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Rabi-Bloch oscillations in spatially distributed systems: Temporal dynamics and frequency spectra
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We consider one-dimensional chains of two-level quantum systems coupled via tunneling. The chain is driven
by the superposition of dc and ac fields in the strong coupling regime. Based on the fundamental principles of
electrodynamics and quantum theory, we have developed a generalized model of quantum dynamics for such
interactions, free of rotating-wave approximation. The system of equations of motion was studied numerically.
We analyzed the dynamics and spectra of the inversion density, dipole current density, and tunneling current
density. In the case of resonant interaction with the ac component, the particle dynamics exhibits itself in the
oscillatory regime, which may be interpreted as a combination of Rabi and Bloch oscillations with their strong
mutual influence. Such scenario for an obliquely incident ac field dramatically differs from the individual picture
of both types of oscillations due to the interactions. This effect is counterintuitive because of the existence of
markedly different frequency ranges for such two types of oscillations. These dynamics manifest themselves in
multiline spectra in different combinations of Rabi and Bloch frequencies. The effect is promising as a framework
of a new type of spectroscopy in nanoelectronics and electrical control of nanodevices.
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I. INTRODUCTION

Periodic low-dimensional lattices have been investigated
as platforms for many quantum phenomena for almost a
century. They first appeared in the literature in the context of
models for ferromagnetism in statistical mechanics (the Ising
chain [1] and the Heisenberg spin chain [2]), and later in the
simple model of interacting particles in a lattice describing
the transition between conducting and insulating systems
(the Hubbard chain [3]). Subsequent developments addressed
various domains of periodicity, i.e., lattices in physical space,
in time, in momentum space, involving spatial-periodic forces,
time-periodic forces, etc., and certain combinations thereof.
These developments covered actual embodiments of lattice
elements, be it an atom, an ion, a molecule, or a quantum dot,
and the mechanisms of their chain-formed interaction such
as dipole-dipole interactions, exchange interactions, Coulomb
interactions, and tunneling effects. More recently, rapid
progress in atomic optics and nanotechnologies has facilitated
experimental investigations of a number of physical systems,
e.g., semiconducting and graphene superlattices [4,5], Bose-
Einstein condensate trapped in an optical lattice [6], trapped
ions chain [7,8], cooled atomic array in the cavity [9], the array
of Josephson contacts [10], crystalline arrays of quantum dots
connected by conducting chains of linker atoms or interacted
via another physical mechanisms [11–15], conjugated polymer
chains [16], and a lattice of p-wave superconductor in one
dimension (the Kitaev chain) [17]. All of these systems are
characterized by certain qualitative features that define the
properties of their energy spectra and transport properties.
These properties are important when one considers interac-
tions with classical and quantum electromagnetic fields in
the microwave, terahertz, and visible frequency ranges. Low-
dimensional nanostructures are differentiated from traditional
bulk materials by these properties, thereby enabling potential
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applications in nanoelectronics and nanophotonics, quantum
informatics, and quantum computing [18].

Recent theoretical progress has been made in the areas of
array types and interelement interactions. Examples include
mechanisms of dissipative interelement interactions [19] and
noisy coupling [20], which cause rather surprising thermody-
namic behaviors of the arrays, also verified experimentally
[21]. Scully and his team [22] developed the concept of
the superradiant lattice, which corresponds to a collection of
three-level atoms in timed Dicke states. The lattice structure
is based on electromagnetically induced transparency. It can
be potentially extended to three dimensions or more, with new
physics waiting to be analyzed.

One phenomenon that forms the basis for the present work is
the Rabi wave [23–28]. These waves have been identified as the
outcome of strong coupling of light with spatially distributed
chains of two-level fermionic systems. This coupling brings
about spatial motion of Rabi oscillations (ROs) in the form of
quantum transition waves that are the Rabi waves. Here, light
plays the role of refractive medium for the wave propagation.
Among the many promising applications of Rabi waves, one
may note, e.g., the electrically tunable, highly directive, optical
nanoantennas [23,25,29,30].

Rabi waves are combined in this work with the unrelated
phenomenon of Bloch oscillations (BOs) of a single particle
in a periodic potential under the influence of a static force.
Initially, the question of how electrons would behave in
a crystal lattice once a dc electric field is applied was
raised by Bloch [31] and Zener [32]. When electrons in
crystalline potentials are subject to uniform external fields,
Bloch predicted that the quantum coherence properties of
the electrons would prevent their transport. He showed that
the electrons are dynamically localized and undergo periodic
oscillations in space. This effect is nonintuitive: One observes
periodic dynamics in contrast to the acceleration towards
infinity that would be expected due to the dc field that
violates the periodic structure. It leads to the appearance
of localized modes (Wannier-Stark states) with equidistant
wave-number spacing (Wannier-Stark ladder), that do not
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undergo diffraction [33,34]. The BO frequency is �B = eaEdc

where e is electron charge, a is the lattice period, and Edc

is the dc field value [25,36]. Remarkably, BOs manifest
the wave properties of the electrons, and therefore appear
in other types of waves arising in tilted periodic potentials.
Inspired by the technological achievements in semiconductor
growth at the end of the 20th century, similar phenomena
were found in other physical systems, e.g., electronic wave
packets in semiconductor superlattices [37,38], cold atoms
in optical lattices [39,40], light beams in periodic structures
[40–42], and waveguide arrays with linearly varying prop-
agation constants [43,44] (optical BO). It was shown [45]
that BOs are able to manifest themselves in quantum optics
too: When photons in N -particle entangled state N00N paths
undergo Bloch oscillations, they exhibit a periodic transition
between spatially bunched and antibunched states. The period
of the bunching-antibunching oscillation is N times faster
than the period of the photon density oscillation, which
signifies their unique coherence properties. Recent progress
in fabrication of waveguide lattices, photon-number resolving
detectors, and photonic entangled-state sources [46,47] have
made experimental observation of the BO within reach [48].
Despite their apparent simplicity, the dynamics of quantum
particles in periodic structures turns out to be quite surprising.
This is due to the interactions between different physical
mechanisms. As an example, we can take an array driven
by dc and ac linear (in x) electric fields simultaneously:
V (x,t) = −x[E0 + E1 cos(ωt + ϕ)], where V (x,t) is the total
applied potential, E0,E1 are given constant amplitudes, and ϕ

is a constant phase. A resonant condition ω ≈ �B results in a
beat between the Bloch cycle and the drive, causing a drastic
change in the particle motion. On top of the BO, the intraband
motion shows a much stronger spatial oscillation that extends
over hundreds of lattice cells [49]. These “super-Bloch oscil-
lations” are similar to the motion of normal BO, except being
rescaled in space and time. In yet another area, several recent
studies [48,50–55] have been made on the dynamics of cold
atoms in optical lattices subject to potential ac field forcing;
the theoretically predicted renormalization of the tunneling
current amplitudes [56] has been verified experimentally.

