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Free-space optical communication links are promising channels for establishing secure quantum communi-
cation. Here we study the transmission of nonclassical light through a turbulent atmospheric link under diverse
weather conditions, including rain or haze. To include these effects, the theory of light transmission through
atmospheric links in the elliptic-beam approximation presented by Vasylyev et al. [D. Vasylyev et al., Phys.
Rev. Lett. 117, 090501 (2016)] is further generalized. It is demonstrated, with good agreement between theory
and experiment, that low-intensity rain merely contributes additional deterministic losses, whereas haze also
introduces additional beam deformations of the transmitted light. Based on these results, we study theoretically
the transmission of quadrature squeezing and Gaussian entanglement under these weather conditions.
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I. INTRODUCTION

By the use of modern quantum communication tech-
nologies, secret information exchange becomes feasible [1].
Light is the most attractive candidate for the practical use
in quantum communication protocols due to its robustness
against the influence of the environment, high bandwidth,
and the possibilities of multiplexing information encoding
using, e.g., polarization or orbital angular momentum. Re-
cently, quantum communication technologies in free-space
channels have developed rapidly. Various experiments have
been performed, with distances ranging from intracity [2–7]
to more than 100 km [8–12], which have shown that the
atmosphere is a reliable medium for the communication with
light exploiting its quantum properties. Moreover, the use of
satellite-mediated links [13–20] paves the way to establish
global quantum communication links.

During the propagation through the atmosphere, optical
beams undergo random broadening and deformation as well as
stochastic deflections as a whole. The major effect comes from
the turbulent fluctuations of the refractive index. Moreover,
the light beam may be attenuated by backward scattering and
absorption. These effects become even more pronounced if
the meteorological conditions deviate from what we usually
call clear weather. Indeed, under bad weather conditions the
optical beam experiences additional broadening, absorption,
and backscattering due to random scattering on dust particles,
aerosols, and/or precipitations. There exist numerous studies
of classical light propagation in turbulent atmosphere in the
presence of haze, fog, or rain [21–27]. Some recent advances
were made in the quantum theory of light propagation through
atmospheric turbulence [28–38]. However, a consistent quan-
tum theory of light propagation in turbulence with the inclusion
of random scattering on particles, aerosols, and precipitations
has not been developed so far. In contrast to the theory of
random scattering of classical light [39–41], the quantum
theory implies additional constraints, such as commutation
rules, so that the classical results cannot be applied in a
straightforward manner.

The purpose of our article is to develop a basic quantum
theory of light propagation in haze, rain, and turbulence in
close relation to experimental observations. To this end, we
relate the transmitted quantum state to the initial state at the
transmitter site via the input-output relation

âout = √
ηâin +

√
1 − ηĉ, (1)

where âin (out) is the input (output) field annihilation
operator and ĉ is the operator of environmental modes. The
transmittance η∈[0,1] is a random variable that describes the
fluctuating-loss channels under study. In terms of the Glauber-
Sudarshan P function [42,43], the input-output relation (1)
reads

Pout(α) =
∫ 1

0
dηP(η)

1

η
Pin

(
α√
η

)
. (2)

Here the functions Pin(α) and Pout(α) are quasiprobability
distributions that completely describe the input and output
quantum states, respectively. The probability distribution of
the transmittance (PDT) P(η) describes fluctuations of the
transmission efficiency η.

In many practical situations one deals with phase-
insensitive measurements. Hence, the phase of η is not needed
in the input-output relation (1). Moreover, even for homodyne
measurements one may design the experiment such that the
phase fluctuations of the output field amplitude âout can be
neglected (see Refs. [44,45] for the corresponding experiment
and Ref. [46] for its theoretical analysis). In general, the
atmospheric turbulence and the scattering effects may cause
beam deformations, speckles, etc., so a multimode analysis
of the transmitted light seems to be necessary. However, the
experiments under study can be treated by an effective single-
mode scenario (see Appendixes A and C in the Supplemental
Material of Ref. [35]).

Fine properties of fluctuating losses of the channel play
a crucial role in free-space quantum communication. Indeed,
in many cases one postselects events with the large transmit-
tance [4,47–49]. In this context the widely used log-normal
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distribution [31] may fail. This happens when fluctuations,
which are related to the beam wandering [35], are significant.
In important practical situations, such as in the case of the
considered atmospheric link of 1.6 km, both beam wandering
and beam-spot distortion contribute in the PDT. This situation
can be properly described with the recently proposed elliptic-
beam approximation [36].

In the present article we generalize PDT based on the
elliptic-beam approximation [36], in order to incorporate the
influence of random scatterers, such as haze particles and/or
raindrops. There are two major effects of random scatterers
on the beam: distortion of the beam shape including random
deflection of its centroid and random losses due to scattering.
We restrict our attention to the theoretical description of
the former, while the latter effect is considered only phe-
nomenologically. The theoretical PDTs are compared with the
experimental distributions that were measured during daytime
and nighttime campaigns in Erlangen with an atmospheric
link of 1.6-km length. The nighttime measurements were
performed during the buildup of a hazy turbulent atmosphere,
while the atmospheric daytime link was affected by light
rainfall. The good agreement between the theoretical and
experimental PDTs shows that our generalized elliptic-beam
model is capable of describing quantum light propagation
through the turbulent atmosphere even under diverse weather
conditions.

The paper is organized as follows. In Sec. II we discuss var-
ious theoretical aspects such as the input-output relations and
the PDT model for atmospheric quantum channels. In Sec. III
the experimental setup is discussed and the experimental and
theoretical PDTs are compared. The examples of the transfer
of quadrature-squeezed and Gaussian-entangled light fields
through the turbulent and scattering medium are presented in
Sec. IV. A summary is given in Sec. V.

II. MODEL OF THE TURBULENT
AND SCATTERING MEDIUM

In the absence of absorption and scattering the fluctuating
losses on the receiver site arise mainly due to the finite aperture
size of the receiving (detecting) system. Let us consider
an initially Gaussian beam that propagates along the z axis
through the atmosphere. It impinges the circular aperture of
radius a placed at the distance L from the transmitter. The
atmospheric turbulence leads to random fluctuations of the
beam shape and the beam-centroid position. As a result, the
transmittance of such a beam through the aperture

η =
∫

|ρ|2=a2
d2ρ|u(ρ,L)|2 (3)

is a fluctuating parameter (cf. Ref. [35,36]). Here u(ρ,L) is the
beam envelope initially normalized in the transversal plane.

