
PHYSICAL REVIEW A 96, 043861 (2017)

Generating entanglement with linear optics

Stasja Stanisic,1,2,* Noah Linden,3 Ashley Montanaro,3 and Peter S. Turner1

1Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical & Electronic Engineering,
University of Bristol, Bristol BS8 1FD, United Kingdom

2Quantum Engineering Centre for Doctoral Training, University of Bristol, Bristol BS8 1TH, United Kingdom
3School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom

(Received 25 July 2017; published 26 October 2017)

Entanglement is the basic building block of linear optical quantum computation, and as such understanding
how to generate it in detail is of great importance for optical architectures. We prove that Bell states cannot be
generated using only three photons in the dual-rail encoding, and give strong numerical evidence for the optimality
of the existing four photon schemes. In a setup with a single photon in each input mode, we find a fundamental
limit on the possible entanglement between a single mode Alice and arbitrary Bob. We investigate and compare
other setups aimed at characterizing entanglement in settings more general than dual-rail encoding. The results
draw attention to the trade-off between the entanglement a state has and the probability of postselecting that state,
which can give surprising constant bounds on entanglement even with increasing numbers of photons.
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I. INTRODUCTION

Research into quantum technologies has gained significant
momentum in the past several years, with applications ranging
across metrology, communications, security, simulation, and
computation [1–4]. One of the important resources lying
behind many of these advances is quantum entanglement
[5,6]. Long before it was a potential technological resource,
entanglement was studied as one of the phenomena lying
at the foundations of quantum mechanics [7–9]. That there
exist nonclassical correlations between physical systems is
now well established, while how best to generate, verify, and
quantify such entangled states in practice is an ongoing field
of activity. What is practical in any given situation depends
on the physical platform under consideration; here we will be
interested in the generation of entanglement using linear optics
and postselection.

In linear optics we study collections of optical modes,
modeled as harmonic oscillators whose excitations correspond
to photons. Interactions are restricted to Hamiltonians that
leave the total number of photons fixed, giving rise to
unitary transformations on modes (interferometers), as well
as possible measurement and postselection of quantum states
(heralding). This realization introduces an interesting set of
constraints on the entanglement problem. Most work to date
focuses on either single- or dual-rail encoding of photons
into two-dimensional qubits, and then applying the usual
approaches to quantum computation such as the circuit model
or measurement-based schemes. Gates are carried out via
ancilla modes and photon detection measurements [4]. The
dual-rail encoding, where qubits are realized as single photons
in pairs of spatial or polarization modes, is the commonly
accepted standard for quantum computation with linear optics,
and allows us to discuss entanglement in terms of standard
concepts such as Bell and GHZ states [4,10,11]. However, the
requirement of postselection means generation of such states
is nondeterministic, and the probability of success is often
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low; for example, the best known Bell state generation scheme
has success probability of 1/4 [12] and if the postprocessing
technique known as procrustean distillation is not allowed,
then the probability drops to 0.1875 [13]. When we consider
the number of Bell states needed to construct two-dimensional
cluster states [11], the requirements can be quite daunting,
though promising proposals exist [14].

This helps to motivate the study of entanglement generation
in linear optics more generally; in particular, it is natural to con-
sider entanglement between two subsets of modes, foregoing
encoding altogether. While this is currently not the preferred
way of generating entanglement, any bounds that can be found
present fundamental limits on linear optical architectures, as
well as for other quantum information processing tasks such
as boson sampling [15]. A different perspective on this issue,
which considers bosonic entanglement in terms of observables,
can be found in (e.g.) [16,17].

In this paper we will consider two main themes regarding
bipartite entanglement in linear optics: that where the parts
are encoded qubits and that where they are collections of
modes. Section II introduces the background and notation
used throughout. Section III examines qubit entanglement
within the standard linear optical dual-rail encoding. When
we speak of dual-rail encoding, we mean qubit states that are
postselected such that there is exactly one photon in each pair
of modes. First we prove that one cannot generate a Bell state
using only three photons, and then we give strong numerical
evidence for the known four photon Bell state generator
(with a success probability of 0.1875) being optimal. In
Sec. IV we compare qubit and mode entanglement, including
an investigation of the expected average entanglement over
uniformly (Haar) distributed interferometers. In Sec. V we
shift our focus to mode entanglement, considering bipartite
systems made from two sets of optical modes, Alice and Bob,
with a fixed total number of photons. We see two types of
behavior. In the case of bunched photon input and single mode
Alice, we find the entanglement can grow as log n where
n is the number of photons. On the other hand, looking at
the case of at most a single photon per input mode (as in,
for example, boson sampling [15]), a single mode Alice, and
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TABLE I. Entanglement bounds proven in this paper. The notation is as defined in Sec. II (see Fig. 1, all logarithms are base 2).

Bound (ebits) Parameters Input state Section

O(log n) MA = 1,MB = 1,MH = 0 Bunched V A 1

2 MA = 1,MB � 1,MH = 0 Unbunched V A 2

log 3 MA = MB = 1,MH � 1 Unbunched V A 3

log [2
(
MA+ n−1

2
MA

)
] MA = MB , n odd Any V B 1

log [2 n+MA

n

(
MA+ n

2 −1
MA

)
] MA = MB , n even Any V B 1

n MA = MB Fock state V B 2

no measurement, the entanglement is bounded above by two
ebits regardless of how many photons are present. If we also
restrict Bob to a single mode and furnish the remaining modes
with number resolving detectors, the expected entanglement is
bounded by log 3 ebits. We then find provable universal bounds
on the mode entanglement stemming from the dimensionality
of the bipartite Fock states involved, and from the linearity
of the optical transformation. Finally, we conjecture a third
bound due to unitarity which extends the previously mentioned
constant bound in the case of Alice having a single mode to
multimode Alice, and we provide numerical evidence for this
conjecture. The maximum mode entanglement is summarized
in Table I.

II. BACKGROUND

Figure 1 introduces the generic linear optical setup and
notation used throughout the paper. The interferometer has M

input modes and M output modes. The mode transformation
describing this (photon number preserving) interferometer is
an M × M unitary matrix U ∈ U(M). The top MI input
modes contain n input photons, while the bottom MV modes
are ancilla vacua. The representation of U carried by the
M mode Hilbert space in the number state (Fock) basis
is denoted U . The top MA output modes belong to one
party, Alice, the middle MB modes belong to Bob, and
the bottom MH modes—Harold—get measured using photon

...
...

...
...

...