The subject of this paper is the synthesis of the BO
with the RO. We consider a lattice of two-level fermionic
systems driven by both dc and ac (optical) electric fields.
A resonant condition is ω ≈ ω0, where ω0 is the interlevel
transition frequency. In contrast with super-Bloch oscillations,
the motion here results from the combined dynamics of
intraband and interband transitions called the Rabi-Bloch
oscillations (RBOs). The total current is the sum of the
low-frequency component (tunneling) and the high-frequency
component (optical transitions). The total field at the chain
axis E(x,t) = −e(∂Vdc/∂x) + E0 cos(ωt − kx + ϕ), where e
is a unit vector along the atomic chain, k is a component
of the wave vector along the chain axis, E0 is the ac field
amplitude, and Vdc is the static potential. The ac field represents
the wave, traveling over the chain. This wave propagation
results in a combined effective lattice, produced both in space
and time. This lattice manifests itself in strong and repeated
interactions between the RO and BO in spite of their strongly
different frequency ranges. These interactions, considered in
detail below, represent the main line of the results of our paper.

A simplified RBO scenario was considered in [57], however,
with the ac field assumed to be homogeneous along the chain
(k = 0), which corresponds to the effective lattice in time only
and stops short of accounting for the main part of the effects.

It is well known that a coherent superposition of atomic
states in three-level atoms in a � configuration is responsible
for such interesting phenomena as coherent trapping [58].
These atoms are effectively transparent to the incident field
and have important applications such as lasing without
inversion, refractive index enhancement in a nonabsorbing
medium, and electromagnetically induced transparency [58].
As shown in this paper, similar states exist in the chains of
two-level atoms. The role of destructive quantum interference
between two lower states in this case is in generating
interatomic tunneling. It is shown that RBOs for such type of
states differ in a number of features.

Our paper is organized in the following way. In Sec. II, the
model system is introduced and equations of its dynamical be-
havior are derived. Numerical results for inversion, tunneling
current, and displacement current are presented and discussed
in Sec. III from a physical point of view. In Sec. IV, the validity
of the rotating-wave approximation (RWA) is analyzed in com-
parison with the above analysis. In Sec. V the RBO scenario
for the coherently trapped states is investigated. Finally, the
main results and outlook problems are described in Sec. VI.

II. MODEL

Let us consider a one-dimensional (1D) structure of identi-
cal atoms uniformly distributed over linear lattice points with
period a; see Fig. 1(a). Each atom is considered a two-level
Fermion system with transition frequency ω0 [Fig. 1(b)].
For brevity, we refer to the arbitrary two-level quantum
object as an “atom” regardless of its physical nature, e.g.,
quantum dot (QD), polar molecule, trapped ion, etc. The
location of the atoms in the lattice points is determined by
the radius vector Rj = eja; j = 0,1, . . . ,N ; N is a number
of atoms; e is the unit vector over the lattice. The index j

thus completely determines the atom location. We assume
the atoms to be coupled via interatomic tunneling. The chain
is driven by an electrostatic (dc) field directed along its
axis while simultaneously interacting with a monochromatic
electromagnetic (ac) field. We will consider the case of dipole
interaction in the regime of strong coupling and assume the
resonant condition ω0 ≈ ω to be fulfilled. The system under
consideration exhibits complex single-particle RBO, for which
the theoretical framework is introduced below.

A. Unperturbed Hamiltonian in Wannier basis

The analysis that follows is based on the single-particle
Hamilton approach with the Hamiltonian Ĥ = Ĥ0 + ĤI ,
where

Ĥ0 = p̂2

2m
+ V (r) (1)

is the component of free-electron movement in the chain
associated with the interatomic tunneling, which is described
by the periodic potential V (r). The excited and ground states
of the atoms here and thereafter will be denoted a and b,
respectively. The eigenmodes of the Hamiltonian (1) are two
Bloch modes corresponding to the valence (b) and conductive
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FIG. 1. (a) General illustration of the periodic two-level atomic
chain used as a model, indicating RBO. It is excited with obliquely
incident ac field in the strong coupling regime and driven with dc
voltage applied at the ends. The dipole moments (red arrows) are
identical and oriented arbitrarily with respect to the axis. (b) The
electrons are localized inside the quantum wells which are separated
by potential barriers of identical form and value. The neighboring
atoms are coupled via interatomic tunneling with different values
of penetration ta,b at the ground and excited states (green arrows).
Ground and excited energy levels of single two-level atom separated
by the transition energy h̄ω0.

(a) zones and denoted as ψn,h(r) = |n,h〉, n = a,b,h being a
scalar quasimomentum directed along the chain. The second
component of the Hamiltonian,

ĤI = −eE(r,t) · r̂, (2)

describes the dipole interaction of the chain with the total (dc
and ac) electromagnetic field; r̂ is the operator of electron
position in the chain.

Because the electrons are strongly confined inside the
atoms, we will use as a basis Wannier functions φn,Rj

(r) =
|n,Rj 〉 [59], defined as a linear combinations of Bloch modes
ψn,h(r):

φn,Rj
(r) = 1√

N

∑
h

e−ih(e·Rj )ψn,h(r), (3)

where e is the unit vector along the chain, Rj = eja. Let
us mention some properties of Wannier functions, which are
important for our analysis. A typical Wannier function φn,Rj

(r)
is strongly localized within the j th atom. Inversion of Eq. (3)
gives the expression of Bloch states in terms of the Wannier
functions:

ψn,h(r) = 1√
N

∑
Rj

eih(e·Rj )φn,Rj
(r − Rj ). (4)

Wannier functions at different locations are related via
the relationship φn,Rj

(r) = φn,Rj +Rl
(r + Rl) and satisfy the

orthogonality relation 〈n,Rj |m,Rl〉 = δmnδRj ,Rl
.