A. Light beam in turbulent and scattering media

The envelope function u(ρ,L) for an optical beam is
obtained by solving the corresponding Helmholtz equation
in the paraxial approximation [50]. In this case the norm of the
beam is preserved over the whole transmission path and the
main effect comes from the losses due to the finite aperture

FIG. 1. Scheme of optical beam transmission through the tur-
bulent and scattering atmosphere. The beam with initial beam-spot
radius W0 undergoes random deformations and deflections while
propagating in the atmospheric link of length L. A part of the radiation
field is scattered and absorbed, which is the source of additional
extinction losses. The transmitted beam is cut by the circular receiver
aperture of radius a.

only. Such a technique gives a reasonable result in the case of
turbulent atmosphere, when absorption and scattering effects
can be neglected. However, these effects become essential for
worse weather conditions in the presence of random scatterers,
such as dust particles, aerosols, water droplets, etc. For the
typical scenario, see Fig. 1.

In the presence of random scatterers we can still use
Eq. (3) for determining the transmission efficiency. In this case,
however, the norm of the beam envelope in the aperture plane
can be less than one, due to scattering and absorption losses.
While the absorption losses can be included in the paraxial
approximation of the Helmholtz equation via the imaginary
part of the permittivity, the consistent description of scattering
losses requires consideration beyond this approximation.

The resulting electromagnetic field in the scattering media
is a superposition of two components: the transmitted beam
and the scattered wave. The transmitted beam reaches the
plane of the receiver aperture. The amplitude of the scattered
wave is proportional to the scattering cross section, which
determines the related losses [41]. Since the norm of the whole
electromagnetic wave should be preserved, the transmitted
beam appears to be non-normalized.

In this paper we restrict our consideration to the transmitted-
beam part of the electromagnetic wave. This part can still
be described by using the paraxial approximation. The
corresponding approach consistently describes distortions of
the beam shape and deflections of the beam centroid by
random scatterers. However, it does not yield the value of
the corresponding scattering losses since we do not consider
the nonparaxial part of the scattered field. Hence we use a
phenomenological approach for describing these losses. For
this purpose we additionally multiply the beam amplitude by
the factor

√
χext. The extinction factor χext∈[0,1] is a random

variable that describes the absorption and scattering losses. The
proper analysis of our experimental data (see Sec. III) shows
that the extinction factor can be considered as a nonfluctuating
parameter, for the cases of rain and haze in the experimentally
studied 1.6-km link.
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The solution of the paraxial wave equation together with
the extinction factor in the form of a phase approximation of
the Huygens-Kirchhoff method [36,51] is given by

u(ρ,L) = √
χext

∫
R2

d2ρ ′u0(ρ ′)G(ρ,ρ ′; L,0). (4)

Here the Gaussian beam envelope in Eq. (4) at the transmitter
plane z = 0 reads

u0(ρ) = u(ρ,z = 0) =
√

2

πW 2
0

exp

[
− 1

W 2
0

|ρ|2 − ik

2F
|ρ|2
]
,

(5)

where W0 is the beam-spot radius, k is the optical wave number,
and the beam is assumed to be focused at z = F . The integral
kernel in Eq. (4) reads

G(ρ,ρ ′; z,z′) = k

2πi(z − z′)
exp

[
ik|ρ − ρ ′|2
2(z − z′)

]

× exp[iS(ρ,ρ ′; z,z′)], (6)

where

S(ρ,ρ ′; z,z′) = k

2

∫ z

z′
dξ δε

(
ρ

ξ − z′

z − z′ + ρ ′ z − ξ

z − z′ ,ξ
)

(7)

is the random-phase contribution caused by the inhomo-
geneities of the fluctuating part of the real relative permittivity
δε(ρ,z). The random phase has contributions from random
scattering, both at turbulent inhomogeneities and at additional
random scatterers.

The statistical properties of the light field are affected by
the statistical properties of the relative permittivity δε. Note
that the latter can be separated in two major contributions

δε = δεturb + δεscat, (8)

with the parts related to the turbulence δεturb and to the random
scatterers δεscat. Here we have assumed that the condition
δεscat � δεturb applies. These two parts are also considered
to be statistically independent. The correlation function for δε

can be written as [50]

〈δε(r1)δε(r2)〉 =
∫

d3K 	ε(K) exp[iK · (r1 − r2)], (9)

where r = (ρ z)T, K = (κ Kz)T, and 	ε(K) is the permittivity
fluctuation spectrum, which splits as

	ε(K) = 	turb
ε (K) + 	scat

ε (K), (10)

due to the aforementioned statistical independence of δεscat

and δεturb. Using the Markov approximation [41,50,52], we
can further simplify Eq. (9) and write

〈δε(r1)δε(r2)〉 = 2πδ(z1 − z2)
∫

d2κ 	ε(κ)eiκ ·(ρ1−ρ2), (11)

where κ is the transverse wave vector. The Markov approxi-
mation is well justified for the turbulent atmosphere [37]. For
the scattering medium, this means that along the propagation
direction the scattering on a certain particle is not influenced
by the scattering on its neighbor particles [53].

For the turbulence part of the spectrum we use the
Kolmogorov model [50,52]

	turb
ε (κ) = 0.132C2

n|κ |−11/3, (12)

which is defined in the inertial interval |κ |∈[κ0,κm] with
κ0∼1/L0 and κm∼1/l0. Here L0 and l0 are the outer and
inner scales of turbulence, respectively. The refractive index
structure constant C2

n characterizes the strength of optical
turbulence. In the case of vertical or elevated links, such as
ground-satellite links, the dependence of structure constant on
altitude should be taken into account.

In Refs. [25,26] it was shown that the spectrum of the
correlation function of fluctuations δεscat can be written for
monodisperse scatterers of size dscat as

	scat
ε (κ) = 2n0

πk4
|f0(κ ; dscat)|2, (13)

where f0(κ ; dscat) is the amplitude of the wave scattered
from a separate particle and n0 is the mean number of
scattering particles per unit volume. The strict calculations of
the amplitude f0 can be found in Refs. [40,41]. For scattering
on haze or fog, one uses the Mie scattering theory, whereas
the geometric scattering theory is applied for the description
of scattering on drizzle and rain.

As shown in Refs. [23,26,27] one can approximate |f0| in
Eq. (13) in all aforementioned scattering scenarios by Gaussian
functions. Equation (13) can be written as

	scat
ε (κ) = n0ζ

4
0

8πk2
exp[−ζ 2

0 |κ |2]. (14)

This approximation means that the fluctuations of the
scattering-related relative permittivity has a Gaussian cor-
relation function with the correlation length 2ζ0 (see also
Appendix C). As was shown in Refs. [23,26,27], the parameter
ζ0 is proportional to the particle size dscat and for the case
of Mie scattering it depends additionally on the light wave
number [23]. We also note that this model resembles the
Gaussian phase screen model for the correlation of phases
due to random scattering [27,54,55].

B. Elliptic-beam model

For many practical purposes we can restrict the effect of
the atmosphere on the beam shape to elliptic deformations
only. It is also important to include random wandering of
the beam centroid into consideration. This is the main idea
behind the recently proposed method of the elliptic-beam
approximation [36].