MI

MV

MA

MB

MH

U

...

n1

FIG. 1. Generic setup used throughout this paper; see text for an
explanation of the notation.

counting detectors. Harold’s detection pattern is labeled h =
(nMS+1, . . . ,nM ), where ni gives the photon number of output
mode i, and MS = MA + MB is the number of modes in
the “system,” i.e., modes that do not belong to Harold and
are therefore unmeasured. If nH = ∑M

k=MS+1
nk = ||h||1 total

photons have been detected, the number of photons left in
the system is nS = n − nH = nA + nB . The Hilbert space of
subsystem X (a subset of modes), given that it contains exactly
nX photons, is denoted HnX

X .
Let the input to the interferometer be a Fock state

|ψin〉 = |n1,n2, . . . ,nMI
, 0, . . . ,0︸ ︷︷ ︸

MV

〉 (1)

=
MI∏
k=1

(â†
k)nk

√
nk!

|vac〉 , (2)

where |vac〉 = |0〉⊗N . The input transforms according to

U |ψin〉 =
MI∏
k=1

1√
nk!

(U â
†
kU†)nkU |vac〉 (3)

=
MI∏
k=1

1√
nk!

⎛⎝ M∑
j=1

â
†
jUjk

⎞⎠nk

|vac〉 , (4)

where Ujk are the matrix elements of the mode transformation
U , U is the representation of U on the multimode Fock space,
and we have used the fact that the vacuum is invariant under
all such transformations (as is customary, we have suppressed
identity operators on ancillary modes). We will usually be
interested in the case of single photon Fock inputs, where
nk = 1 or vacuum for all input modes k, a situation we will
refer to as unbunched. If all the photons are found in one
mode and the rest contain vacuum, we will refer to the state as
completely bunched.

When MH > 0 the ideal number resolving detectors will
register a detection pattern h = (nMS+1, . . . ,nM ) of nH pho-
tons. The output will be the postmeasurement state consisting
of nS = n − nH photons remaining in the system modes
1, . . . ,MS , given by

|ψS(h,U )〉 = 〈h|U |ψin〉
‖〈h|U |ψin〉‖ . (5)

Note that this is a pure state on the system S = AB, because
|h〉 only has support on subsystem H . We will denote the
unnormalized output by |ψ̃S(h,U )〉 = 〈h|U |ψin〉. The Hilbert
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space of the system is

HnS

S =
nS⊕

nA=0

HnA

A ⊗ HnB

B , (6)

where nB = nS − nA is the number of photons in Bob’s
subsystem. We are interested in entanglement with respect
to this tensor product structure. The dimension of the Hilbert
space of n photons in M modes is

(
M+n−1

n

)
, and so

dimHnS

S =
nS∑

nA=0

(
MA + nA − 1

nA

)(
MB + nB − 1

nB

)
(7)

=
(

MS + nS − 1

nS

)
(8)

as MS = MA + MB and nS = nA + nB . The totality of states
available to Alice can be thought of as the Hilbert space⊕nS

nA=0 H
nA

A , and we may index its Fock basis as {|a〉A : a =
(n1,n2, . . . ,nMA

),||a||1 = nA}. Similarly for Bob. Expanding
the output in this basis, we have

|ψ̃S(h,U )〉 =
∑
a,b

C̃a,b(h,U ) |a〉A ⊗ |b〉B . (9)

The coefficients C̃ are related to permanents of the matrix
U [15,18]. More specifically, consider an input Fock state
|ψ〉 = |n1 · · · nM〉 and an output Fock state |φ〉 = |n′

1 · · · n′
M〉

both with a total number of n photons. Construct a new matrix
Uψφ from U in two steps. First, define the matrix Uψ consisting
of nj copies of the j th column of U for all j ∈ {1, . . . ,M}.
Next, construct the matrix Uψφ by using n′

j copies of the j th
row of Uψ for all j ∈ {1, . . . ,M}. Then

〈φ|U |ψ〉 = perm(Uψφ)√
n1! · · · nM !n′

1! · · · n′
M !

. (10)

In our notation, |ψ〉 = |ψin〉 and |φ〉 = |abh〉, we therefore
have C̃a,b(h,U ) = 〈abh|U |ψin〉. The probability of detect-
ing pattern h is P (h,U ) = ∑

a,b |C̃a,b(h,U )|2, and defining

Ca,b = C̃a,b/
√

P (h,U ), the normalized state can be written as
|ψS(h,U )〉 = ∑

a,b Ca,b(h,U ) |a〉A |b〉B .
For future convenience we define coefficients of the output

states in particle notation, where the Fock state |n1 · · · nM〉
is written as |1 · · · 1︸ ︷︷ ︸

n1

· · · M · · · M︸ ︷︷ ︸
nM

〉. We denote relevant coef-

ficients in particle notation by γ , which are related to the
above-mentioned permanent as

γ1···1···M···M (h,U ) = C̃a,b(h,U )√
n1! . . . nMS

!
. (11)

These are the coefficients of the output states as expressed in
terms of the creation operators assuming unbunched input to
the interferometer; see Eq. (12).

Equation (9) provides a decomposition we can use to bound
the entanglement. However, the fact that the total number of
photons in the system, nS , is preserved implies that not all
conceivable bipartite basis states |a〉A ⊗ |b〉B are available, so
the system should not simply be viewed as the tensor product of
two qudits, i.e., Eq. (8) is not simply the product of dimHA and
dimHB . In particular, this means that states that are maximally

MI = 3

MV = 2

MA = 2

MB = 2

MH = 1

U

FIG. 2. Setup used in Sec. III A, with MI = n = 3, MV = 2,
MA = MB = 2, and MH = 1. We show that no such setup can create
an entangled state in dual-rail qubit encoding with any nonzero
probability. On the other hand, with four input photons it is possible
to create a Bell state with probability of 1/4 [13].

entangled in the usual sense do not exist. For example, Alice
can have many states with nS photons, but there is only one
possible Bob state to which they can be correlated, namely the
vacuum (see Sec. V B 1).

The entanglement measure that will be used is the von
Neumann entropy; given a pure state |ψS(h,U )〉, its density
matrix is defined ρAB(h,U ) = |ψS(h,U )〉 〈ψS(h,U )|, and its
reduced density matrices on subsystems are the marginals
ρA(h,U ) = TrB[ρAB(h,U )] and ρB(h,U ) = TrA[ρAB(h,U )].
The von Neumann entropy is then S(ρA(h,U )) =
− Tr[ρA(h,U ) log ρA(h,U )] = −∑a λa log λa , where {λa}a
are the nonzero eigenvalues of the reduced state. Unless stated
otherwise, logarithms will be assumed to be base 2. Finally,
we will use ebits as the unit of bipartite entanglement where
one ebit corresponds to the von Neumann entropy of a Bell
state.

