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Gain-phase modulation in chirped-pulse amplification
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The cross-modulation between the gain and chirped phase in chirped-pulse amplification (CPA) is theoretically
and experimentally demonstrated. We propose a gain-phase coupled nonlinear Schrödinger equation (GPC-
NLSE) for solving chirped-pulse propagation in a nonlinear gain medium involved in the gain-phase modulation
(GPM) process. With the GPC-NLSE, the space-time-frequency-dependent gain, chirped phase, pulse, and
spectrum evolutions can be precisely calculated. Moreover, a short-length high-gain Yb-doped fiber CPA
experiment is presented in which a self-steepening distortion of the seed pulse is automatically compensated
after amplification. This phenomenon can be explained by the GPM theory whereas conventional models cannot.
The experimental results for the temporal and spectral intensities show excellent agreement with our theory. Our
GPM theory paves the way for further investigations of the finer structures of the pulse and spectrum in CPA
systems.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) is widely
used in solving the evolution of an optical chirped pulse in
nonlinear medium, which has successfully explained various
physical phenomena such as optical solitons, self-steepening,
and pulse splitting [1–4]. Recently, the NLSE has been
modified to describe many new physical effects such as
two-photon absorption and free-carrier temporal effects in
silicon waveguides and photonic nanowires [5–7]. It is a
key problem to consider gain dispersion and gain saturation
effects in NLSE models. For the gain dispersion, the gain
effect can be interpreted as a spectral modulator with a
Gaussian or parabolic function in the NLSE [8–11], which
has been combined with stimulated Raman scattering [8],
four-wave mixing [10], and dissipative soliton formation [11].
For the transient gain, the gain saturation model was applied
to modify the NLSE with a parameter of saturation power
or energy, which explained the mode-locking process [12]
and self-similar pulse evolution [13] in all-normal-dispersion
lasers. Recently, a new gain saturation model was reported
[14] but it has not combined the NLSE with detailed physical
processes. For the combined effects of gain bandwidth and
gain saturation, some complex coupled types of NLSE have
been proposed for the application of various ultrafast laser
systems [15–17].

However, three problems remain to be further investigated:
(1) The gain spectrum cannot be simply written as a certain
function when considering the complex processes underlying
the population and energy-level dynamics in a gain medium.
(2) The gain saturation model is derived under the steady-state
assumption. Nevertheless, the duration of an ultrashort pulse
is always much shorter than the response time of the gain
medium, where the gain saturation model may fail [18].
Although some typical values of saturation power or energy
were valid in several special conditions [15–17], the general
principle remains unavailable. (3) The gain can induce chirped
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phase changes and the instantaneous frequency can influence
transient gain redistribution. This complex gain-phase modu-
lation (GPM) effect is neglected in most conventional NLSE
models. The physical principles of the gain-coupling effects
have been studied [19] but it cannot be ascribed to the NLSE.
The conventional NLSE model is summarized in Appendix A.

The above problems are vital to chirped-pulse amplification
(CPA) systems, in which the pulse shape always requires
optimization through spectral shaping [20,21] and suppressing
gain narrowing [22,23]. For gain dispersion, the Frantz-Nodvik
formula [24–26] and inhomogeneous broadening model [27]
were always used to investigate pulse evolution, while they ex-
clude the time-dependent gain caused by changes in transient
power. The coupled rate equations with different frequency
components can further characterize the time-frequency-
dependent gain more precisely [28], yet they cannot reveal the
influences of chirps. A multiwavelength mode-locking model
can solve the chirp phase and instantaneous frequency [29] but
neglects the interaction between the gain and chirp.

In this paper, we establish a theoretical model to investigate
the interaction between gain and chirped phase. The NLSE
coupled with rate equations is modified to solve the pulse and
spectrum evolutions during CPA. Our model can precisely
solve the space-time-dependent gain, chirped phase, pulse,
and spectrum evolutions. We also conducted a high-gain
ytterbium-doped fiber (YDF) CPA system. The aberrant and
self-steepening seed pulse was measured, but, after CPA, the
distortion was alleviated. This phenomenon is successfully
explained by our GPM theory. The pulse evolution process
during CPA has been successfully simulated and the theoretical
results show excellent agreement with experimental results.