In this model, the PDT, which appears in Eq. (2), is given
by

P(η) = 2

π

∫
R4

d4v
∫ π/2

0
dϕ ρG(v; μ,�)δ(η − η(v,ϕ)). (15)

Here η(v,ϕ) is defined by Eq. (3) and is specified for the elliptic
beam. Its explicit form is given by Eq. (A2) in Appendix A.
This is a function of the random vector v = (x0 y0 �1 �2)T and
the angle ϕ related to the beam-ellipse orientation. The param-
eters x0 and y0 correspond to the beam-centroid coordinates
and the parameters �i = ln(W 2

i /W 2
0 ), i = 1,2, correspond to

the ellipse semiaxis Wi . The distribution function for these
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parameters, ρG(v; μ,�), is assumed to be Gaussian with the
vector of mean values μ and the covariance matrix �. The
knowledge of parameters μ and � enables one to evaluate
numerically the integral (15) and therefore to estimate the
PDT (for details see Appendix B).

According to the procedure, which is discussed in Ref. [36],
we calculate the values of μ and � for the focused beam L = F

(for details see Appendixes C and D). Unlike the consideration
in Ref. [36], here we also take into account the contributions
from the spectrum of random scatterers. Specifically, it turns
out that these scatterers do not affect the beam wandering,
such that the diagonal elements of the matrix � related to the
parameters x0 and y0 are given by〈

x2
0

〉 = 〈y2
0

〉 = 0.33W 2
0 σ 2

R�−7/6, (16)

where � = kW 2
0

2L
is the Fresnel number and

σ 2
R = 1.23C2

nk
7/6L11/6 (17)

is the Rytov variance [41,50], which characterizes the strength
of phase fluctuations of transmitted light due to scattering on
turbulent inhomogeneities. This effect can be explained by the
fact that the random scatterers are much smaller than the beam
diameter.

The part of the mean vector and the covariance matrix
related to the parameters �i are obtained via mean values and
the (co)variances of the squared ellipse semiaxes W 2

i ,

〈�i〉 = ln

⎡
⎣ 〈W 2

i 〉
W 2

0

(
1 + 〈(�W 2

i )2〉
〈W 2

i 〉2

)1/2

⎤
⎦, (18)

〈��i��j 〉 = ln

(
1 + 〈�W 2

i �W 2
j 〉

〈W 2
i 〉〈W 2

j 〉

)
. (19)

These parameters are calculated with the aforementioned
technique and read

〈
W 2

1/2

〉 = W 2
0

�2

[
1 + � + 2.96σ 2

R�5/9
]
, (20)

〈
�W 2

i �W 2
j

〉 = (2δij − 0.8)
W 4

0

�19/6
[1 + �]σ 2

R, (21)

where

� = 2

3
σ 2

S,scat
W 2

0

4ζ 2
0

(22)

is the beam divergence parameter due to the random scattering.
In Eq. (22) we have introduced the phase variance of
transmitted light due to random scattering as

σ 2
S,scat = π

4
n0Lζ 2

0 . (23)

Thus, the random scattering contributes to the beam broad-
ening and to the (co)variances of the beam deformation
fluctuations. It is also worth mentioning that in the considered
approximation the parameters �i are statistically independent
from the beam centroid coordinates x0 and y0 such that the
corresponding covariances vanish (for more details see the
Supplemental Material of Ref. [16]).

The beam broadening term due to the random scattering
in Eq. (20) can be compared with the results obtained

within the small-angle approximation of the radiative transfer
equation [39,56,57]

〈
W 2

scat

〉 = W 2
0

�2
+ 2

3
AτL2ψ2, (24)

where the first term represents beam broadening in free space
and the second term is due to random scattering. Here A is the
albedo of a single scatterer, i.e., the ratio of the scattering cross
section σscat to the extinction cross section σext, τ = − ln χext

is the unitless optical distance [39], and ψ2 is the mean square
of the scattering angle [40,56]. Comparing Eq. (24) with the
first two terms in (20), we obtain the expression for the beam
divergence parameter

� = 2

3

�2

W 2
0

Aτψ2. (25)

This equation relates the model parameters ζ0 and σ 2
S,scat to the

properties of scattering media.

III. EXPERIMENTAL RESULTS AND DISCUSSION

We apply the theory to experimental data collected during
nighttime and daytime campaigns for various weather condi-
tions. The experimental data were collected in experiments
on the free-space distribution of squeezed states of light
in an urban free-space channel of 1.6-km length in Erlan-
gen [4,58,59]. During the measurements, the relative trans-
mission is recorded, which can also be used for atmospheric
studies, as it is the case here. The experimental setup is divided
into a sender and a receiver. The former consists of a laser
(Origami, Onefive GmbH) with central wavelength at 1559-nm
emitting pulses with lengths of 200 fs at a repetition rate of 80
MHz. After this light is frequency doubled in a periodically
poled lithium niobate crystal (MSHG1550-0.5-0.3, Covesion
Ltd.), it is guided through a polarization-maintaining photonic
crystal fiber, thereby generating polarization-squeezed states
of light that are sent to the receiver. More details on the sender
may be found in [4].

At the receiver the light is collected by an achromatic
lens with a diameter of 150 mm and a focal length of
f = 800 mm. The beam is split into two beams by a 50-50
or 90-10 beam splitter for the nighttime measurements and
daytime measurement presented here, respectively. Each of the
beams is led to a Stokes detection setup consisting of a half
waveplate, a polarization beam splitter, and two custom-made
pin-diode (S3883, quantum efficiency ηdet = 0.9, Hamamatsu
Photonics K.K.) detectors. The dc output of these detectors
is proportional to the intensity of the impinging light and is
sampled with a rate of 80 kHz. The typical data acquisition
time for the PDTs is on the order of several seconds. The exact
durations for the shown data can be found in the captions
of Figs. 2, 3, and 5, respectively. Comparing the sum of
the four detector outputs with the sent laser power gives
the transmission for each sample. The constant losses due
to imperfections of all the optical elements in the setup add up
to a value of ηopt = 0.88.

The nighttime measurements on 24 August 2016 were per-
formed at 00:20 and at 02:00 of local time. During two hours
with separate measurements the temperature dropped from
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FIG. 2. Elliptic-beam approximation PDT (solid line) compared
with the experimental PDT (dashed line). The measurement was
performed at night on 24 August 2016 at 00:20 (local time); the
data acquisition time is 12 s. The other parameters are a wavelength
of 780 nm, the initial spot radius W0 = 20 mm, the aperture radius
a = 75 mm, the Rytov parameter σ 2

R = 1.78, the beam divergence
parameter due to random scattering � = 5, and the extinction factor
χext = 0.51. The last three parameters are derived from the fitting
procedure of the theoretical PDT to the experimental data.