III. QUBIT ENTANGLEMENT

In this section we will be considering the dual-rail encoding
of two qubits. This means that MA = MB = 2 and states are
postselected so that subsystems A and B have exactly one
photon each, nA = nB = 1; all the other states are discarded.
(In general, the kth qubit consists of the modes 2k − 1 and
2k via the mapping |10〉2k−1,2k → |0〉k and |01〉2k−1,2k →
|1〉k .) Despite the full Hilbert space of the system being of
dimension 10 [see Eq. (13)], these constraints limit the space
of permissible states to dimHA = dimHB = 2, encoding two
qubits. To entangle photons in this encoding using only passive
linear optics, the use of ancillas and postselection is necessary
[4], so MH > 0.

A. Generating Bell states with three photons is impossible

It is known that generating a Bell state in dual-rail encoding
with just two photons is impossible [4,19]. Kieling observed
it is also impossible with three photons, using an algebraic
geometry approach to the problem [19]. Here we offer an
explicit proof that not only is it impossible with three photons,
it is only possible to create product states.

Proposition III.1. In a passive linear optical setup using
dual-rail encoding, ancillas, and postselection, it is not possible
to create an entangled state using three photon input.

Proof. First, let us consider the case where there are five
modes (M = 5); four system modes (MA + MB = 4) and one
ancilla (MH = 1), as illustrated in Fig. 2. Let the input be three
unbunched photons (n = MI = 3). Dual-rail encoding has a
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total of two photons in a valid qubit state output (nS = 2),
implying here that one photon is detected (nH = 1). As there is
only one measurement ancilla, the only possible measurement
pattern is h = (1) (one photon in the fifth mode).

As discussed in Sec. II, the amplitudes are related to the
permanents of the matrix U :

γkj ((1),U ) =
{

1
2

∑
σ∈S3

Uk,σ (1)Uk,σ (2)U5,σ (3), k = j,∑
σ∈S3

Uk,σ (1)Uj,σ (2)U5,σ (3), k 
= j,
(12)

defined ∀k,j ∈ {1,2,3,4}. The unnormalized state following
detection is

|ψ̃((1),U )〉 =
√

2γ11 |2000〉 +
√

2γ22 |0200〉
+

√
2γ33 |0020〉 +

√
2γ44 |0002〉

+γ13 |1010〉 + γ24 |0101〉
+γ12 |1100〉 + γ34 |0011〉
+γ14 |1001〉 + γ23 |0110〉 , (13)

occurring with probability P ((1),U ) = 2
∑4

k=1 |γkk|2 +∑4

k,j=1
k 
=j

|γkj |2.

In dual-rail encoding it is possible to do any local unitary
deterministically by adding beam splitters and phase shifters
to each of the qubits [4]. Thus it suffices to show that it
is not possible to create any state of the form α |0〉A |0〉B +
β |1〉A |1〉B , where |α|2 + |β|2 = 1 and α 
= 0, β 
= 0, because
any entangled pure state can be transformed into one of
this form by local unitary operations. The coefficients must
therefore satisfy

γ11 = γ22 = γ33 = γ44 = 0, (14)

γ12 = γ14 = γ23 = γ34 = 0, (15)

|γ13| = α
√

p,|γ24| = β
√

p, (16)

where p = P ((1),U ), the probability of one photon being
detected in the last mode. We will now try to find a unitary
U that satisfies these constraints. Define Kk := Uk2U53 +
Uk3U52,∀k ∈ {1, . . . ,4}.

First, let us consider the case where at least one of U51,
U52, and U53 is zero. Without loss of generality (wlog) we can
label modes so that U51 = 0, because we can swap A for B

and mode 1 for 2 without affecting entanglement. Then the
equations in (12) can be rewritten as γkk = Uk1Kk and γkj =
Uk1Kj + Uj1Kk for k 
= j . Since γ11 = U11K1 = 0 and γ13 =
U11K3 + U31K1 
= 0, then one and only one of U11 or K1 can
be equal to zero. First, assume that U11 = 0. Since K1 
= 0,
from the constraints γ12 = U21K1 = γ14 = U41K1 = 0 and
γ24 = U21K4 + U41K2 
= 0, we see that there is no solution.
Similarly, if K1 = 0, then U11 
= 0 and the constraints γ12 =
U11K2 = γ14 = U11K4 = 0 and γ24 = U21K4 + U41K2 
= 0
again result in no solution. Therefore, there is no solution
for which at least one of U51, U52, U53 is zero.

Next we assume Kk 
= 0 ∀k ∈ {1, . . . ,4}, with
U51U52U53 
= 0. Then solving for Uk1 from γkk = 0 we
get Uk1 = −Uk2Uk3U51/Kk,∀k ∈ {1, . . . ,4}. Substituting this

into the expression for γkj we get

γkj = U51U52U53(Uk2Uj3 − Uj2Uk3)2

KkKj

, (17)

for all k,j ∈ {1, . . . ,4},k 
= j . The only way γ12 = γ23 = 0
is if U12U23 = U22U13 and U22U33 = U32U23. If U22U23 
= 0,
then U12U33 = U13U32, which means γ13 = 0 also, and thus
cannot be a solution. If only one of U22 or U33 is zero, assume
U2j = 0 where j is 2 or 3. But then U1j = U3j = 0 and again
γ13 = 0. If both are zero, then γ24 = 0. Therefore, there is no
solution with Kk 
= 0 ∀k ∈ {1, . . . ,4}.

Lastly, assume that at least one of the Kk = 0 and that
U51U52U53 
= 0; wlog, K1 = 0. Then U12 = −U13U52/U53

combined with the constraint γ11 = U12U13U51 = 0 means
U12 = U13 = 0. This gives γ1j = U11Kj,∀j ∈ {1, . . . ,4}.
Since γ12 = γ14 = 0 and γ13 
= 0, then U11 
= 0, while K2 =
K4 = 0. However, this implies U22 = U23 = 0 by a similar
argument, further implying that γ24 = 0 and hence there is no
solution.

We see that under no conditions is there a solution to the
given equations where α 
= 0 and β 
= 0.

This proves the claim for five modes. To see that it is true for
any number of vacuum ancillas, notice that as long as there are
no photons added, Eq. (12) do not change other than the mode
number 5 being replaced with the new detection ancilla. Each
new case therefore gives rise to the same constraints implied
by Eq. (16), with a lack of solution in the same way. Thus
vacuum ancillas can only increase the probability of creating
a state if that probability was nonzero in the first place.