The first step of our analysis is the representation of the
Hamiltonian (1) in the Wannier basis. Upon projecting Ĥ0 on
the Bloch modes and using (4), we obtain the dispersion law
for a free-tunneling electron in the following form:

εn(h) = 〈n,h|Ĥ0|n,h〉 = 1

N

∑
Rj ,Rl

e−ihe·(Rj −Rl )〈n,Rj |Ĥ0|n,Rl〉.

(5)

Introducing the shorthand notation tn(R) via

〈n,Rj |Ĥ0|n,Rl〉 =
{
εn(0), j = l

tn
(
Rj − Rl

)
, j �= l

, (6)

we can rewrite (5) in the following form:

εn(h) = εn(0) + 1

N

∑
Rj ,Rl ,j �=l

e−ihe·(Rj −Rl )tn(Rj − Rl), (7)

where ta,b(Rj − Rl) = t∗a,b(Rl − Rj ) are the matrix elements
of the free Hamiltonian with the Wannier basis for functions
localized at the cells numbered j,l, respectively. The Hamilto-
nian (1) may be presented with the Wannier basis in the form
of a block diagonal matrix,

Ĥ0 =
(

Ĥ0a 0

0 Ĥ0b

)
, (8)

with the submatrices along the diagonal being

Ĥ0n = εn(0)
∑
Rj

|n,Rj 〉〈n,Rj |

+
∑

Rj ,Rl ,j �=l

tn(Rj − Rl)|n,Rl〉〈n,Rj |. (9)

We now assume the tight-binding approximation where
tunneling coupling exists only between the neighboring atoms.
Thus, we can omit the spatial arguments in the tunneling
matrix elements: ta,b(Rj − Rj+1) = ta,b, ta,b(Rj − Rj−1) =
t∗a,b, and redenote Wannier functions as |n,Rj 〉 → |n,j 〉. The
Hamiltonian (8), subject to (9), then reads

Ĥ0 = εb(0)
∑

j

|b,j 〉〈b,j | + εa(0)
∑

j

|a,j 〉〈a,j |

+
∑

j

(tb|b,j 〉〈b,j + 1| + t∗b |b,j 〉〈b,j − 1|)

+
∑

j

(ta|a,j 〉〈a,j + 1| + t∗a |a,j 〉〈a,j − 1|). (10)

The Hamiltonian (10) describes the free (without dc and ac
fields) electron motion in the periodic system with potential
wells separated by the potential barriers. The electron is
localized inside a well at one of the two states (ground or
excited). This localization is not perfect due to the finite value
of the barrier potential. As a result, the Wannier functions for
ground and excited states localized inside the given well are
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coupled with the correspondent functions in the neighboring
wells. This coupling describes the interatomic tunneling. It
is characterized by the transparence of the potential barrier
at the given state and correspondent values of penetration
factors ta,b. The tunneling leads to the tailing of discrete
levels into the energy zones with the widths defined by the
correspondent penetration factors. The different scenarios
of the electron tunneling will be considered in this paper.
For the first one, the ground-state energy lies near the bottom
of the quantum well. Therefore, its penetration over the barrier
becomes difficult (tb ≈ 0) and the width of the zone is small.
Thus the dominant part of the tunneling current flows over
the excited zone. The second case corresponds to the atom
appearing in the coherent superposition of excited states with
very high principal quantum numbers (Rydberg atom [60]).
The energies of the two states are placed near the edge of
the potential barrier, and the probabilities of their tunneling
are approximately the same. The widths of the two zones as
well as their contributions to the total tunneling current are
commensurable.

B. Interaction Hamiltonian in Wannier basis

Let us proceed with the calculation of the matrix elements
〈m,l|ĤI |n,j 〉 of the interaction Hamiltonian (2). Such a
motion, being a combined interband transition and interatomic
tunneling through the potential barrier, requires values of
energy that are high enough for the probability to become
negligibly small. Thus, for the simultaneous inequalities m �=
n,l �= j we have 〈m,l|ĤI |n,j 〉 ≈ 0. We assume the intra-
atomic confinement sufficiently high, such that the electric
field is approximately homogeneous over the support area of
the localized Wannier function. Hence we have

〈m,j |ĤI |n,j 〉 ≈ −eE(ja,t) · 〈m,j |r̂j |n,j 〉 (11)

with the electric field

E(j,t) ≈ Edc + ωA0u cos[(k · e)ja − ωt], (12)

where the first term is a bias dc field; the second one is the
incident plane wave; Edc and A0 are constant values; u is

the unit vector of polarization; k is the wave vector. The
plane wave in the general case propagates obliquely with
respect to the chain axis (k · e �= 0); therefore the electron
moves in a spatial-temporal lattice produced by the second
term in Eq. (12). Let us shift the origin for a given j to
the center of the j th atom via the relation r̂j = Rj Î + r̂′.
Using the orthogonality of the Wannier functions for different
bands, we have 〈m,j |r̂j |n,j 〉 = Rj δmn + 〈m,j |r̂′|n,j 〉, where
Rj was defined before (3) and δmn is the Kronecker delta. This
makes (11)

〈m,j |ĤI |n,j 〉 = −E(ja,t) · (eRj δmn + dmn), (13)

where

dmn = e〈m,j |r̂′|n,j 〉. (14)

It is important to note that the coefficients (14) are position
independent. The first term in (13) consists of the diagonal
elements of the Hamiltonian (11). It describes BO and super-
Bloch oscillations governed by the intraband motions at the
excited and ground states, respectively [36,49]. The diagonal
elements of the second term in (13) vanish for real atoms
(excluding the hydrogen atom) due to daa,bb → 0 on the
assumption of symmetry properties [61]. However, they may
be nonzero for cases such as artificial atoms with broken
inversion symmetry [62].