16 ◦C to 14 ◦C, whereas the relative humidity increased from
85% to 94%. The increase of humidity has led to the formation
of more dense haze and as a consequence to the reduction of
the optical visibility. The corresponding experimental PDTs
are obtained by the smooth kernel method [60] and are shown
in Figs. 2 and 3.

The theoretical curves in Figs. 2 and 3 were calculated
by using the elliptic-beam approximation for the PDT [cf.
Eq. (15)] by using Monte Carlo methods. We estimated the
value for the Rytov parameter σ 2

R , the divergence parameter
�, and the extinction factor χext with the Pierson’s χ2

criterion [61]. The increase of humidity between the two
measurements led to the increase of the haze particle sizes and
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FIG. 3. Elliptic-beam approximation PDT (solid line) compared
with the experimental PDT (dashed line). The measurement was
performed at night on 24 August 2016 at 02:00 (local time); the data
acquisition time is 9 s. The estimated from the fit Rytov parameter is
σ 2

R = 1.05, the beam divergence parameter � = 12, and χext = 0.40.
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FIG. 4. Influence of haze on transmission characteristics of
the atmospheric channel. The PDT with the inclusion of random
scattering due to haze (solid line) is calculated for the same parameters
as in Fig. 2, i.e., it corresponds to the experimental data. The PDT
without inclusion of haze (dashed line) is theoretically deduced;
extinction losses are χext = 0.94 due to molecular absorption.

the haze number density. The decrease of temperature, on the
other hand, reduced the intensity of thermal fluctuations in the
atmosphere and hence the strength of optical turbulence. These
effects cause a significant change of transmittance statistics.
Comparing Fig. 2 with Fig. 3, we see that with an increase of
the divergence parameter the PDT becomes more symmetric
and resembles a Gaussian distribution. Therefore, the channel
presented in Fig. 3 has a smaller probability of attaining high
values of transmittance in comparison to the channel in Fig. 2.

In order to demonstrate the impact of haze, in Fig. 4 we
show the theoretical PDT from Fig. 2 (solid line) and compare
it to the theoretically one deduced when there would not be
any haze (dashed line). The extinction of the light signal
due to haze shifts the distribution to the smaller values of
the transmittance. At the same time, the random scattering
broadens the distribution.

The daytime measurement was performed on 08 June 2016
at 11:15 (local time). The meteorological data for this day
were the following: 76% humidity, a temperature of 17.6 ◦C,
and 3 mm/h of mean rain rate during the day. Figure 5 shows
the experimental (dashed line) and the theoretical (solid line)
PDTs. During the day measurements the atmospheric channel
is characterized by a larger value of the Rytov parameter
(σ 2

R = 2.88) in comparison to the night measurements, because
of increased turbulence due to thermal convection and wind
shear. We have observed that light rain introduces a minor
contribution to the phase fluctuation given by Eq. (7) and
estimated the divergence parameter as � = 0.2, i.e., the beam
broadening and beam deformation due to rainfall is small. The
more pronounced effect of the rainfall is connected with the
contribution to the extinction factor χext. We have used an
empirical formula [53,62] that connects the extinction factor
with the path-averaged rainfall intensity I (in mm/h) and
propagation distance L (in m) as

χext = exp[−210I0.74
L]. (26)
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FIG. 5. Experimental (dashed line) and theoretically fitted (solid
line) PDTs for atmospheric quantum channel in the presence of
rainfall. The measurement was performed at daytime on 08 June 2016
at 11:15 (local time); the data acquisition time is 14 s. The estimated
Rytov parameter σ 2

R = 2.88, the beam divergence parameter due
to scattering on haze � = 0.2, the path-averaged rain intensity
I = 3.2mm/h, and χext = 0.43.

The dependence of the extinction coefficient on the water
content of precipitations is given in Ref. [63]. In analogy to
Fig. 4, Fig. 6 compares the theoretical PDTs with (solid line)
and without (dashed line) inclusion of losses due to scattering
and absorption by rainfall. One can see that the PDT is shifted
to lower values of transmittance and it is narrowed.

IV. QUADRATURE SQUEEZING
AND GAUSSIAN ENTANGLEMENT

In order to illustrate the capability of atmospheric channels
to preserve nonclassical properties of quantum light, we
consider the propagation of quadrature squeezed and Gaussian
entangled states through turbulence, rain, and haze. The
knowledge of the PDT (15) allows us to analyze the quantum
properties of propagating light with the help of the input-output

P
ro

ba
bi

li
ty

D
is

tr
ib

ut
io

n 15

10

5

0

Transmittance,
1.0

With rain (theory)

Without rain (theory)

FIG. 6. Atmospheric channel transmittance distribution with
(solid line) and without (dashed line) light rain. The latter PDT
includes additional extinction losses χext = 0.94 due to molecular
absorption. The solid line corresponds to the elliptic-beam model fit
in Fig. 5, whereas the dashed line is theoretically deduced.
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FIG. 7. Transmitted value of squeezing as a function of postse-
lection threshold ηmin. The input light is squeezed to −2.4 dB and
sent through three atmospheric channels presented in Figs. 2, 3, 5.
The predicted behaviors are theoretically evaluated on the basis of
the experimental PDTs. The solid line corresponds to the nighttime
channel with the Rytov parameter σ 2

R = 1.78, divergence parameter
� = 5, extinction losses χext = 0.51, and mean transmittance 〈η〉 =
0.36. The dashed line corresponds to the rainy daytime channel with
σ 2

R = 2.88, � = 0.2, χext = 0.43, and 〈η〉 = 0.29. The dash-dotted
line corresponds to the nighttime channel with haze, σ 2

R = 1.05,
� = 12, χext = 0.40, and 〈η〉 = 0.26. For all curves the additional
losses on optical components ηopt = 0.88 and detection efficiency
ηdet = 0.9 are included. All other parameters are the same as in Fig. 2.

relation (2). Alternatively, one can use directly the input-output
relation (1) and the PDT is used for the calculation of moments
〈√η〉, 〈η〉, etc.

The propagation of squeezed light through the turbulent
atmosphere has been studied both theoretically [35] and
experimentally [4]. It has been shown that the postselection
procedure of transmission events with transmittance values
greater than the postselection threshold ηmin yields larger
values of the transmitted squeezing [4,64]. We consider the
propagation of quadrature squeezed light (−2.4 dB) at λ =
780 nm over 1.6 km under different atmospheric conditions.
Figure 7 shows the values of squeezing as a function of
the postselection threshold for atmospheric channels. The
corresponding PDTs are shown in Figs. 2, 3, and 5. The values
of transmitted squeezing as well as the maximal postselection
threshold values depend on the mean transmittance 〈η〉. The
most favorable conditions for squeezing transmission (see the
solid line in Fig. 7) are for the nighttime measurement with
haze and a low value of the divergence parameter � [cf.
Eq. (22)]. The stronger optical turbulence during the daytime
transmission diminishes the detectable squeezing value (see
the dashed line in Fig. 7). At the same time the beam divergence
due to scattering plays a minor role here. The dash-dotted line
in Fig. 7 shows that the presence of denser haze during the
second nighttime measurement contributes to a stronger beam
divergence and hence to a smaller efficiency of squeezed light
transmission.