Finally, if we allow inputs other than completely un-
bunched, Eq. (12) become even more restrictive. For example,
if there were two photons in input mode 1 and one photon in
input mode 2, then the matrix elements Ui3, U3i would not
appear in Eq. (12), serving only to make the constraints harder
to satisfy. �

Corollary III.1. In a passive linear optical setup using dual-
rail encoding, ancillas, and postselection, it is not possible to
create a Bell state using three photon input.

B. Optimal Bell state generation

The previous section showed that Bell state generation with
nonzero success probability requires at least four photons. Two
schemes which accomplish this task using four photons use
six [10] and eight [12,13] modes, with success probabilities of
2/27 and 1/4, respectively.

We performed a numerical search for a linear optical Bell
state generator that gives a higher success probability. We used
a gradient descent based optimization algorithm over M = 8
unitaries with n = 4 photon input (see Fig. 3). Numerical
optimization was carried out in Python, using the BFGS
algorithm from the SciPy library [20]. This algorithm finds
local minima so it needs to be run many times with different
seed unitaries, which were randomly selected according to the
Haar measure.

The cost function we consider is based on the overlap
with the desired Bell states. We allow for six different Bell
states, which in the Fock basis after measurement corre-
spond to |B1,2〉 = (|1010〉 ± |0101〉)/√2, |B3,4〉 = (|1001〉 ±
|0110〉)/√2, and |B5,6〉 = (|1100〉 ± |0011〉)/√2, where the
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MI

MV

MA = 2

MB = 2

MH

U

FIG. 3. Setup used in Sec. III B with four photons in eight
modes; MI = n = 4, MV = 4, MA = MB = 2, and MH = 4. We give
extensive numerical evidence for optimal Bell state generation using
this setup when looking for specific Bell states as output.

latter can be corrected to the usual dual-rail qubit encoding
using a switch [13]. After detecting measurement pattern h, the
overlap between each of these states with the postselected state
is calculated. We found that raising the overlap to the exponent
10 optimized the numerical efficacy, penalizing states far
from a Bell state heavily. Multiplying by the probability of
detection yields the target cost function to be minimized,
f (h,U ) = −∑h P (h,U )

∑6
k=1 |〈Bk|ψ(h,U )〉|10.

Figure 4 shows the results of this minimization. The optimal
known scheme, when evaluated for this cost function, gives a
value of approximately −0.1875. It produces one of these six
Bell states with probability 1/32 for six out of the 10 possible
measurement patterns [13]. We can see from the figure that the
minimum achieved by the numerical optimization over 53 000
trials is also approximately −0.1875, thus giving solutions
which are equivalent to the known scheme in terms of this
parameter. While not a proof, this numerical evidence strongly

FIG. 4. Results of optimization looking for interferometers that
generate Bell states with highest probability. The minimum found of
≈ −0.1875 is exactly bounded by the values of cost function for the
known UBell interferometer as described in the text. Out of 53 000
test runs, 0.75% of minima found were within 0.001 of the minimum
corresponding to UBell, i.e., within numerical error. Besides the trials
depicted in this graph, the cost function was also optimized with
other parameters given to the optimizing algorithm as well as over
the space of orthogonal matrices. Thus the number of test runs for
which a better solution could not be found is more than 150 000.

suggests that the known scheme is optimal for generating
the above set of Bell states. Other cost functions were also
attempted, as well as other optimization libraries, but all gave
the same results as the technique above.

We also investigated the case of nonorthogonal Bell states,
for example, allowing |00〉 + |11〉 as well as |00〉 + i |11〉 as
target states. The possibility of both of these states being
generated from the same U for different measurement patterns
was explored by running similar numerical optimizations
rewarding such situations. We found no such unitary, which is
an interesting result in itself.

Though the complexity of the problem grows quickly, we
also looked at how the situation changes with higher numbers
of input photons and modes. We numerically optimized over
n = 5, M = 10 using a similar algorithm and no improved
solutions were found over 5000 runs. Similarly, we checked
n = 6, M = 12 over 1000 runs and here as well there was no
improvement over the −0.1875 result for n = 4, M = 8.

IV. RANDOM UNITARIES

In this section, we move from the dual-rail qubit encoding
of Sec. III to mode entanglement in Sec. V. First, we
look at how much mode entanglement can be generated
with random elements of the unitary group, which we can
then use to compare with the dual-rail encoding. We do
so by setting Alice and Bob’s number of modes to 2, and
numerically computing the average amount of entanglement
over measurement patterns. Notice that this is different from
the setting in Sec. III, where we aimed to get a maximally
entangled Bell state with the highest possible probability.
Here and in the rest of this work we will study this average
entanglement, namely

〈S(U )〉H =
∑

h

P (h,U )S(ρA(h,U )). (18)

The expectation over the unitary group (for fixed M and
n) is then 〈S〉H,U = ∫

U (M) dU 〈S(U )〉H , where dU is the
normalized Haar measure.

Figure 5 shows the numerical results. We notice that often
the average is higher than one ebit, which is the maximum we
can achieve in dual-rail qubit encoding. Adding input photons
for the same M increases the average entanglement, while
adding vacuum ancillas decreases it. We see that the average
entanglement of n + 1 photons in M + 1 modes can be lower
than that for M and n (see n = M = 5 and 6). That is, we do not
expect more average entanglement by adding a photon at the
cost of adding another mode. Further, we note that even with
two photons, there is more average entanglement generated
than in the optimal Bell state generator with four photons. We
explore this in more detail for a better comparison.

In the usual Bell state generation scenario discussed in
Sec. III B, if the measurement outcome indicates that the output
state is outside of the qubit subspace, the output is discarded.
Here we include the entanglement of the discarded states in
accordance with Eq. (18). We compare the optimal Bell state
generator to random unitaries with the same parameters: MA =
MB = 2, n = 4, and M = 8.

In Fig. 6 we see the results of the comparison. First, in
Sec. III B we saw that the probability of getting a Bell state
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FIG. 5. Expectation, over the unitary group, of the average, over
measurement patterns, mode entanglement vs the number of modes
M , for various numbers of unbunched input photons. MA = MB = 2,
and if the number of photons n is smaller than M , vacuum input
modes are added. The number of heralding detectors is MH = M −
MA − MB . The entanglement for a single unitary U is averaged over
all measurement patterns, and subsequently averaged over 100 000
randomly Haar-sampled unitaries U . Colors and symbols represent
different numbers of input photons, with 2 � n � 7.

for a state correctable with a single switch is 3/16 [13]. A
Bell state gives a single ebit, and if all the other states are
discarded, the average entanglement would be 0.1875 ebits. If
all the outputs from this unitary were counted towards average
entanglement as discussed in the previous paragraph [where
Eq. (18) is utilized], the entanglement obtained is marked on
Fig. 6 as UBell. As we can see from the graphs, UBell gives
a markedly lower amount of entanglement than what could
be generated on average with a random unitary on the same
number of modes.