II. THEORETICAL MODEL

A. Gain spectrum dynamics

In the YDF amplifier, the laser and population dynamics
are described by the rate equations [30–33]
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FIG. 1. The absorption and emission cross sections versus wave-
length in YDF.
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where the superscript “+ (−)” corresponds to the forward
(backward) propagating direction, the subscript “s (p)” corre-
sponds to laser (pump) light, N1 (N2) is the population density
of the lower (upper) energy-level manifold, Ntot = N1 + N2 is
the total ion-doping concentration, σ

(∗)
ab (σ (∗)

em ) is the effective
absorption (emission) cross section, � is the filling factor of
the fiber core, α is the intrinsic scattering loss in the fiber, h is
Planck’s constant, c is the speed of light, τ is the upper-state
lifetime, Ac = πa2

c /4 is the cross-sectional area of the fiber
core, and ac is the fiber core diameter.

The initial powers of the pump light and seed laser, Pp(t)|z=0

and Ps(t)|z=0, are known as the initial conditions of the rate
equations. The population densities of the lower and upper
energy levels, N1(t) and N2(t), can then be solved. Because
the pump and laser light are both quasimonochromatic, the
effective cross sections are valid in solving the rate equations,
as shown in Appendix C. However, the actual gain also varies
with light frequency, which is determined by the frequency-
dependent absorption and emission cross sections, σab(ω) and
σem(ω), as Fig. 1 shows. Thus, in our model, the frequency-
time-dependent gain is written as

g(ω,t) = �s[σem(ω)N2(t) − σab(ω)N1(t)] − αs, (4)

which is useful in modeling the evolutions of pulse and
spectrum shapes in the following sections.

B. Gain-phase modulation

The light field of a chirped pulse is written as E(t) =
A(t)eiω0t , where the complex envelope A(t) = √

Ps(t)eiφ(t),
φ(t) is the temporal phase, and ω0 is the center frequency of the
laser. The spectrum field is expressed as Ẽ(ω) = √

Is(ω)eiϕ(ω),
where ϕ(ω) is the spectral phase and the laser power is related

to the light field as Ps = |E(t)|2. Similarly, the laser spectrum
intensity is related to the spectrum field as Is = |Ẽ(ω)|2.
The light and spectrum fields satisfy the Fourier transform
relation, obeying the wave equation and its form in the Fourier
frequency domain [34]:
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where k = ω/c = 2π/λ, c = 1/
√

μ0ε0, μ0 is the vacuum
permeability, ε0 is the vacuum permittivity, PL (PNL) is
the linear (nonlinear) polarization, εr = n2 is the relative
permittivity, and n is the refractive index. A chirped laser pulse
propagating along the z axis is expressed as E(z + 
z) =
E(z)e−ikn
z, satisfying the following assumptions [34]: (1)
The optical field is assumed to be quasimonochromatic, i.e.,

ω/ω0 � 1, where 
ω is the spectral width. (2) The slowly
varying envelope approximation: the duration of the pulse
envelope is much larger than an optical cycle. (3) PNL is treated
as a small perturbation to PL since the nonlinear changes
in the refractive index are less than 10−6. Thus, the gain
and nonlinear effects can be ascribed to the small variation
of complex refractive index: εr = n2 = (n0 + 
n)2 ≈ n2

0 +
2n0
n, 
n = 
nG + 
nNL, and then the equation for the
envelope function in the retarded frame becomes
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where T = t − β1z is the retarded time, β1 is the first-order
dispersion, β2 is the group velocity dispersion (GVD), β3 is
the third-order dispersion (TOD), n0 is the intrinsic mode
refractive index, 
n is the perturbance of the refractive
index, 
nG (
nNL) is change in the gain-induced (nonlinear)
refractive index, while the dispersions of orders higher than
3 are neglected. Considering the Kerr effect, the nonlinear
refractive index is given by 
nNL = n2|A|2/Aeff , where
n2 is the Kerr refractive index coefficient and Aeff is the
effective core area. According to the definition of gain, the
gain-induced refractive index is given by 
nG = −ig/(2k).
Hereinafter, we focus on the gain-phase cross-modulating
relationship and its influences on chirped-pulse evolution. The
gain is related to both the frequency-dependent cross sections
σab(ω), σem(ω) in the frequency domain and the population
dynamics N1(T ), N2(T ) in the time domain. The method
of variable separation is used to express the binary gain
relation [28]: g(ω,T ) = gtgω/g0, where gt = g(T )|ω=ω0,gω =
g(ω)|T =T0 ,g0 = g(ω0,T0), and ω0 = 2πc/λs. For a stable laser
pulse sequence, T0 satisfies the moment when the population
is equal to the corresponding mean value, N1(T0) = N̄1(T ),
N2(T0) = N̄2(T ). In the frequency domain, gω modulates the
spectrum field. While in the time domain, the time-varying
phase φ(t) implies that the instantaneous optical frequency
ωins(t) differs across the pulse from its central value ω0 with
δω = ∂φ/∂t . The phase and gain are interactional and both
involved in Eq. (7). According to the above principles, the gain-
phase coupled nonlinear Schrödinger equation (GPC-NLSE)
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is established to characterize the GPM process as follows:

gt = �s[σem(ωins)N2(T ) − σab(ωins)N1(T )] − αs, (8)

gω = �s[σem(ω)N2(T0) − σab(ω)N1(T0)] − αs, (9)
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where γ = ω0n2/(cAeff). The temporal gain gt distribu-
tion induced by the time-dependent instantaneous frequency
ωins(T ) = ω0 + ∂φ(z,T )

∂T
is considered. The separation of gt and

gω also lays the foundation for the corresponding numerical
methods in the following section. The separation is valid as
the quasimonochromatic assumption is used. This assumption
is valid for ∼1-μm wavelength pulses with the spectral width
of dozens of nanometers. If the assumption fails, the accuracy
of the separation may decrease.

C. Numerical methods

The NLSE is a nonlinear partial differential equation
that does not generally lend itself to analytic solutions in
general. As an effective numerical method, the split-step
Fourier method (SSFM) is therefore widely used to solve the
NLSE [34,35]. In analogy with the conventional NLSE, the
GPC-NLSE can also be formally written in operator form:

∂A(z,T )

∂z
= [D̂(ω) + N̂ (T ) + Ĝ(ω,T )]A(z,T ), (11)
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Ĝ(ω,T ) = gt (T )gω(ω)

2g0
, (14)

where ω̃ = ω − ω0, D̂, N̂ , and Ĝ are respectively the disper-
sion, nonlinear, and gain operators. The conventional SSFM
can be applied when regarding the gain term as constant or
purely a frequency-dependent term (gain bandwidth narrowing
models) or purely a time-dependent term (gain saturation
models), but is unable to deal with the frequency-time-
dependent gain operator. We present below a modification
of the numerical method to deal with the GPC-NLSE. An
approximate solution of Eq. (11) is obtained by assuming
the propagation of the optical field over a small distance 
z.
Mathematically,

A(z + 
z,T ) = exp〈
z(D̂ + N̂ + Ĝ)〉A(z,T )

≈ exp〈
zD̂〉 exp〈
zN̂〉 exp〈
zĜ〉A(z,T ).

(15)

The higher-order error induced by the noncommutability
among operators, exp〈
zD̂〉, exp〈
zN̂〉, exp〈
zĜ〉, can be
evaluated by the Baker-Hausdorff formula [34,36], where
the exponential operator for a certain operator exp〈X̂〉 to
an arbitrary (z,T )-dependent function B(z,T ) is defined in
the Fourier domain using the prescription exp〈X̂〉B(z,T ) =
F−1{exp(X̂)F[B(z,T )]}, which can be directly calculated by
the finite Fourier transform (FFT) algorithm. Specially, if
operator X̂ is only time dependent, the exponential operator
would be equivalent to a simple exponent function exp〈X̂〉 =
exp(X̂). As the dispersion operator and nonlinear operator can
both be determined, the expression for the gain operator can
be derived as
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zĜ(ω,T )〉B(z,T ) = F−1

{
exp

[

z

2g0
gω(ω)gt (T )

]
F[B(z,T )]

}
≈ F−1

{[
1 + 
z

2g0
gω(ω)gt (T ) + 1

2


z2

4g2
0

g2
ω(ω)g2

t (T ) + · · ·
]
F[B(z,T )]

}
= B(z,T ) + 
z

2g0
gt (T )F−1{gω(ω)F[B(z,T )]} + 
z2

8g2
0

g2
t (T )F−1

{
g2

ω(ω)F[B(z,T )]
} + · · · . (16)

Hence, the main difficulty is in treating the term exp [ 
z
2g0

gω(ω̃)gt (T )] so that it can operate in the time domain or Fourier

domain. Therefore, we use the Taylor expansion of exponential function, ex ≈ 1 + 1
1!x + 1

2!x
2 + · · · , and higher-order terms are

neglected here because the error can be confined to acceptable tolerances under a suitable step 
z. To reduce the error induced
by the noncommutability among operators, the symmetrized split-step Fourier method (SSSFM) is widely used to improve the
accuracy as in [34,37]: A(z + 
z,T ) = exp〈
z