Another type of matrix element required for our analysis
couples the electrons of neighboring atoms in the same band
via the ac field (this is the tunneling photon assistance):

〈n,j |ĤI |n,j + 1〉 = −eωA0dnj (t), (15)

where dnj (t) = 〈n,j |(r̂ · u) cos[(k · r̂) − ωt]|n,j + 1〉. Using
the homogeneity of the ac field over the atom size, we
transform it approximately to

dnj (t) ≈ cos [(k · e)ja − ωt]〈n,j |(r̂ · u)|n,j + 1〉. (16)

C. Equations of motion

Our starting point is the Schrödinger equation ih̄∂t |ψ〉 =
Ĥ |ψ〉 with the total Hamiltonian being

Ĥ = εb(0)
∑

j

|b,j 〉〈b,j | + εa(0)
∑

j

|a,j 〉〈a,j | +
∑

j

(tb|b,j 〉〈b,j + 1| + t∗b |b,j 〉〈b,j − 1|)

+
∑

j

(ta|a,j 〉〈a,j + 1| + t∗a |a,j 〉〈a,j − 1|) −
∑

j

E(j,t) · (eRj + dbb)|b,j 〉〈b,j |

−
∑

j

E(j,t) · (eRj + daa)|a,j 〉〈a,j | − ωA0

∑
j

dbj (t)|b,j〉〈b,j + 1| − ωA0

∑
j

daj (t)|a,j〉〈a,j + 1|

−ωA0

∑
j

d∗
bj (t)|b,j〉〈b,j − 1| − ωA0

∑
j

d∗
aj (t)|a,j〉〈a,j − 1| −

∑
j

E(j,t) · dab|a,j 〉〈b,j | −
∑

j

E(j,t) · dba|b,j 〉〈a,j |,

(17)

which follows from (10) and (13)–(16). We present the required wave function as a superposition of Wannier functions,

|ψ(t)〉 =
∑

j

{aj (t)|a,j〉 + bj (t)|b,j〉}, (18)
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with unknown coefficients aj (t),bj (t). Using the orthogonality
of the Wannier functions mentioned above, we obtain the
following system of coupled differential equations for the
probability amplitudes aj (t),bj (t):

ih̄
∂aj

∂t
= [ε0 + δε − E(j,t) · (eRj + daa)]aj

+ [ta − ωA0daj (t)]aj+1 + [t∗a − ωA0d
∗
aj (t)]aj−1

− E(j,t) · dabbj , (19)

ih̄
∂bj

∂t
= [ε0 − δε − E(j,t) · (eRj + dbb)]bj

+ [tb − ωA0dbj (t)]bj+1 + [t∗b − ωA0d
∗
bj (t)]bj−1

− E(j,t) · dbaaj , (20)

where ε0 = [εa(0) + εb(0)]/2, δε = [εa(0) − εb(0)]/2.
The system (19) and (20) represents the framework for

investigation of RBO. It is analytically unsolvable; therefore
it will be integrated numerically. The numerical procedure is
free from some conventional approximations such as RWA
[63]. The coefficients ta,b,daa,bb,daj,bj ,dab are considered
phenomenological, a priori given parameters. It may be
instructive to dwell on the physical meaning of the different
terms and quantities appearing in the system (19) and (20).
The first quantity 2δε is the minimal energy of the optical
transition between the valence and conductive bands. It defines
the frequency of free interband oscillations in the absence of
external electromagnetic (EM) field. The energy benchmark
given by the value ε0 defines the phase factor, which does
not support observable values, and thus may be set as ε0 = 0
[62]. The factor E(j,t) · Rj

∼= jaE(j,t) · e in (19) and (20)
describes BOs and super-Bloch oscillations at the excited and
ground states, respectively [36,49]. The coefficients daa,bb

vanish for real atoms (excluding the hydrogen atom) on
the assumption of symmetry properties [61]. However, they
may be nonzero for cases such as semiconductor quantum
dots with broken inversion symmetry [62]. This leads to the
appearance of an additional line in the spectrum of RO for
the single quantum dot [63] and not considered in this paper.
The factors ta,b − ωA0daj,bj (t) describe the coupling between
the neighboring atoms (the first term corresponds to direct
tunneling; the second one stands for the tunneling photonic
assistance). The last terms in (19) and (20) describe coupling
between the ground and excited states via the EM field. The
value �R = (u · dab)ωA0/h̄ may be associated with the Rabi
frequency for the chain. It differs from the conventional Rabi
frequency defined for individual atom [58], because of the
appearance of the Wannier states in (14) instead of atomic
orbitals. For the deep atomic levels of the Rabi frequency [58],
the conventional Rabi frequency is nonetheless approximated
because the deep Wannier states tend to the corresponding
atomic orbitals.

The system (19) and (20) may be simplified assuming
the atoms to be inversion symmetrical (daa = dbb = 0) and
neglecting the photon assistance (daj,bj ≈ 0). In this case, (19)
and (20) become

ih̄
∂aj

∂t
= (δε − E0 · eRj )aj + taaj+1 + t∗a aj−1

− Ej (t) · dabbj , (21)

ih̄
∂bj

∂t
= −(δε + E0 · eRj )bj + tbbj+1 + t∗b bj−1

− Ej (t) · dbaaj . (22)

D. Inversion and electric current

The principal quantities describing the RBO are inversion,
tunneling, and dipole currents, expressed in the terms of
probability amplitudes, to be calculated from (19) and (20) [or
(21) and (22)]. These values are position dependent; therefore
we will refer to their densities per unit cell of the chain. The
inversion density is

wj (t) = 1

N
(|aj |2 − |bj |2). (23)

The equation for the tunneling current density is (see
detailed derivation in the Appendix)

JTunneling,j (t) = J
(a)
Tunneling,j (t) + J

(b)
Tunneling,j (t)

= −i
e

2
ta[aj−1(t) − aj+1(t)]a∗

j (t)

− i
e

2
tb[bj−1(t) − bj+1(t)]b∗

j (t) + c.c. (24)

The operator of the dipole current in the Heisenberg picture
is ĴDipole,j (t) = c∂P̂j (t)/∂t , where P̂j (t) is the polarization
operator of the atom with number j . In the Schrödinger
picture, we obtain ĴDipole,j = −iωcedab|a,j 〉〈b,j | + H.c., and
the observable current reads

JDipole,j (t) = −iωcedaba
∗
j (t)bj (t) + c.c. (25)

III. RESULTS AND DISCUSSION

The system under consideration comprises a large number
of physical phenomena. Certain combinations of these phe-
nomena correspond to different physical regimes of RBO de-
pendent on such physical parameters as Bloch frequency �B ,
Rabi frequency �R , the component of wave vector k = (k · e)
of the incident wave with respect to the chain axis, and tunnel-
ing penetration parameters ta,b at the excited and ground states.
The case k = 0 corresponds to the normal incidence of an
external plane wave with respect to the chain axis; therefore the
ac field is homogeneous along the chain (this is a standing wave
case). The case k �= 0 corresponds to oblique incidence; the
ac field oscillates along the chain (now a traveling wave case).
Two different regimes of interatomic coupling have been con-
sidered. For the first type, the penetration tunneling factors are
comparable (taken here as equal for simplicity). For the second
case, the tunneling penetration at the excited state strongly ex-
ceeds the value at the ground state. For convenience, the differ-
ent analyzed physical regimes of RBO are presented in Table I.