FIG. 6. Numerical evaluation of 〈S(U )〉H for 100 000 unitaries U

chosen using the Haar measure in the case MA = MB = 2, MH = 4,
and n = 4 unbunched input photons. Average entanglement for a
given U was calculated according to Eq. (18) and then binned in one
of 100 bins with a minimum of zero and maximum obtained in the
samples. The red dot marks the value of average entanglement that
the Bell generating unitary from Sec. III B can give, denoted as UBell,
if all of its output states were used.

V. MODE ENTANGLEMENT

The previous section shows that, on average, random
unitaries give significantly more mode entanglement than
dual-rail encoding. We therefore turn our attention to the
investigation of mode rather than qubit entanglement as
defined in Sec. II.

Equation (6) states that the total system Hilbert space is a
direct sum of Hilbert subspaces such that the sum of Alice
and Bob’s photon numbers is nS , the number of photons left
after heralding. Let ρAB = |ψS(h,U )〉 〈ψS(h,U )| as in Eq. (5).
Alice’s reduced density matrix is

ρA(h,U ) = TrB[ρAB(h,U )] (19)

=
∑
b′′

〈b′′|
⎛⎝ ∑

a,b,a′,b′
CabCa′b′ |ab〉 〈a′b′|

⎞⎠ |b′′〉

=
∑
a,a′

⎛⎝∑
b

CabCa′b

⎞⎠ |a〉 〈a′| , (20)

where only the terms with ‖a‖1 = ‖a′‖1 are nonzero,
because ‖b‖1 = ‖b′‖1 = ‖b′′‖1 and nS = ‖a‖1 + ‖b‖1 =
‖a′‖1 + ‖b′‖1. Therefore, there exists a Fock basis ordering
in which Alice’s reduced state is block diagonal, which allows
us to derive a bound on the entanglement (see Sec. V B 1). In
the case that Alice has a single mode, this implies her state is
diagonal in Fock basis. The total number of orthogonal states
available to Alice is

dim(HnS

A ) =
nS∑

nA=0

(
MA + nA − 1

nA

)
=
(

MA + nS

nS

)
. (21)

In Sec. V A, we find entanglement bounds when Alice only
has one mode. The bound depends on the input state; if the
input photons are bunched in a single mode, entanglement is
unbounded as the number of photons increases. Surprisingly, if
the input is unbunched, we find a constant bound independent
of the number of Bob’s modes and independent of the number
of photons. More general bounds can be found, though they
are also more loose. In Sec. V B 1 we give the bound on
entanglement due to the block diagonal structure of Alice’s
reduced density matrix in Fock basis. In Sec. V B 2 we give
a bound which is a consequence of the linearity of the mode
transformations. Unlike in Sec. V A, neither of these bounds
depend on the unitarity of the mode transformations, which we
expect should affect the amount of entanglement that can be
achieved. In Sec. V C we conjecture a general unitarity bound
based on numerical evidence.

A. Entanglement when Alice has a single mode

1. Entanglement for bunched input can be unbounded

First, we show that mode entanglement is unbounded if we
are not restricted to unbunched input.

Proposition V.1. Let the input into a M = 2 interferometer
consist of n photons bunched in a single mode (see Fig. 7).
Then the entanglement across the two output modes is at most
O(log n) ebits, which is achieved when U is a balanced beam
splitter.
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MI = 1

MV = 1

MA = 1

MB = 1U
...

n

FIG. 7. Setup used in Sec. V A 1, where we consider only M = 2
modes. The input consists of all n photons bunched in the top mode;
MI = MV = MA = MB = 1 and MH = 0. We prove that in this setup
maximal entanglement grows as log n. The special case where U is a
balanced beam splitter was analyzed in [21].

Proof. Parametrize the M = 2 unitary matrix U acting on
Alice and Bob’s single mode Hilbert spaces as

U =
[

c d

−d∗ c∗

]
, (22)

where |c|2 + |d|2 = 1. The output state is

|n0〉 =
(
â
†
1

)n/√
n! |0〉

�→
(
câ

†
1 − d∗â†

2

)n/√
n! |0〉

= 1√
n!

n∑
k=0

(
n

k

)
(câ†

1)k(−d∗â†
2)n−k |0〉

= 1√
n!

n∑
k=0

(
n

k

)
ck(−d∗)n−k

√
k!
√

(n − k)! |k〉 |n − k〉

=
n∑

k=0

√(
n

k

)
ck(−d∗)n−k |k〉 |n − k〉 . (23)

When Alice has only one mode, her reduced density matrix is
diagonal in the Fock basis, so we can find the spectrum of her
state directly from the above equations:

λk =
(

n

k

)
(|c|2)k(|d|2)n−k =

(
n

k

)
(|c|2)k(1 − |c|2)n−k. (24)

This is a binomial distribution with a “success” probability
of p = |c|2. The entropy of the binomial distribution for
a fixed p is 1/2 log2 [2πenp(1 − p)] + O(1/n).1 Thus we
see that the entanglement bound is O(log n), where n is
the number of photons. The constant prefactor is maxi-
mized for p = |c|2 = |d|2 = 1/2, whence the entropy of Al-
ice’s state is 1/2 log2 [2πen × 1/2 × (1 − 1/2)] + O(1/n) =
1/2 log2 (πen/2) + O(1/n). Finally, notice that solutions to
Eq. (22) where |c|2 = |d|2 = 1/2 are a family of balanced
beam splitters. �

This is in stark contrast to the situation where the input
is unbunched, where we will see in the next section that the
entanglement is bounded by a constant.

2. Entanglement for unbunched input is bounded

We now consider situations where Alice only has one mode,
Bob can have many, and we do not use any measurement. (See
Fig. 8.) The following Lemma will be of use.

1From, e.g., the de Moivre–Laplace theorem.

...
...

...
MI

MV

MA = 1

MBU

FIG. 8. Setup used in Sec. V A 2. The input is an unbunched state
with MI = n, with MV � 0, MA = 1, MB � 1, and MH = 0. We
prove that entanglement for this setup is bounded by a constant.