As the next example we consider the transmission of
Gaussian entanglement of a two-mode squeezed vacuum
(TMSV) state in the turbulent atmosphere with haze or rain.
Here we closely follow the theoretical analysis of Ref. [65],
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FIG. 8. Shaded areas represent the regions where the entangle-
ment can be verified by applying the Simon entanglement test,
which is a function of the squeezing parameter ξ and of the
coherent displacement |〈â〉|. The solid, dashed, and dash-dotted lines
correspond to the bounds of the region where entanglement survives,
for the respective channels listed in the caption of Fig. 7.

where it was shown that, in contrast to the channels with
deterministic losses, the propagation through the atmosphere
with fluctuating transmittance yields certain restrictions on the
squeezing degree of the TMSV.

We consider the scenario when one mode of the entangled
light fields is sent through the atmospheric channel (field
mode A), whereas the second one is analyzed locally at
the transmitter site (field mode B). For the transmitted and
detected state we apply the Simon entanglement criterion [66]
in the form found in Ref. [67], stating that any two-mode
Gaussian state is entangled if and only if

W = det V PT < 0, (27)

where V PT is the partial transposition of the matrix

V =

⎛
⎜⎜⎝

〈�â†�â〉 〈�â†2〉 〈�â†�b̂〉 〈�â†�b̂†〉
〈�â2〉 〈�â�â†〉 〈�â�b̂〉 〈�â�b̂†〉

〈�â�b̂†〉 〈�â†�b̂†〉 〈�b̂†�b̂〉 〈�b̂†2〉
〈�â�b̂〉 〈�â†�b̂〉 〈�b̂2〉 〈�b̂�b̂†〉

⎞
⎟⎟⎠.

(28)

The matrix V is the second-order matrix of moments of
the bosonic creation and annihilation operators of the field
modes A and B, where �x̂ = x̂ − 〈x̂〉 with x̂ = â,b̂. The
Simon entanglement test Watm for the state when one mode is
transmitted through the atmosphere is obtained by applying
the input-output relation (1) to the field mode A, i.e., for
the operators â and â†. As it was shown in Ref. [65], the
entanglement test Watm for fluctuating loss channels contains
a term that depends on the coherent displacement |〈â〉|. This
feature yields some restrictions on the value of the coherent
displacement since for some boundary value |〈â〉| the Simon
test becomes positive. Similarly, there exists some boundary
value of the squeezing parameter ξ above which the Gaussian
entanglement is not preserved.

In Fig. 8 we show the regions where the Gaussian entan-
glement can be verified for the three atmospheric channels
characterized by the PDTs given in Figs. 2, 3, and 5. The
boundary values of the coherent amplitude |〈â〉| and squeezing

parameter ξ are shown by solid, dashed, and dash-dotted lines
for the corresponding channels. The boundary values of the
squeezing parameter lie beyond the experimentally obtainable
squeezing strengths that were obtainable in our experiment.
However, for long propagation paths this border could be
reached already for practically generated TMSV states. This
effect therefore should be taken into account when applying
TMSV-based quantum protocols for long-distance quantum
communication. In Fig. 8 we also see that the presence of
random scattering by haze particles shrinks the area where
the Gaussian entanglement persists, by reducing the boundary
value of the coherent displacement amplitude. Similarly to
the case of quadrature squeezing transmission, the particular
daytime channel with rain preserves Gaussian entanglement
better than the hazy nighttime channels.

V. CONCLUSION

A quantum state that is transmitted through an atmospheric
quantum link experiences fluctuating losses that can spoil
or completely destroy its nonclassical properties. Here we
studied a realistic intracity free-space quantum channel that
has turbulence- and scattering-induced fluctuating losses. Our
experimental results show that the transmittance statistics
for Gaussian beams strongly depends on the meteorological
conditions and can change drastically within a few hours
between two measurements. Our theoretical studies explained
this situation by taking into account not only the atmospheric
turbulence but also the random scattering on haze particles
or on raindrops. Using the elliptic-beam model for the beam
transmitted through the atmosphere and impinging on the
receiver aperture, we have shown that random scattering on
haze particles contributes to the beam broadening and beam
shape deformation. The action of rain shows minor beam
broadening and deformation effects, but it contributes to the
extinction losses.

We have studied the transmission of quadrature squeezing
and Gaussian entanglement through realistic quantum optical
links with turbulence, haze, and rain. We have found that
a detectable squeezing value depends on the propagation
conditions and it is strongly affected by random scattering. For
example, the daytime transmission in rain preserves squeezing
better than the nighttime transmission in haze, despite the
fact that the optical turbulence is considerably stronger during
the day. Similar effects have been found by analyzing the
transmission of Gaussian entanglement through atmosphere.
Random scattering on haze particles constricts the area of the
values of the squeezing parameter and coherent amplitude, for
which entanglement is verified. The obtained results may be
useful for the analysis of quantum communication protocols
in intracity atmospheric channels under diverse weather and
daytime conditions.
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APPENDIX A: APERTURE TRANSMITTANCE

In this appendix we remind the reader of some details on
the elliptic-beam model for the PDT [36]. We choose the
coordinate system such that the z axis is aligned along the line
that connects the centers of transmitter and receiver apertures.
The distance between the transmitter and the receiver aperture
plane is z = L. The transmission efficiency of an elliptic beam
through a circular aperture of radius a is given by Eq. (3),
where the beam intensity at the aperture plane is assumed to
have the Gaussian form

|u(ρ,L)|2 = 2χext

π
√

det S
exp[−2(ρ − ρ0)T S−1(ρ − ρ0)].

(A1)

Here ρ = (x y)T is the transverse coordinate, ρ0 =
(ρ0 cos φ0 ρ0 sin φ0)T is the beam centroid position coor-
dinate, S is the real, symmetric, positive-definite spot-shape
matrix, and χext is the extinction factor due to absorption and
scattering. In general, the intensity (A1) has an elliptic profile.
Applying the rotation by a certain angle ϕ, we can bring the
spot shape matrix into diagonal form with the elements W 2

i ,
i = 1,2, which are the squared major semiaxes of the ellipse.