Let us assume that the system is initially excited with the
Gaussian wave packet

aj (0) = ge
− (j−j ′)2

a2

σ2 , (26)

bj (0) = 0, (27)

where g is a normalization factor, and j ′,σ are the position
of the Gaussian center and the effective Gaussian width,
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TABLE I. Classification of possible interaction types and correspondent dynamics in the 1D chain with RBO. k = k · e.

Variant Type of interaction Type of dynamics

(a) Edc �= 0,Eac = 0 BO [35]; the tunneling penetrations at the two levels are equal
ta = tb

(b) Edc = 0,Eac �= 0,k = 0 RO [58]; the tunneling penetrations at the two levels are equal
ta = tb

(c) Edc = 0,Eac �= 0,k �= 0 Rabi waves [23–28]; the tunneling penetrations at the two levels are equal
ta = tb

(d) Edc �= 0,Eac �= 0,k = 0 RBO in the standing ac field; the tunneling penetrations at the two levels are equal
ta = tb

(e) Edc �= 0,Eac �= 0,k �= 0, RBO in the traveling wave; the tunneling penetrations at the two levels are equal
ta = tb

(f) Edc �= 0,Eac �= 0,k = 0 RBO in the standing ac field; the tunneling penetration at the excited level strongly
ta � tb exceeds the tunneling penetration at the ground level

respectively. Here we will present the results, obtained via
the numerical solution of Eqs. (21) and (22).

Numerical modeling shows that the system dynamics
comprises the superposition of two phenomena: The first one is
the interatomic intraband transitions by electron tunneling; the
second one is the intra-atomic interband quantum transitions.
Because these interaction types belong in different frequency
ranges, the total motion does not add up to their simple
linear superposition. It is characterized by their strong mutual
influence, which produces nontrivial dynamics and qualitative
features of the spectra. The reason for it is the diffraction by
the spatial-temporal lattice induced by the ac field, i.e., the
factor cos[(k · e)ja − ωt] in the last terms of (21) and (22).

Figures 2 and 3 shows the temporal behavior of the inversion
density. Let us start with two illustrative limiting cases: In
the first case, A0 = 0 (i.e., no ac field and hence no RO).
This case corresponds to the ordinary BO, where the inversion
oscillates at the lower Bloch frequency �B [35] [Fig. 2(a)]. The
oscillations are approximately monochromatic: The values
of the high harmonics are rather weak; see Fig. 4(a). For
the second case, E0 = 0. Here, the driven dc field is absent
[Fig. 2(b)]. This case corresponds to the ordinary RO [57];
the inversion oscillates monochromatically at the higher Rabi
frequency �R . Figure 2(d) shows the first example of RBO,
where both ac and dc fields are present. The ac field is normally
incident with respect to the chain axis [k = (k · e) = 0];
therefore the ac field is homogeneous along this axis. This
is the case of a temporal lattice, in which the total motion adds
up to a linear superposition of RO and BO. In other words, the
ROs become modulated by the Bloch frequency. The inversion
spectrum is transformed to the triplet in Fig. 4(d), with a central
line at ω = �R and two side bands at ω = �R ± �B .

The qualitative behavior of motion dramatically changes
for the spatial-temporal lattice, where the ac field is obliquely
incident (k �= 0); see Figs. 2(c) and 2(e). The initial Gaussian
packet rapidly decays and breaks into a set of rather small
subpackets; thus the state becomes a strongly oscillating packet
with an approximately Gaussian envelope; See Fig. 3. This
is a manifestation of the diffraction mentioned above, along
with the spatial oscillations corresponding to the Floquet
harmonics. As a result, the BO is accompanied with a
motion of the subpackets relative to one another. This motion
leads to appearance of additional spectral lines [Figs. 4(c)

and 4(e)] whose amplitudes are comparable to the main one.
Figure 2(d) corresponds, for example, to the case of a Rydberg
atom where two sidebands appear in excited states with very
high principal quantum numbers [62]. As a result, the energies

FIG. 2. Space-time distribution of inversion density. Here,
(a–f) notation corresponds to Table I. Here, the quantum transition
frequency is taken as the frequency unit, �B = 3.9 × 10−3 (corre-
sponds to Edc = 1.95 kV/cm), �R = 2.5 × 10−2, ta = 3.5 × 10−2,
interatomic distance a = 20 nm. The initial state of the chain is an
excited single Gaussian wave packet. Gaussian initial position and
width are p′ = 80, g = 20, respectively, ka = −0.624. Number of
the atoms, N = 128.
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FIG. 3. Space-time distribution of inversion density for short
times. Here, (c,e) notation corresponds to Table I. Spatial beatings
correspond to the Floquet harmonics in the electron diffraction by the
lattice induced by the ac field at the case of oblique incidence. As a
result, the initial single Gaussian decays into the set of subpackets,
which synchronously move and coherently oscillate in the large-time
regime (Fig. 2). All parameters are identical to Fig. 2.

of the two states are placed near the edge of the potential bar-
rier, and the probabilities of their tunneling are approximately
the same (taken, for simplicity, as exactly equal, ta = tb).

FIG. 4. Frequency spectra of the inversion density. Here, (a–f)
notation corresponds to Table I. The quantum transition frequency is
taken as the unit. All parameters are identical to Fig. 2. For better
discrimination, the results presented in this figure are multiplied by
the factor 10−2.

FIG. 5. Space-time distribution of the density of dipole current.
Here, (b–f) notation corresponds to Table I. All parameters are
identical to Fig. 2. Inserts show scaled-up space-time distribution
in the areas marked via the black rectangles at the main panels. For
better discrimination, the results presented in this figure are multiplied
by the factor 104.