Lemma V.1. Consider inputting a Fock state |n〉 =
|n1 . . . nM〉 into an arbitrary interferometer that has M modes.
Let N = max {n1, . . . ,nM}. Then the mean photon number in
each output port is bounded by N [22].

Proof. Let |n〉 be an arbitrary Fock state:

〈n̂j 〉 = 〈n|U†n̂jU |n〉 = 〈n|U†â†
jUU†âjU |n〉

= 〈n|
⎛⎝∑

j ′
â
†
j ′Ujj ′

⎞⎠⎛⎝∑
j ′′

âj ′′Ujj ′′

⎞⎠ |n〉

=
∑
j ′

∑
j ′′

Ujj ′Ujj ′′ 〈n| â†
j ′ âj ′′ |n〉 =

∑
j ′

Ujj ′Ujj ′ nj ′ .

(25)

If, as hypothesized, nj � N for all modes j , then

〈n̂j 〉 =
∑
j ′

|Uj ′j |2 nj ′ �
∑
j ′

|Uj ′j |2 N = N. (26)

�
In the following calculations we shall assume that n → ∞,

as any bound on the entropy found for this infinite case would
also hold for a finite one with the same set of constraints.

Lemma V.2. Let {pj }∞j=0 be a probability distribution sub-
ject to the constraint

∑
j jpj � N . Then the entropy of this

distribution is at most log [(1 + N )1+N/NN ].
Proof. The entropy of the probability distribution {pj }∞j=0

is S = −∑∞
j=0 pj log pj . We maximize this subject to the

constraints
∑∞

j=0 jpj = n � N and
∑∞

j=0 pj = 1 using the
method of Lagrange multipliers.

Let the Lagrangian be

L = S + (λ0 + log e)

⎛⎝ ∞∑
j=0

pj − 1

⎞⎠+ λ1

⎛⎝ ∞∑
j=0

jpj − n

⎞⎠.

(27)

Then ∂L/∂pj = − log pj + λ0 + λ1j . Setting ∂L/∂pj = 0
gives pj = 2λ0+λ1j . Substituting the value of pj into the
constraints, we get

∞∑
j=0

jpj = 2λ0 2λ1/(1 − 2λ1 )2 = n, (28)

∞∑
j=0

pj = 2λ0/(1 − 2λ1 ) = 1. (29)
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This allows us to solve for λ0 and λ1, giving

λ0 = log [1/(1 + n)], λ1 = log [n/(1 + n)]. (30)

Notice that

S = −
∑

j

pj log pj = −
∑

j

pj (λ0 + λ1j ) = −λ0 − λ1n

= log [(1 + n)1+n/nn]. (31)

The function above increases monotonically for n � 0 and
since n � N we get

S � log [(1 + N )1+N/NN ]. (32)

�
Corollary V.1. Let {pj }∞j=0 be some probability distribution

subject to the constraint
∑

j jpj � N , N ∈ [0,1]. Then the
entropy of this distribution is at most two ebits.

Theorem V.1. Let Alice have one output mode, MA = 1,
and Bob have MB = k. Let the input be a single photon in each
of the k + 1 modes. Then the entanglement between Alice and
Bob is bounded by two ebits for all k.

Proof. Alice’s reduced density matrix is diagonal in the
Fock basis, where each entry 〈j | ρA |j 〉 corresponds to the
probability that Alice’s mode contains j photons. By Lemma
V.1, this distribution satisfies the conditions of Corollary V.1.
Thus the von Neumann entropy of this state is bounded by 2
for any k, as the bound which holds for k → ∞ also holds for
any finite k as well. �

Notice that extra vacuum modes will not increase this limit
on the entanglement as the limit is due to the expected number
of photons in Alice’s mode being at most 1. We see that despite
the fact that the dimension of Alice’s Hilbert space grows with
the number of photons as n + 1, and Bob’s can be even larger,
the maximum entanglement is severely constrained to be less
than two ebits.

Because we are interested in the average entanglement, the
result will hold for heralding as well as follows.

Corollary V.2. Let Alice have one output mode, MA = 1,
while Bob and Harold have MB + MH = k. Let the input
be a single photon in each of the k + 1 modes. Then the
entanglement between Alice and Bob is bounded by two ebits
for all k.

Proof. No LOCC operation can increase the amount
of entanglement in the system on average [23]. There-
fore, 〈S(U )〉H = ∑

h P (h,U )S(ρA(h,U )) � S(ρA(U )), where
ρA(U ) is Alice’s reduced density matrix before any measure-
ment, and by Theorem V.1, S(ρA(U )) � 2 ebits. �

We can also examine inputs that have different numbers
of bunched photons. If the highest number of photons in a
single input mode is N , as per Lemma V.1, the expected
number of photons in Alice’s mode will then be bounded by
N . Because the function which bounds the entropy, Eq. (32),
is monotonically increasing, the entropy of Alice’s (diagonal)
state (p0, . . . ,pn) is at most log [(1 + N )1+N/NN ] by Lemma
V.2. In the extreme case where all the photons are bunched
in a single mode, S scales as O( log(N + 1)), consistent with
Proposition V.1.

. .
.

1

2

3

4

M − 1

M

MA

MB

= 1

= 1

MH

W

FIG. 9. Setup used in Sec. V A 3, where M = n, MA = MB = 1,
and MH � 1. An arbitrary M mode interferometer can be decom-
posed into M(M + 1)/2 two-mode interferometers [24,25]. Note that
this also applies to an arbitrary M − 1 mode subinterferometer (blue).
By focusing on the only component, W , that entangles Alice and Bob
(red), we show that the maximum entanglement is the M = n = 2
value of log 3 ebits.

3. Entanglement when Bob also has a single mode

In this section we consider a similar setup to the previous
section, except now we fix the number of Bob’s modes to 1
and assign the rest to Harold. Recall that we are interested in
generating the highest amount of entanglement between Alice
and Bob on average; thus the probability of detection patterns
must be taken into account. More precisely, we are looking for
the maximum of 〈S(U )〉H = ∑

h P (h,U )S(ρA(h,U )). Some
patterns might yield a state with high entanglement, but be very
unlikely to occur. In a practical setting we might prefer states
that are less entangled but we can generate more consistently.

We first prove a technical lemma that will be useful later.
Lemma V.3. Given a probability distribution (p0, . . . ,pn)

such that
∑n

j=0 jpj = 1, the sum
∑n

j=0 pj log (j + 2) is
bounded by log 3 which can be achieved by p1 = 1 and pk = 0
for k ∈ {0,2,3, . . . ,n}.

