0Cy + α̃′′
0

2
Cyy − i

α̃′′′
0

6
Cyyy + . . .

+ α̃nl(ω0)|C|2C + · · · = 0, (C15)

where derivatives in y are slowly varying, i.e., |∂y | � 1. If we
consider the slowly varying length scale in y to be O(ν) [or
alternatively, considering the narrow-band scale to be O(ν)]
then we can balance the weak nonlinearity by taking σ =
O(νp) [see αnl in Eq. (C13)] where p = 2 if α′′

0 �= 0 or p =
3 if α′′

0 = 0,α′′′
0 �= 0. The intensity can be used to balance the

dispersion.
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(London) 461, 772 (2009).

[3] F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100, 013904
(2008).

[4] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, Nat.
Photonics 7, 1001 (2013).

[5] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, S. Nolte,
F. Dreisow, M. Segev, and A. Szameit, Nature (London) 496,
196 (2013).

[6] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang,
Phys. Rev. Lett. 114, 114301 (2015).

[7] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K.
Makris, M. Segev, M. C. Rechtsman, and A. Szameit, Nat.
Mater. 16, 433 (2017).

[8] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H.
MacDonald, and G. Shvets, Nat. Mater. 12, 233 (2013).

[9] W.-J. Chen, X.-D. Jiang, S.-J. Chen, B. Zhu, L. Zhou, J.-W.
Dong, and C. T. Chan, Nat. Commun. 5, 5782 (2014).

[10] P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V.
Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala,
S. Oh, P. Calvani, and S. Lupi, Nat. Nanotechnology 8, 556
(2013).

[11] L. Lu, J. D. Joannopoulos, and M. Soljačić, Phys. Rev. Lett. 108,
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