Figure 2(f) corresponds to an atom excited in the state with a
weak quantum number. Therefore, the ground-state energy lies
near the bottom of the quantum box. Therefore, its penetration
over the barrier becomes difficult (tb ≈ 0). This effect mani-
fests itself in the difference between the inversion dynamics:
The blue-colored regions in Fig. 2(f) show oscillations in time,
however, without spatial motion. The reason is in the negative
inversion, which corresponds to the ground state with a vanish-
ing tunneling probability. Figures 5 and 6 show the temporal
dynamics and the spectra of the dipole current, respectively.
Their qualitative behavior agrees with the corresponding
inversion features. Figure 6(b) presents the conventional case
of RO, characterized by the spectrum of the dipole current as a
duplet with separating value 2�R with respect to the frequency
of optical transition. The central line is absent due to zero
detuning (exact resonance). For RBOs with k = 0 [Fig. 6(d)],
the independent spectrum lines are transformed into triplets
with double-Bloch splitting. The next important peculiarity is
the appearance of a central triplet with rather small amplitude
even in the exact resonance case. For RBOs with k �= 0
[Figs. 6(c)–6(e)] the sideband triplets are transformed into
a multiplicity of lines with the Bloch frequency serving in the
capacity of the interline separation. For the Rydberg-atomic
case [Figs. 6(d) and 6(e)] the amplitude of the central triplet
is enhanced and has become comparable with additional lines.
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FIG. 6. Frequency spectra of dipole current. Here, (b–f) notation
corresponds to Table I. The quantum transition frequency is taken as
the unit. All other parameters are identical to Fig. 2.

For the case of deep ground state [Fig. 6(f)], the RO are
suppressed while the central triplet has become dominant.

As one more example of the similar scenario of complex
dynamics, the coherent control in molecular complexes of
a donor-bridge-acceptor type may be considered [64]. Such
control is induced by resonances between the RO driven by
a pumping laser field, and the bridge mediated tunneling
oscillations between the lowest unoccupied molecular orbitals
of the donor and acceptor. These tunneling oscillations may
be associated with BO in atomic chains. The frequency of
intramolecular oscillations in [64] should be identified as a
Bloch frequency �B in the system under consideration. In
this case, the resonant lines in Figs. 6(d)–6(f) agree with the
resonance condition in [64].

Figure 7 demonstrates the dynamics of the tunnel current.
Let us note that it is again in agreement with the behavior
of the inversion. In particular, in Fig. 7(f), we observe cells
of zero tunnel current in the area of RBO, in contrast with
Fig. 7(a). Such cells represent the areas of negative inversion
and stopped electron motion. The spectrum of the tunnel
current (Fig. 8) consists of a dc component, the main Bloch
component and high-order Bloch lines. In all cases, the second
Bloch harmonic is high; its amplitude is comparable with the
main line. The mutual RO and BO influence manifests itself in

FIG. 7. Space-time distribution of the tunnel current density.
Here, (a,c–f) notation corresponds to Table I. All parameters are
identical to Fig. 2. For better discrimination, the results presented in
this figure are multiplied by the factor 104.

the enhancement of high-order harmonics in the tunnel current
[Figs. 8(e) and 8(f)].

IV. ROTATING-WAVE APPROXIMATION

For the sake of comparison, we now present a development
of the physics of periodic low-dimensional lattices and their
interaction with EM field using some conventional simplifi-
cations. These include the tight-binding approximation and
the RWA [58]. In spite of the fact that these models have
been tested exhaustively in the past, their validity becomes
questionable when new physical factors and corresponding
degrees of freedom are introduced. For this reason, testing
of these methods is of continued interest. As an instructive
example for the failure of such models, we can note the
phenomenon of virtual photons [63], which qualitatively
changes the long-term dynamics of the collective spontaneous
emission. This phenomenon cannot be described by the RWA.
The Rabi-wave theory [23–28], although based on the RWA,
may not be valid when adding dc field (and BO). Therefore,
although the model developed in this paper is free of RWA,
special numerical experiments with RWA are presented in
this section and compared with direct calculations, with the
objective of identifying sources of potential errors.
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FIG. 8. Frequency spectra of tunnel current. Here, (b–f) notation
corresponds to Table I. The quantum transition frequency is taken as
the unit. All other parameters are identical to Fig. 2.

The RWA is based on neglecting highly oscillating terms
[58]. Applying this approximation to (19) and (20), we have

FIG. 9. Plot of inversion against a dimensionless time at the
atom with number 40. Here, (c–f) notation corresponds to Table I.
Direct solution: blue line; RWA solution: red line. The initial state
of the chain is an excited single Gaussian wave packet. All units and
parameters are identical to Fig. 2. One can see that RWA correctly
reproduces the qualitative dynamics of inversion, but allows rather
high inaccuracies in detail description.

FIG. 10. Plot of inversion against a dimensionless time at the
atom with number 60. Here, (c–f) notation corresponds to Table I.
Direct solution: blue line; RWA solution: red line. The initial state
of the chain is an excited single Gaussian wave packet. All units and
parameters are identical to Fig. 2.

the following form:

ih̄
∂aj

∂t
= (δε − E0 · eRj )aj + taaj+1 + t∗a aj−1

− 1

2
ωA0(u · dab)ei[(k·e)ja−ωt]bj , (28)

ih̄
∂bj

∂t
= −(δε + E0 · eRj )bj + tbbj+1 + t∗b bj−1

− 1

2
ωA0(u · dba)e−i[(k·e)ja−ωt]aj . (29)

Results of the RWA compared with a direct solution for
the inversion dynamics are shown in Figs. 9–11. Two different
scenarios are observed for different RBO regimes. The first one
corresponds to oscillations with Rabi frequency and smoothly
various envelopes. The second one exhibits the collapse-
revival picture similar to the Jaynes-Cummings dynamics [58],
though the electromagnetic field is of classical origin. The
reason for this is that in both cases the RO spectrum is multihar-
monic independently of its physical origin. One can see that the
RWA correctly reproduces the qualitative temporal behavior of
inversion (in the first or second type of the aforementioned sce-

FIG. 11. Plot of inversion against a dimensionless time at the
atom with number 80. Here, (c–f) notation corresponds to Table I.
Direct solution: blue line; RWA solution: red line. The initial state
of the chain is an excited single Gaussian wave packet. All units and
parameters are identical to Fig. 2.
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narios), but allows for rather high inaccuracies in the detailed
description, in contrast to the single Rabi oscillator [58].