Substituting Eq. (A1) in Eq. (3), one can show that the
transmission efficiency can be approximated by the following
expression (cf. Ref. [36]):

η = η0 exp

⎧⎨
⎩−
[

ρ0/a

R
(

2
Weff (ϕ−φ0)

)
]λ[2/Weff (ϕ−φ0)]

⎫⎬
⎭. (A2)

Here the maximal transmittance for a centered beam

η0 = 1 − I0

(
a2 W 2

1 − W 2
2

W 2
1 W 2

2

)
exp

(
− a2 W 2

1 + W 2
2

W 2
1 W 2

2

)

− 2

{
1 − exp

[
− a2

2

(
1

W1
− 1

W2

)]}

× exp

⎡
⎢⎣−
⎧⎨
⎩

(W1+W2)2

|W 2
1 −W 2

2 |
R
(

1
W1

− 1
W2

)
⎫⎬
⎭

λ(1/W1−1/W2)
⎤
⎥⎦ (A3)

is a function of the two eigenvalues W 2
i of the spot-shape

matrix S and In(x) is the modified Bessel function of nth
order. The shape λ and scale R functions are given by

λ(ξ ) = 2a2ξ 2 e−a2ξ 2
I1(a2ξ 2)

1 − exp[−a2ξ 2]I0(a2ξ 2)

×
[

ln

(
2

1 − exp
[− 1

2a2ξ 2
]

1 − exp[−a2ξ 2]I0(a2ξ 2)

)]−1

, (A4)

R(ξ ) =
[

ln

(
2

1 − exp
[− 1

2a2ξ 2
]

1 − exp[−a2ξ 2]I0(a2ξ 2)

)]−1/λ(ξ )

, (A5)

where the effective squared spot radius

W 2
eff(ϕ − φ0) = 4a2

[
W
(

4a2

W1W2
e2a2(1/W 2

1 +1/W 2
2 )

× ea2(1/W 2
1 −1/W 2

2 ) cos(2ϕ−2φ0)

)]−1

(A6)

is expressed with the help of the Lambert function W(x) (cf.
Ref. [68]). Thus, the elliptic beam transmittance (A2) is a
function of the random variables ρ0 = (x0 y0)T, W 2

1 , W 2
2 , and

φ = ϕ − φ0 or, alternatively, of the variables ρ0, �1, �2, and
φ, where

W 2
i = W 2

0 exp �i, (A7)

with W 2
0 being the beam spot radius at the transmitter.

APPENDIX B: EVALUATION OF THE PDT

In this appendix we discuss how to numerically evaluate
the PDT in Eq. (15), based on the knowledge of relevant
atmospheric and beam parameters. To this end one should
proceed with the following steps.

(i) One calculates the components of covariance matrix �

and mean values μ of the random vector v = (x0 y0 �1 �2)T

using Eqs. (16) and (18)–(21) and knowledge about the
corresponding beam, aperture parameters, atmospheric struc-
ture constant C2

n , and beam divergence parameter �. We
note, however, that the analytical results (16), (20), and (21)
were obtained in the asymptotic case of weak-to-moderate
turbulence. The elliptic-beam approximation in the present
form does not work for arbitrary channels.

(ii) Then the numerical integration in Eq. (15) can be
performed within a Monte Carlo method. For this purpose
one should simulate the N values of the vector v and the angle
φ. The angle φ is assumed to be uniformly distributed in the in-
terval [0,π/2]. The simulated values of v and φ are substituted
into Eq. (A2) by taking into account that φ = ϕ − φ0. Finally,
the obtained transmittances are multiplied with the extinction
factor χext yielding N values of atmospheric transmittance
χextη(vi ,φi), i = 1, . . . ,N . The corresponding PDT can be
visualized using the simulated values of transmittance via
histograms or using the techniques of smooth kernels [60].

(iii) In most practical situations the knowledge of mean
value of some quantity that is function of transmittance 〈f (η)〉
is needed. Such a quantity is estimated from the simulated
values of transmittance as

〈f (η)〉 ≈ 1

N

N∑
i=1

f (χextη(vi ,φi)), (B1)

where η(vi ,φi) is obtained from Eq. (A2). For example, one can
obtain the first two moments of the atmospheric transmittance
as

〈η〉 ≈ χext
1

N

N∑
i=1

η(vi ,φi), (B2)

〈η2〉 ≈ χ2
ext

1

N

N∑
i=1

η2(vi ,φi). (B3)
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APPENDIX C: STATISTICAL PARAMETERS FOR THE
ELLIPTIC BEAM AND OPTICAL FIELD CORRELATIONS

The vector v = (x0 y0 �1 �2)T is a Gaussian random vector.
The angle variable φ is assumed to be uniformly distributed
in the interval [0, π

2 ]. The reference frame is chosen such that
〈x0〉 = 〈y0〉 = 0 and

〈
x2

0

〉 = 〈y2
0

〉 = 1

χ2
ext

∫
R4

d2ρ1d
2ρ2 x1x2�4(ρ1,ρ2; L), (C1)

where �4(ρ1,ρ2; z) = 〈u∗(ρ1,z)u(ρ1,z)u∗(ρ2,z)u(ρ2,z)〉 is
the fourth-order field-correlation function. The means and
(co)variances of �i are expressed via the means and
(co)variances of W 2

i by Eqs. (18) and (19), respectively.
Under the assumptions of Gaussianity and isotropy (for details
see the Supplemental Material of Ref. [36]), the means and
(co)variances of W 2

i read

〈
W 2

1/2

〉 = 4

[
1

χext

∫
R2

d2ρ x2�2(ρ; L) − 〈x2
0

〉]
, (C2)

〈
�W 2

i �W 2
j

〉 = − 8

χ2
ext

{
2

(∫
R2

d2ρ x2�2(ρ; L)

)2

−
∫
R4

d2ρ1d
2ρ2
[
x2

1x2
2 (4δij − 1)

− x2
1y2

2 (4δij − 3)
]

×�4(ρ1,ρ2; L)

}
− 16[4δij − 1]

〈
x2

0

〉2
, (C3)

where we have also used the second-order field-correlation
function �2(ρ; z) = 〈u∗(ρ,z)u(ρ,z)〉.