2 D̂(ω)〉 · exp〈∫ z+
z

z
N̂ (z′,T )dz′〉 · exp〈
z

2 D̂(ω)〉A(z,T ), which, however, can only
treat the conventional case, i.e., there are only frequency-dependent dispersion operators and time-dependent nonlinear operators
without Ĝ(ω,T ). Hereafter, we take GPM into account and derive a SSSFM form for the GPC-NLSE:
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A(z,T ). (17)
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FIG. 2. Schematic illustration of the numerical simulation for GPC-NLSE using the SSSFM form. The fiber length is divided into a large
number of segments with length 
z. Within a segment, the gain of the chirped laser pulse under continuous-wave pump light is assumed to be
lumped at the midplane and the nonlinearity is lumped at the 1/4 and 3/4 segment length planes.

The accuracy of the SSSFM method can be further
improved by evaluating the integral in Eq. (17) more accu-
rately using various numerical methods. In this work, the
trapezoidal rule is employed to approximate the integral
by

∫ z+
z

z
X̂(z′)dz′ ≈ 
z

2 [X̂(z) + X̂(z + 
z)]. Therefore, it is
necessary to use an iterative procedure in the numerical model
to replace X̂(z + 
z) by X̂(z), where X̂ represents D̂, N̂ ,
and Ĝ. Equation (17) is used to estimate A(z + 
z), which
in turn is used to calculate the new value of X̂(z + 
z). A
more accurate A(z + 
z) can then be obtained by performing
a more accurate numerical integration of

∫ z+
z

z
X̂(z′)dz′.

The implementation of our new form of the SSSFM is
illustrated in Fig. 2. The fiber length is divided into a large
number of segments and the optical pulse travels from segment
to segment as prescribed by Eq. (17). The procedure can be
put in a more specific way as follows: (1) we consider the
dispersion and nonlinearity in the first half-segment length

z/2, in which the optical field A(z,T ) first propagates for
a distance 
z/4 with only a frequency-dependent dispersion
term using the FFT algorithm, and then the field is multiplied
by a nonlinear term that represents the effect of nonlinearity
over this segment length 
z/2 at position z + 
z/4, and
finally the field propagates for the next distance 
z/4 with
dispersion only; (2) at the midplane z + 
z/2, the field is
multiplied by the gain term via Eq. (16) that represents the
frequency-time-dependent gain effect over the whole segment
length 
z; (3) the field propagates the remaining distance

z/2 with dispersion and nonlinearity as the processes in step
(1), and the nonlinearity is revealed at z + 3
z/4. Although
the SSSFM procedure is time consuming, it can still reduce
the overall computing time if the step size 
z can be increased
owing to the improved accuracy of the numerical algorithm.

III. EXPERIMENTAL SETUP

A series of experiments have been performed to study the
GPM effect in the YDF CPA system. The experimental setup
is illustrated in Fig. 3. All the fibers used in this experiment
were single mode. The front end was an all-normal-dispersion
nonlinear amplifying loop mirror-mode-locked laser [38]. The
output laser was 50:1 split by an output coupler, and the 2%
portion of the signal was used as a trigger source for the

oscilloscope. At monitor 1, the average power of the seed was
about Pave|z=0 = 20 mW and the repetition rate fr = 8 MHz.
The duration of the seed pulse was about 30 ps FWHM with
a corresponding Fourier transform limit pulse width of about
200 fs. Then the seed chirped pulse was positively stretched
to about τ0 = 1.2 ns by a stretcher, including a circulator
and a chirped Bragg fiber grating. Therefore, according to
Agrawal’s criterion [34] that τ0 > 5 ps and (ω0τ0)−1 < 0.001,
the self-steepening and Raman effects are negligible in our
CPA process. After stretching, the wave form and spectrum
were recorded at monitor 2, as shown in Figs. 4(a) and 4(b).
As can be seen, the seed-pulse wave form before CPA has a
self-steepening aberrant profile, the spectrum of which has
two very steep edges. For the CPA system, the stretched
pulses were amplified in the SM-YDF with a length of
L = 1.2 m and an absorption coefficient of α = 250 dB/m,
being forwardly pumped by the laser diode (LD). The YDF
ion-doping concentration relates to the absorption by Ntot =
α/[10σ

(p)
ab �p lg e]. A short-length and large-absorption YDF

was selected as the active medium to decrease the dispersion
and nonlinearity in contrast to the gain. The 976-nm LD can
provide the cw power up to 750 mW through the wavelength
division multiplexers into the fiber core. In this experiment, the