Proof. Since f (x) = log (x + 2) is a concave function, by
Jensen’s inequality

∑n
j=0 pjf (j ) � f (

∑n
j=0 pjj ) = f (1) =

log 3, which is achieved by substituting p1 = 1 and pk = 0 for
k ∈ {0,2,3, . . . ,n}. �

Theorem V.2. Consider an interferometer with M � 3
modes, where both Alice and Bob have one mode and the other
output modes are measured using photon counting detectors.
Let the input be the n = M unbunched Fock state. Then the
maximal average entanglement that can be created between
Alice and Bob is log 3 ebits.

Proof. First, notice that the average entanglement
achievable by an M = 2 interferometer can be achieved
for M � 2 by having modes 3 to M transform trivially,
since photons in these modes will be detected with unit
probability. Thus max 〈S(UM )〉H � max 〈S(UM=2)〉H = log 3
ebits, ∀M � 3. The interferometer given in Sec. V D, Eq. (43)
below achieves this.

Any U ∈ U(M) can be decomposed as in Fig. 9. Then the
bottom left triangle (colored blue in the figure) is a unitary
V ∈ U(M − 1). Since the input is unbunched, Lemma V.1
implies that each output from V has a mean photon number
of 1. In particular, Bob’s mode before beam splitter W (red in
the figure) will satisfy

∑
k kqk = 1, where k is the number of

photons occuring with probability qk . Since the remaining
beam splitters (white in the figure) act only on Bob and
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Harold’s systems, they have no effect on Alice’s reduced state
and can therefore be ignored.

Let the probability of detecting pattern h be ph, and
the probability of detecting a total of nH = ‖h‖1 photons be
pnH

= ∑
h:‖h‖1=nH

ph. The average entanglement is

〈S(U )〉H =
∑

h

phS(ρA(h))

=
n∑

nH =0

pnH

∑
h:‖h‖1=nH

ph/pnH
S(ρA(h))

�
n∑

nH =0

pnH

∑
h:‖h‖1=nH

ph/pnH
log (n − nH + 1)

=
n−1∑

nH =0

pnH
log (n − nH + 1), (33)

where we’ve used the fact that the entanglement of S(ρA(h))
is upper bounded by the Schmidt rank log(n − nH + 1).

As the photon number found in modes 1 and 2 is set
before the beam splitter W , if nH photons have been detected,
then there were already nH photons in modes 3 through M .
Alice contributes one photon through her mode to their joint
system, which implies that Bob must contribute n − nH − 1
photons through mode 2, occurring with probability qn−nH −1.
Therefore, pnH

= qn−nH −1 and recall that Bob’s probability
distribution is constrained by

∑n−1
k=0 kqk = 1. By Lemma V.3∑n−1

nH =0 qn−nH −1 log (n − nH + 1) = ∑n−1
j=0 qj log (j + 2) is

maximized for j = n − nH − 1 = 1, that is q1 = 1, yielding
〈S(U )〉H � log 3. This also implies that nH = n − 2 photons
are detected in the optimal situation. �

Note that this agrees with the bound in Theo-
rem V.1 found in the previous section, which fol-
lows from the entanglement measure property 〈S(U )〉H =∑

h P (h,U )S(ρA(h,U )) � S(ρA(U )), where ρA(U ) is Alice’s
reduced density matrix before any measurement. Here the
maximum entanglement is log 3 < 2 ebits. Moreover, adding
more vacuum input modes will not affect this bound, as this
would only change Bob’s expected number of photons before
the beam splitter W to be at most 1 instead of exactly 1 as per
Lemma V.1.

B. Entanglement when Alice has many modes

In this section we give two bounds on entanglement for
more general situations when Alice has more than one mode,
based on the Schmidt rank of Alice’s reduced state. They
are independent of the input state or any interferometer
transformation, depending only on the given number of
photons and modes; we assume the latter is the same for both
Alice and Bob. This generality comes at a price, however, in
that the bounds loosen; we will discuss a conjectured tighter
bound in the following section.

1. Dimensionality

By looking solely at the dimensions of Alice and Bob’s
Hilbert spaces, we can derive an entanglement bound as
follows.

Proposition V.2. Let Alice’s and Bob’s joint postselected
state have a total of nS photons. Let Alice and Bob have
MA = MB modes. The Schmidt rank, ω, is at most

ω = 2

(
MA + nS−1

2
nS−1

2

)
, nS odd, (34)

ω = 2
nS + MA

nS

(
MA + nS

2 − 1
nS

2 − 1

)
, nS even. (35)

Proof. Let Alice’s and Bob’s joint state be |ψS(h,U )〉 =∑
k,j Ckj (h,U ) |k〉A ⊗ |j 〉B , where we include the possibility

of no measurement (MH = 0). The Schmidt decomposition
is achieved by a state-dependent change of basis such
that

|ψS(h,U )〉 =
min(dimHA, dimHB )∑

q=1

λq |q〉A ⊗ |q〉B , (36)

where {|q〉A,B} are orthonormal bases for A and B, respec-
tively.

Writing this state in terms of Alice and Bob’s photon
numbers we have |ψS(h,U )〉 = ∑nS

nA=0 |ψnA,nB

S (h,U )〉 with

nB = nS − nA. The overlap 〈ψnA,nB

S (h,U )|ψn′
A,n′

B

S (h,U )〉 = 0
for nA 
= n′

A, nB 
= n′
B as these states belong to different

Hilbert subspaces in the direct sum. The reduced density
matrix is block diagonal—each block corresponds to a
different (nA,nB) combination. We may therefore consider
each subspace individually, where the maximal Schmidt rank
is min(dimHnA

A , dimHnB

B ). The total number of Schmidt
coefficients is therefore at most

ω =
nS∑

nA=0

min{dimHnA

A , dimHnB

B } (37)

=
nS∑

nA=0

min

{(
MA + nA − 1

nA

)
,

(
MB + nB − 1

nB

)}
. (38)

For MA = MB this gives the result. �
Since the entanglement is given by the number of nonzero

Schmidt coefficients, this gives a bound on the entanglement
S � log(ω).

2. Linearity bound

Here we consider a bound due to the linearity of the
interferometer transformations. In the following we do not
assume anything about the form of the input Fock state, nor
whether measurement occurs or not.

Proposition V.3. Given an n photon Fock state as input to a
M-mode linear optical device, with Alice and Bob having MA

and MB output modes, respectively, the maximal entanglement
achievable between Alice and the rest of the modes for any
state is bounded by n ebits.