For the calculation of the field-correlation functions �2 and
�4 in Eqs. (C1)–(C3) we use the expression (4) for the field
envelope u(ρ,z). Substituting Eq. (4) in the second- and fourth-
order field-correlation functions and performing the statistical
averaging, we get

�2(ρ; L) = χext

∫
R4

d2ρ ′
1d

2ρ ′
2 u0(ρ ′

1)u∗
0(ρ ′

2)G0(ρ,ρ ′
1; L,0)

×G∗
0(ρ,ρ ′

2; L,0)〈exp[iS(ρ,ρ ′
1; L,0)

− iS(ρ,ρ ′
2; L,0)]〉, (C4)

�4(ρ1,ρ2; L) = η2
ext

∫
R8

d2ρ ′
1 · · · d2ρ ′

4 u0(ρ ′
1)u∗

0(ρ ′
2)u0(ρ ′

3)

×u∗
0(ρ ′

4)G0(ρ1,ρ
′
1; L,0)G∗

0(ρ1,ρ
′
2; L,0)G0

× (ρ2,ρ
′
3; L,0)

×G∗
0(ρ2,ρ

′
4; L,0)〈exp[iS(ρ1,ρ

′
1; L,0)

− iS(ρ1,ρ
′
2; L,0)

+ iS(ρ2,ρ
′
3; L,0) − iS(ρ2,ρ

′
4; L,0)]〉, (C5)

with

G0(ρ,ρ ′; z,z′) = k

2πi(z − z′)
exp

[
ik|ρ − ρ ′|2
2(z − z′)

]
. (C6)

Assuming that the relative permittivity δε is a Gaussian
stochastic field, we can rewrite Eqs. (C4) and (C5) as

�2(ρ; L) = χext

∫
R4

d2ρ ′
1d

2ρ ′
2 u0(ρ ′

1)u∗
0(ρ ′

2)G0(ρ,ρ ′
1; L,0)

×G∗
0(ρ,ρ ′

2; L,0) exp
[− 1

2DS(0,ρ ′
1 − ρ ′

2)
]
,

(C7)

�4(ρ1,ρ2; L) = χ2
ext

∫
R8

d2ρ ′
1 · · · d2ρ ′

4 u0(ρ ′
1)u∗

0(ρ ′
2)u0(ρ ′

3)

× u∗
0(ρ ′

4)G0(ρ1,ρ
′
1; L,0)G∗

0(ρ1,ρ
′
2; L,0)

×G0(ρ2,ρ
′
3; L,0)G∗

0(ρ2,ρ
′
5; L,0)

× exp

[
−1

2

{
DS(0,ρ ′

1 − ρ ′
2) + DS(0,ρ ′

3 − ρ ′
4)

−
∑

i = 1,2
j = 3,4

(−1)i+jDS(ρ1 − ρ2,ρ
′
i − ρ ′

j )

}]
,

(C8)

where

DS(ρk − ρ l ,ρ
′
k − ρ ′

l)

= 〈[S(ρk,ρ
′
k; z,z′) − S(ρ l ,ρ

′
l ; z,z

′)]2〉 (C9)

is the structure function of the phase fluctuations.
Using Eq. (7) and the Markovian approximation (cf., e.g.,

Ref. [50]), we obtain, for z′ = 0 and z = L,

DS(ρk − ρ l ,ρ
′
k − ρ ′

l) = k2L2

4

∫ 1

0
dξ 〈{δε(ρkξ + ρ ′

k[1 − ξ ],ξ )

− δε(ρ lξ + ρ ′
l[1 − ξ ],ξ )}2〉, (C10)

i.e., we assume that turbulent inhomogeneities as well as
random scatterers represented by the relative permittivity δε

are δ correlated in the z direction. In this case the structure
function (C10) can be written in terms of the permittivity
fluctuation spectrum 	ε(κ) as

DS(ρ,ρ ′) = π

2
k2L

∫ 1

0
dξ

∫
R2

d2κ 	ε(κ)

× (1 − exp{iκ · [ρξ + ρ ′(1 − ξ )]}), (C11)

where, due to the Markovian approximation, the spectrum
depends on the reduced vector κ , which is related to the vector
K in Eq. (10) as K = (κx κy 0)T. Moreover, taking into account
that the spectrum splits into two parts [cf. Eq. (10)], we can
write

DS = Dturb
S + Dscat

S , (C12)

i.e., the phase structure function also splits into turbulent- and
random scattering-induced contributions.

Based on the Kolmogorov turbulence spectrum (12) and
the proposed Gaussian spectrum (14) for random scatterers,
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we obtain, for the corresponding structure functions,

Dturb
S (ρ,ρ ′) = 2.4σ 2

Rk5/6L−5/6
∫ 1

0
dξ |ρξ + ρ ′(1 − ξ )|5/3,

(C13)

Dscat
S (ρ,ρ ′) = 2σ 2

S,scat

∫ 1

0
dξ{1 − exp[−|(ρ1 − ρ2)ξ

+ (ρ ′
1 − ρ ′

2)(1 − ξ )|2/4ζ 2
0 ]}. (C14)

Here the Rytov variance σ 2
R is given by Eq. (17), ζ0 is the

transversal correlation length for random scatterers, and σ 2
S,scat

is the corresponding phase variance given by Eq. (23). For
weather conditions with high visibility (haze and thin fog) the
correlation length ζ0 is large. In this case the phase structure
function reads

Dscat
S (ρ,ρ ′) = σ 2

S,scat

2ζ 2
0

∫ 1

0
dξ |ρξ + ρ ′(1 − ξ )|2 (C15)

and it is a quadratic function of its arguments.
We substitute Eqs. (C13) and (C15) into Eqs. (C4) and (C5)

and perform the corresponding integration. This results in the
expressions for the field-correlation functions

�2(ρ) = χext
�2

π2W 4
0

∫
R2

d2ρ ′

× exp

(
− γ 2

2W 2
0

|ρ ′|2 − 2i
�

W0
ρ · ρ ′

)

× exp

[
− 1

2
Dturb

S (0,ρ ′)
]
, (C16)

�4(ρ1,ρ2) = χ2
ext

4�4

π5W 10
0

∫
R6

d2ρ ′
1d

2ρ ′
2d

2ρ ′
3

× exp

(
− 1

W 2
0

(|ρ ′
1|2 + |ρ ′

2|2 + γ 2|ρ ′
3|2)

)

× exp

(
2i

�

W 2
0

ρ ′
1 · ρ ′

2

)

× exp

(
−2i

�

W 2
0

[(ρ1 − ρ2) · ρ ′
2

+ (ρ1 + ρ2) · ρ ′
3]

)

× exp

[
− 1

2

∑
j=1,2

{
Dturb

S [ρ1 − ρ2,ρ
′
1 + (−1)jρ ′

3]

+Dturb
S [0,ρ ′

2 + (−1)jρ ′
3]

−Dturb
S [ρ1 − ρ2,ρ

′
1 + (−1)jρ ′

2]
}]

. (C17)

Here

γ 2 = 1 + �2

(
1 − L

F

)2

+ 2

3
σ 2

S,scat

W 2
0

4ζ 2
0

(C18)

is the generalized beam diffraction parameter that includes
the contribution from random scattering and � is the Fresnel
number of the transmitter aperture.