V. RABI-BLOCH OSCILLATIONS
AND COHERENT TRAPPING

We begin our analysis with the simplest analytical model
based on the system (28) and (29), solving it in the limits of
the RWA for the case �B = 0. We assume for simplicity that
the exact resonance condition ω = 2δε/h̄ has been fulfilled.
The steady-state solution for the chain with oscillations at this
transition frequency is

|�(t)〉 = 1√
N

∑
j

{
ue−i( δε

h̄
t− kja

2 )|a,j 〉

+ vei( δε
h̄

t− kja

2 )|b,j 〉}eihja, (30)

where u,v are unknown constant amplitudes normalized
as |u|2 + |v|2 = 1, and h is the unknown wave number.
Substituting (30) into (28) and (29), we obtain the following
homogeneous system with u,v as unknowns:(

ta
h̄

cos
[(

h + k
2

)
a
] −�R

4

−�R

4
tb
h̄

cos
[(

h − k
2

)
a
]
)(

u

v

)
= 0. (31)

Equation (32) may also be seen from different points of
view: Once any two of the three parameters h,k,�R are given,
the third one would be considered a required eigenvalue.
We assume for simplicity k = 0 and find the eigen-wave-
number as

ha = ± arccos

(
h̄�R

4
√

tatb

)
. (32)

As a result, the steady-state solution (30) becomes

|�(t)〉 = 1
√

N
√

1 + tb
ta

×
∑

j

{√
tb

ta
e−i δε

h̄
t |a,j 〉 + ei δε

h̄
t |b,j 〉

}
eihja. (33)

This state exists within the finite range of the ac field values
satisfying the inequality h̄|�R| � 4

√
tatb. It may be considered

as an analog of the inversion trapped state in a three-level
atom � configuration [58]. This analogy is incomplete, though,
because the inversion trapping in our case is not perfect. The
reason for this is in the nonvanishing probability amplitude
for the excited state |a,j 〉. However, this value may be made
arbitrarily small by making the right choice of the relation
between tunneling frequencies, i.e., tb � ta . Thus, in contrast
with a three-level atom, the chain of two-level atoms in the
state (33) is not perfectly transparent to the incident field, but
the reachable values of the photon absorption are arbitrary
small if the tunneling in the ground state is suppressed enough
as compared with the excited one.

Let us now analyze a wave-packet analog of the coherent
trapped state (33). This is done based on the RWA-free
Eqs. (19) and (20), and solved numerically with the initial
conditions (

aj (0)

bj (0)

)
= g

(√
tb/ta

1

)
e
− (j−j ′)2

a2

σ2 eihja (34)

FIG. 12. Space-time distribution of inversion density for the
initial state in the form of the Gaussian analog of the inversion
trapped state given by Eq. (34). Here, the quantum transition
frequency is taken as the frequency unit. Gaussian initial position and
width are p′ = 80, g = 20, respectively, Here, interatomic distance
a = 20 nm, ta = 3.5 × 10−2 eV, tb = 3.5 × 10−3 eV, and number of
atoms is 128. (i) BO case: �B = 3.9 × 10−3, �R = 0. No BOs
have been observed, because of their small amplitude due to the
weak tunneling penetration over the barrier for the ground state;
(ii) RO case: �B = 0, �R = 2.5 × 10−2, standing wave (k = 0).
No ROs have been observed, because of the special interference
mechanism of inversion trapping. Progressive motion of the wave
packet is dictated by the nonzero value of its initial momentum.
(iii) RBO case: �B = 3.9 × 10−3, �R = 2.5 × 10−2, standing wave
(k = 0). Both RO and BO are observed and progressive motion is
suppressed due to the combined action of ac and dc fields; (iv) RO
case: �R = 2.5 × 10−2, �B = 0, traveling wave (ka = −0.624). No
ROs have been observed, similar to case (ii). Progressive motion of
the wave packet is accompanied by the spatial beatings dictated by
diffraction on the lattice induced by the traveling wave; (v) RBO case:
�B = 3.9 × 10−3, �R = 2.5 × 10−2, traveling wave (ka = −0.624).
Both RO and BO are observed similar to case (iii), and accompanied
by the spatial beatings similar to case (iv); Case (v): the simultaneous
action of both dc and ac fields with k �= 0.

for different relations between the system parameters in the
presence of the dc field with g being a normalizing coefficient.
Numerical results are shown at Fig. 12. Case (i) corresponds
to the ordinary BO. No real oscillations are observed in this
case because of their weak amplitude which results from the
small value of the tunnel penetration tb. Case (ii) pertains
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to the RO. Here, no oscillations are observed because of the
initial-state trapping. The monotonic movement is stipulated
by the nonzero initial momentum of the wave packet h. Case
(iii) corresponds to RBO (recall that this involves simultaneous
action of both dc and ac fields). One can observe Rabi-like
oscillations between the ground and excited states. In contrast
with the ordinary RO scenario, their frequency is equal to
the Bloch frequency and is defined by the value of the dc
field. BOs are clearly visible, too, due to tunneling through
the exited level with high penetration value, in spite of the
small contribution of this state to the total wave function. Case
(iv) stands for the Rabi wave, where the picture has changed
dramatically due to the trapping of the initial state. The trapped
state exhibits spatial oscillations of the wave function that are
due to diffraction by the grating and are induced via the field
traveling along the array axis (k �= 0), that propagates without
interlevel transitions. Case (v) demonstrates both diffraction
and interlevel transitions with the Bloch frequency being the
result of the simultaneous action of both dc and ac fields
with k �= 0. In conclusion, it is found that the dc field in the
two-level atomic chain is able to break down the coherence of
the trapped states. As a result, the ground and excited states
become coupled, which leads to the interlevel oscillations
accompanied by BO. This physical mechanism holds promise
for a number of potential applications in nanoelectronics, such
as electrically controlled nanoantennas and networks.

VI. SUMMARY AND OUTLOOK

By way of summary and open questions, control of the RO
is a problem of long-standing interest. As seen above, it is a
platform for rich physics, and not in vain, the following ques-
tion was raised in Ref. [65]: “What can Rabi oscillations teach
us?” The same question may be addressed for the BO. This
question may be answered in due course when the synthesis of
RBO unveils new and exciting capabilities. We hope that this
paper has provided the initial steps towards this goal.

In conclusion, we have developed a model of RBO driven
by the superposition of dc and ac fields in a one-dimensional
chain of two-level atoms coupled via tunneling. We have
presented a derivation of the equations of motion for the dc
field, which is homogeneous along the chain, and the plane-
wave ac field obliquely incident with an arbitrary direction.
These equations enable a strong atom-field coupling modeling
based on the Wannier basis. Examples of their solutions have
been obtained by purely numerical means, demonstrating the
spatial-temporal densities of inversion, with dipole current
and tunnel current calculated for the system, initiated with
a Gaussian packet state.