FIG. 3. Schematic of the experimental setup, the signals at
monitor 1 and monitor 2 are also detected by PD 2. LD: laser diode,
PLP: pump laser protector, WDM: wavelength division multiplexers,
OC: output coupler, OSA: optical spectrum analyzer, HTM: high
transmitting mirror, SM-YDF: single-mode Yb-doped fiber, PD:
photon detector.
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FIG. 4. (a) The temporal experimental and simulated intensities with phases, (b) the spectral experimental and simulated intensities of the
seed pulse via CBIM. (c) An insert and scaling of (a), the instantaneous wavelength and the instantaneous induced temporal cross sections in
the pulse region. (d) An insert of (c), the frequency-dependent cross sections and gain with their correlation to instantaneous wavelength.

LD provided P +
p |z=0 = 560 mW for cw fiber core pumping.

Other parameters used in this work are listed in Table I.
The pulse wave forms were measured by the combination of

two high-speed photodetectors and a 30-GHz bandwidth sam-
pling oscilloscope (Agilent 86100A-86106A) in which one of
the photodetectors (Thorlabs DET025A/M, 2 GHz) was used
to provide the output trigger for the oscilloscope, and the other
photodetector (New Focus Model-1414, 25 GHz) was used to
measure the wave forms. The pulse spectrum was measured
by an optical spectrum analyzer (Yokogawa AQ6370) at a

TABLE I. Parameter settings used in this work.

Symbol Value (Ref.) Symbol Value (Ref.)

c 2.998×108 m/s cp 2.067×108 m/s [33]
h 6.626×10−25 J s cs 2.067×108 m/s [33]
λp 976 nm αp 5×10−3 m−1 [32]
λs (λ0) 1030 nm αs 5×10−3 m−1 [32]

σ
(p)
ab 26.1×10−25 m2 [39] �p 0.82 [32]

σ
(s)
ab 47.5×10−27 m2 [39] �s 0.82 [32]

σ
(p)
em 25.8×10−25 m2 [39] n2 2.6×10−20 m2/W [34]

σ (s)
em 6.0×10−25 m2 [39] γ 0.0047 W m−1 [12]

τ 840 μs [39] β2 24.2 ps2/km [40]
ac 6 μm β3 0.024 ps2/km [40]

resolution of 0.1 nm. The laser power was measured by the
thermopile power-meter head (Ophir PD300-1W).

IV. RESULTS AND DISCUSSION

A. Initial seed gain and phase

In order to study the GPM effect in pulse evolution,
the actual temporal and spectral intensities and phases must
be obtained. The normalized functions of the temporal and
spectral intensities were calculated, each of which was
then multiplied by the value of pulse energy so that the
integral of the obtained intensity is equal to the pulse
energy. The theoretical pulse energy is calculated as Ep =∫ −Tr/2
Tr/2 |A(T )|2dT , where Tr = 1/fr is the pulse repetition

period. We also designed a chirp-coefficient bisection iteration
method (CBIM) to solve the temporal and spectral phases
based on the measured temporal and spectral intensities (see
Appendix B). After several iterations, the solved temporal
power Ps(T ) and spectral intensity Is(ω) agree closely with
the measured data. Then, we can obtain the Ps(T ) and Is(ω)
as the theoretical temporal and spectral intensities, φ(T ) and
ϕ(ω) as the theoretical temporal and spectral phase functions,
and A(T ) = √

Ps(T )eiφ(T ) and Ẽ(ω) = √
Is(ω)eiϕ(ω) as the

theoretical complex envelope and complex spectrum. The
experimental temporal power and spectral intensity are shown
as the blue (light gray) solid lines in Figs. 4(a) and 4(b). The
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simulated temporal and spectral intensities are shown as the
purple (dark gray) solid lines, and phases are shown as the red
dashed lines in Figs. 4(a) and 4(b). All simulated results of the
CBIM agree well with the measured results.