APPENDIX D: BEAM WANDERING AND BEAM SHAPE
DISTORTION IN THE PRESENCE OF RANDOM

SCATTERERS AND TURBULENCE

In this appendix we derive the statistical characteristics of
the elliptic beam, taking into account the presence of random
scatterers. The derivations follow closely the calculations
given in the Supplemental Material of Ref. [36].

1. Beam wandering

The main contribution to beam wandering comes from large
turbulent eddies located close to the beam transmitter [69].
This allows us to replace the integral along the propagation
path in Eq. (C10) with its value at the transmitter aperture
plane [70–72], i.e.,∫ z

z′
dξ f (ξ ) ≈ (z − z′)f (z′). (D1)

The phase structure function then reduces to

DS(ρ,ρ ′) = Dturb
S (ρ,ρ ′) = 2.4σ 2

Rk5/6L−5/6|ρ ′|5/3. (D2)

Here we have set Dscat
S (ρ,ρ ′) = 0, which is justified if the

characteristic sizes of random scatterers are less than the
characteristic sizes of eddies contributing to beam wandering.

Substituting Eq. (C17) into (C1), we obtain, for the beam
wandering variance, the expression

〈
x2

0

〉 = 4�4

π5W 10
0

∫
R8

d2R̃ d2ρ̃ d2ρ ′
1d

2ρ ′
2d

2ρ ′
3

(
R̃2

x − ρ̃2
x

4

)

× exp

(
− 1

W 2
0

(|ρ ′
1|2 + |ρ ′

2|2 + g2|ρ ′
3|2)

)

× exp

(
− 2i�

W 2
0

[ρ̃ · ρ ′
2 − ρ ′

1 · ρ ′
2 + 2R̃ · ρ ′

3]

)

× exp

[
− 1.2σ 2

Rk5/6L−5/6
∑
j=1,2

{|ρ ′
1 + (−1)jρ ′

3|5/3

+ |ρ ′
2 + (−1)jρ ′

3|5/3 − |ρ ′
1 + (−1)jρ ′

2|5/3}
]
, (D3)

where g2 = 1 + �2[1 − L/F ]2 and we have used the variables
ρ̃ = ρ1 − ρ2 and R̃ = (ρ1 + ρ2)/2. The integration over the
variables R and ρ ′

3 can be performed using the properties of
the Dirac δ function, for example, using the relation∫

R4
d2R̃ d2ρ ′

3R̃2e−4i(�/W 2
0 )R̃·ρ ′

3f (ρ ′
3)

= − (2π )2W 8
0

(4�)4
�2

ρ ′
3
f (ρ ′

3)

∣∣∣∣
ρ ′

3=0

, (D4)

where �2
ρ ′

3
is the transverse Laplace operator and f (ρ) is

an arbitrary function. In the limit of weak optical turbulence
(σ 2

R ≈ 1) the integral can be evaluated as

〈
x2

0

〉 = 2.4�2σ 2
Rk5/6L−5/6

(2π )3W 6
0

∫
R6

d2ρ̃ d2ρ ′
1d

2ρ ′
2

(
g2W 2

0

2�2
− ρ̃2

x

)

× exp

(
− 1

W 2
0

(|ρ ′
1|2 + |ρ ′

2|2)

)
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× exp

{
2i

�

W 2
0

[(
1 − L

F

)
ρ ′

1 · ρ ′
2 − ρ̃ · ρ ′

2

]}

×
( ∑

j=1,2

|ρ ′
1 + (−1)jρ ′

2|5/3 − 2|ρ ′
1|5/3 − 2|ρ ′

2|5/3

)
.

(D5)

Performing the multiple integration for a focused beam L = F ,
we obtain Eq. (16).

2. Beam-shape distortion

Along the whole propagation path the eddies whose
sizes are smaller than or comparable to the beam diameter
contribute to random beam broadening and beam-shape
distortion. Here we show that this additional broadening and
beam-shape distortion arise due to the presence of random
scatterers.

The moment 〈W 2
1/2〉 defined by Eq. (C2) contains the

following integral:∫
R2

d2ρ x2�2(ρ) = W 2
0 χext

π2�4

∫
R4

d2ρ d2ρ ′ x2e−(γ 2/2�2)|ρ ′|2

× exp

[
− 2i

�
ρ · ρ ′ − 2.14σ 2

R�5/6

×
∫ 1

0
dξ (1 − ξ )5/3

( |ρ ′|
�

)5/3]
. (D6)

Here the expression (C16) was used. The integration
in Eq. (D6) can be performed using the approximation
(|ρ ′/�|)5/3 ≈ (|ρ ′/�|)2 (cf. Ref. [69]). The resulting expres-
sion for the first moment of W 2

1/2 in the case of a focused beam
results in Eq. (20).

The (co)variances of W 2
1/2 defined in Eq. (C3) contain the

following integrals (cf. Supplemental Material of Ref. [36]):

∫
R4

d2ρ1d
2ρ2x

2
1x

2
2�4(ρ1,ρ2) = �2χext

2(2π )3W 6
0

∫
R4

d2ρ d2ρ ′
1d

2ρ ′
2

(
3γ 4W 4

0

4�4
− γ 2W 2

0

�2
x2 + x4

)
e−(1/W 2

0 )(|ρ ′
1|2+|ρ ′

2|)

× exp

[
2i

�

W 2
0

(
1 − L

F

)
ρ ′

1 · ρ ′
2 − 2i

�

W 2
0

ρ · ρ ′
2

]
exp

[
− 1.2σ 2

Rk5/6L−5/6

×
∫ 1

0
dξ

(
2|ρξ + ρ ′

1(1 − ξ )|5/3+2(1 − ξ )5/3|ρ ′
2|5/3 −
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j=1,2
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1 + (−1)jρ ′
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(D7)∫
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× exp
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2
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exp

[
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×
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)]
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(D8)

We evaluate the multiple integrals by expanding the last exponents into a series with respect to σ 2
R up to the first order. For a

focused beam (L = F ) we obtain

1

χ2
ext

∫
R4

d2ρ1d
2ρ2x

2
1x

2
2�4(ρ1,ρ2) = W 4

0

16�4

[
1 + 2

3
σ 2

S,scat
W 2

0

4ξ 2
0

]2

+ 0.58W 4
0

[
1 + 2

3
σ 2

S,scat
W 2

0

4ζ 2
0

]
σ 2

R�−19/6, (D9)

1

χ2
ext

∫
R4

d2ρ1d
2ρ2x

2
1y

2
2�4(ρ1,ρ2) = W 4

0

16�4

[
1 + 2

3
σ 2

S,scat
W 2

0

4ξ 2
0

]2

+ 0.51W 4
0

[
1 + 2

3
σ 2

S,scat
W 2

0

4ζ 2
0

]
σ 2

R�−19/6. (D10)

Substituting Eqs. (16), (20), (D9), and (D10) into Eq. (C3), we obtain Eq. (21).
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