Proof. Starting with the arbitrary linear optical mode
transformation in Eq. (4), we can group the sum into Alice’s
modes and the “rest”:

â
†
k �→

M∑
j=1

â
†
jUjk =

MA∑
j=1

â
†
jUjk +

M∑
j=MA+1

â
†
jUjk

=: Âk(U ) + R̂k(U ). (39)
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The degree one polynomials Âk(U ), R̂k(U ) in the creation
operators are not canonical raising operators, because, e.g.,
[Âk(U ),Âk′(U )] 
= δkk′ . This means that different monomials
in {Âk(U )}k do not necessarily give rise to orthogonal states;
however, this can only reduce the Schmidt rank of the resulting
state.

An arbitrary input Fock state is of the form
∏M

k=1(â†
k)nk /√

nk! |vac〉, so that the output state is of the form

M∏
k=1

1√
nk!

[Âk(U ) + R̂k(U )]nk |vac〉 , (40)

i.e., it is a product of n terms, not all of which are necessarily
different. We can rewrite it as

N
n∏

k=1

[Âjk
(U ) + R̂jk

(U )] |vac〉 , (41)

where jk ∈ {1, . . . ,M} and N is the necessary normalization.
The highest number of monomial terms in this product is
bounded by 2n and after tracing out Bob and Harold this also
bounds the number of monomial terms that can be in Alice’s
reduced state. �

Consider a balanced 50:50 beam splitter coupling one of
Alice’s modes (say k) to one of Bob’s modes (say k + MA).
If Alice’s mode contained one input photon and Bob’s none,
we get one ebit of entanglement. Proposition V.3. tells us we
can only get up to n ebits using n photons, so as long as
n � MA = MB , a beam splitter coupling mode k with mode
k + MA for k = 1 through n in this way would give us a state
that achieves the bound.

The dimensionality (Sec. V B 1) and linearity bounds above
hold for all M and all n. We can find numerically the photon
number nL(MA) ∈ N, which depends on the number of Alice’s
modes. For a given MA it represents the number of photons up
to which the linearity bound is smaller than the dimensionality
bound. For n > nL(M), the dimensionality bound is a tighter
limit on the entanglement (see Fig. 10).

C. Hints of another bound

In this section we explore a potential bound that is motivated
by numerical evidence (see Fig. 10). While adding more
photons to the interferometer increases the size of Alice’s
and Bob’s Hilbert spaces, and according to the results from
the previous section should allow for higher amounts of
entanglement, we see that this is not what happens in general
(assuming the number of modes that Alice and Bob have are
fixed). Based on the analytical results from Sec. V A and the
numerical evidence for all cases up to n = 7 photons and
MA = MB = 3 modes, we make a conjecture that there is
another bound which seems to arise from the unitarity of the
mode transformation.

Conjecture V.1. For n unbunched photons input into an
interferometer with MA Alice and MB Bob output modes
with n > MA + MB , the average amount of entanglement,
obtained over Harold’s measurements, is bounded above by the
maximal average amount of entanglement achieved when n =
MA + MB .

We provide numerical evidence supporting this “unitarity
bound” for various numbers of input photons and modes.

FIG. 10. Plot of the maximum average entanglement found
through numerical optimization, along with the dimensionality and
linearity bounds for MA = MB . The input are unbunched states. If
n > MA + MB , the remaining MH = n − MA − MB modes contain
detectors. The green solid (straight) line is the linearity bound. Other
lines are dimensionality bounds for the value of MA whose dots
have the corresponding color. We can see that the values of nL for
specific MA’s are nL(1) = 1, nL(2) = 2, nL(3) = 3, and nL(4) = 4.
The markers show values found through numerical optimization.

We assume that the input states are unbunched, ancillas and
measurement are allowed, and Alice and Bob have the same
number of modes: MI = n, MV � 0, MA = MB � 1, and
MH � 0.

Propositions V.2 and V.3 provide tight entanglement bounds
when all input photons are kept in the system, i.e., when
there is no detection. We know that it is possible to postselect
states that exceed these bounds, but because we are interested
in average entanglement these cases must be weighted with
their heralding probabilities. Our findings are consistent with
a generic trade-off between these two quantities, leading to a
bounded average entanglement.

Figure 10 shows the results of numerical optimization of the
average entanglement given by Eq. (18) for various numbers
of input photons and modes. We can see how the linearity
and dimensionality bounds of Sec. V B are indeed limiting the
entanglement. We also see the appearance of what looks like a
third bound, seemingly when the number of photons is larger
than the total number of modes in the system (MA + MB).
This new behavior is not captured by the bounds we have
obtained and we conjecture that it is due to the unitarity of the
interferometric transformation. This leads to the hypothesis
that the maximum possible average entanglement, in situations
with unbunched input and Alice and Bob having the same
number of modes, can be reached using a (MA + MB)-mode
interferometer with MA + MB photons.

D. Optimal interferometers

Finally, in this section we report some of the explicit inter-
ferometers (unitaries) that produce the optimal entanglement
found for small number of modes.
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In the case of MA = MB = 1 and a single photon n = 1,
the well-known balanced 50:50 beam splitter is optimal,

BS1 = 1√
2

[
1 1

−1 1

]
. (42)

This is familiar, as in single-rail encoding it creates a Bell state.
Let θ = 1

2 arccos (1/
√

3). When we input two photons, n = 2,
with one in each mode, the unitary

BS2 =
[

cos θ sin θ

− sin θ cos θ

]
(43)

produces a state with log 3 ebits of entanglement. Conjecture
V.1 says that for all higher photon numbers, log 3 will still
be the maximum, achieved by using BS2 between any pair of
Alice and Bob’s modes and identity on all the others (they are
just routed straight to the detectors).

For MA = MB = 2, we have that all the optimal interferom-
eters are actually combinations of BS1 and BS2. An example
for M = n = 4 is⎡⎢⎣ cos θ 0 0 sin θ

0 cos θ sin θ 0
0 − sin θ cos θ 0

− sin θ 0 0 cos θ

⎤⎥⎦, (44)

where as before θ = 1
2 arccos (1/

√
3). This interferometer

corresponds to a BS2 beam splitter between modes 1 and 4
and another BS2 beam splitter between modes 2 and 3, giving
log 9 ≈ 3.17 ebits of entanglement. When n = 3, the optimal
value of log 6 ≈ 2.58 ebits is achieved by using BS2 on modes
1 and 4 and BS1 on modes 2 and 3. For n = 2, the maximum
of two ebits is achieved by two BS1 beam splitters, similar to
the n = 4 case. Finally, for n = 1 we just use a single BS1 to
achieve one ebit.

The data used to generate Figs. 4, 5, and 6 is available for
download at the University of Bristol data repository, data.bris
[26].
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