As a central result, we have shown that the system
dynamics is characterized by a superposition of the oscillating
interatomic intraband transitions via electron tunneling (BO)
and the intra-atomic interband quantum transitions (RO). In
spite of such components belonging to different frequency
ranges, the RBO dynamics is characterized by strong mutual
interaction of Bloch and Rabi components, which qualitatively
changes the physical picture of both of them. In particular, we
have seen that inversion exhibits the collapse-revival behavior
in the inversion in the classical ac field. In this case, the

BO propagation plays the role of the photonic dress in the
Jaynes-Cummings model [58].

Identifying qualitative behavior of this nature makes the
validity of such conventional approximation as RWA a subject
of scrutiny. In this regard, we used a model that is free of
RWA; however, calculations using the assumption of the RWA
have been done, too, and compared with the exact numerical
solution. As a result, the RWA was overall shown to reproduce
the numerical results qualitatively to a fairly high degree of
accuracy through both the approximate solution and a direct
numerical implementation of the theory.

Although we have focused on the spectral properties of
RBO, the mutual influence of RO and BO interactions was
considered in detail. It was shown that the RBO spectrum
consists of a low-frequency component (THz) governed by the
tunneling, and a high-frequency (optical) component dictated
by the interlevel transitions. The complicated behavior of
spatial-temporal dynamics leads to the appearance of many
additional spectral lines whose amplitudes are compared with
the main one.

This opens the door for exciting possibilities of applications
in a new type of spectroscopy in nanoelectronics and electrical
control in nanodevices. Since the early days of physics,
spectroscopy has been a platform for many fundamental,
theoretical, and experimental investigations. The first period
in the history of spectroscopy is associated with atomic and
molecular spectroscopy. Atoms of different elements have
distinct spectra, and therefore atomic spectroscopy allows for
the identification of a sample’s elemental composition. The
combination of atoms into molecules leads to the creation
of unique types of energetic states and therefore unique
spectra of the transitions between these states. The second
period in the making of spectroscopy is associated with a
wide range of applications for different types of chemical
substances, e.g., gases, liquids, crystals, and polymers. The
combination of atoms or molecules into macroscopic samples
or other extended forms leads to the creation of additional
energetic states. Different materials have distinct spectra.
Therefore, spectroscopy observations became an irreplaceable
tool for the identification of a sample’s structure, chemical
composition, sample quality, etc., in biophysics, chemistry, and
material engineering. Recent progress in nanotechnologies is
associated with the synthesis of different types of nano-objects.
The distinct spectra became the attribute of nano-objects of
different spatial configuration, but with the same chemical
composition. In this context, one can envision the future period
in the spectroscopy development as being associated with the
spectroscopy of the whole range of electronic devices or their
rather large components. This trend will provide tools of the
tunable spectroscopy adapted for such types of tasks, and the
RBO- spectroscopy discussed above may be considered as one
of the promising examples from this point of view.

One more subject for future outlook is the manifestation
of the quantum origin of light in RBO, in particular, the
spontaneous emission of the Rabi-Bloch oscillator. The theory
of Bloch dynamics for electrons interacting with vacuum
photonic fluctuations in the weak coupling regime was devel-
oped in [66]. Such interaction is responsible for spontaneous
emission of the Bloch electron, which occurs only with
frequencies ω = n�B , where n is an integer number. The
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power emitted spontaneously by the Bloch electron into free
space is discernibly small [66]. We expect that the mutual
influence of RO and BO will dramatically change the scenario
of spontaneous emission considered in [66]. The reason for
it is the dressing of Bloch electrons by virtual photons and
excitation of vacuum RBO. As a result, the spontaneous
emission will be sharply peaked also at frequencies ω =
ω0 + n�B + m�R , where n is an integer number, m = 0, ± 1.
Intensities of such lines will be strongly enhanced compared
with the weak coupling case. Another problem of interest is the
spontaneous emission of coherently trapped RBO considered
above. Because of their weak coupling with light, it is
reasonable to expect the enhancement of radiative lifetime
for such type of excitations. The theoretical framework for
the analysis of all these effects is the theory of open quantum
systems and master equations technique [58]; this is a subject
of a future investigation.
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APPENDIX: DERIVATION OF FORMULA
FOR TUNNELING CURRENT

For calculating the tunneling current we introduce the
operator of the particle number in the j th atom N̂j =
|aj 〉〈aj | + |bj 〉〈bj | and formulate the equation of continuity,

Ĵj − Ĵj−1 = −e
dN̂j

dt
, (A1)

where Ĵj is the current density operator in the j th atom and
the left-hand part in (A1) is a discrete analog of Div in the 1D

case. Using the Heisenberg equation for the operator N̂j , we
rewrite (A1) in the form

Ĵj − Ĵj−1 = −i
e

h̄
[Ĥ ,N̂j ]. (A2)

The tunneling currents over excited and background en-
ergy levels are independent, thus ĴTunneling,j = Ĵ

(a)
Tunneling,j +

Ĵ
(b)
Tunneling,j . Using (A2), we obtain

Ĵ
(a,b)
Tunneling,j − Ĵ

(a,b)
Tunneling,j−1 = −i

e

h̄

[
Ĥ

(a,b)
Tunneling,N̂j

]
, (A3)

where

Ĥ
(a)
Tunneling =

∑
j

(ta|a,j 〉〈a,j + 1| + t∗a |a,j 〉〈a,j − 1|) (A4)

is a component of thee Hamiltonian (10), chargeable for the
tunneling at the excited level (a similar equation may be written
for the Hamiltonian Ĥ

(b)
Tunneling). Using (A4), we calculate the

commutator in the right-hand part of (A3) and obtain

Ĵ
(a)
Tunneling,j − Ĵ

(a)
Tunneling,j−1 = −ieta(|aj−1〉 + |aj+1〉)〈aj |

+ H.c. (A5)

It corresponds to the operator of the tunneling current at the
excited level

Ĵ
(a)
Tunneling,j = −ieta|aj 〉〈aj+1| + H.c. (A6)

The observable value of the tunneling current is

J
(a)
Tunneling,j (t) = 〈

Ĵ
(a)
Tunneling,j

〉 = −ietaa
∗
j (t)aj−1(t) + c.c.

(A7)
Using the approximation aj−1(t) − aj (t) ≈ [aj+1(t) −

aj−1(t)]/2, and adding the similar support of the ground
level, we obtain the relation (24). This relation corresponds
to the well-known definition of the probability flow j =
ih̄(�grad�∗ − c.c.)/2m in the 3D continuous case [61].
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