As the temporal and spectral intensities with phase distri-
butions of the stretched seed pulse are all obtained, the initial
conditions are sufficient for solving the GPC-NLSE. From
the theoretical temporal chirped phase φ(T ), the chirped in-
stantaneous wavelength λins(T ) = 2πc/ωins(T ) was obtained
[Fig. 4(c); red (middle) solid line]. The chirped instantaneous
frequency is redshifted (a shift toward longer wavelengths)
at the pulse leading edge and blueshifted (a shift toward
shorter wavelengths) at the pulse trailing edge; this agrees with
the general principle regarding a positively stretched chirped
pulse. According to the frequency-dependent absorption and
emission cross sections [Fig. 4(d); blue (left) and green (right)
solid lines], the temporal cross section changes induced by
the instantaneous frequency, corresponding to σab[ωins(T )]
and σem[ωins(T )], were plotted [Fig. 4(c); blue (lower) and
green (upper) solid lines]. The population densities were
then obtained by solving the rate equations (see Appendix C
for details), from which the frequency-time-dependent gain
operator was obtained via Eqs. (8), (9), and (14) from
the instantaneous wavelength-induced temporal gain for an
average population distribution [Fig. 4(d); red (middle) solid
line]. As can be seen, the maximum temporal gain of about
6.6 m−1 occurs at about T = −130 ps. Thus, the GPC-NLSE
can be used to solve the pulse propagating through the next
segment.

B. Pulse evolution with GPM

From the solution of the rate equations, the spatial gain
dispersion relationship Eq. (9) can be obtained [Fig. 5(a)].
With the spatiotemporal population distributions N1(z,T ) and
N2(z,T ), the spatiotemporal gain Eq. (8) can be derived
[Fig. 5(b)]. The chaotic behavior of the spatiotemporal gain
profiles at two wings in Fig. 5(b) are futile where the intensity
is zero. The values in the pulse region of about −0.8 ns
< T < 0.6 ns are actually effective. Then, the comprehensive
spatial time- and wavelength-dependent gain Eq. (14) can be
obtained. Figure 6 depicts this gain at z = 0, z = 0.6 m, and
z = 1.2 m, in which the evolution of its profile along the path
of propagation from the positive-gain to the laser-reabsorption
region is evident. The gain profiles in the positive-gain region
are essentially convex around the center of the retarded time
and the center wavelength but flatten as the pulse propagates
towards the saturation region.

The evolutions of the temporal and spectral intensities for
the pulse during CPA [Figs. 7(a) and 7(c)] show that the
intensities are growing in the positive-gain region and barely
change in the saturation region. This is in accordance with
the principle of average laser power evolution. The simulated
output temporal and spectral intensities [Figs. 7(b) and 7(d);
red (dark gray) solid lines] show good agreement with the
corresponding measured intensities [Figs. 7(b) and 7(d); blue
(light gray) solid lines]. The simulated output pulse energy
is Ep|z=L = ∫ Tr/2

−Tr/2 |A(L,T )|2dT = ∫ ∞
−∞ |Ẽ(L,ω)|2dω=60.72

nJ, which agrees with the measured pulse energy 57.25 nJ
within acceptable error tolerance.

FIG. 5. The spatial (a) gain dispersion relationship gω(z,λ) and
(b) temporal gain relationship gt (z,t) in the YDF CPA.

C. Output results and self-steepening compensation via GPM

The seed pulse has an obvious self-steepening temporal
shape, with a smoother profile around the pulse leading edge
as well as a profile with sharp oscillation around the pulse
trailing edge [Fig. 4(a)], the shape of which is unwanted
for mode-locked laser pulses. However, focusing on the

FIG. 6. The time- and wavelength-dependent gain g(z,λ,T ) at
various propagating distances, z = 0, z = 0.6 m, and z = 1.2 m in
the YDF CPA.
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FIG. 7. (a) The evolution of the temporal intensities of the propagating pulse and (b) corresponding simulated and experimental output
results; (c) the evolution of the spectra intensities of the propagating pulse and (d) corresponding simulated and experimental output results.

wave-form variations in Fig. 7(a), the serious self-steepening
present in the seed pulse is appreciably compensated during
the amplification. In contrast, the output spectrum has a
better shape than the seed spectrum. The explanation is that
the smoother region may have a larger instantaneous gain
than the oscillatory edge owing to the convex profile of the
comprehensive gain profiles induced by GPM.

A simulation without considering GPM effect was also
performed, i.e., the instantaneous frequency-induced gain
effect was neglected. The corresponding output temporal
intensity and spectrum are marked as the orange dashed lines
in Figs. 7(b) and 7(d), respectively. Although the simulated
output pulse energy of 53.64 nJ is also close to the measured
value, the wave form differs greatly as the measured shape
and the self-steepening compensation phenomenon cannot be
simulated in this case. Indeed, the difference between the
results with and without GPM is indicative of the chirp-induced
gain [Figs. 7(b) and 7(d); faint red (gray) area]. Therefore, it
has been verified that the self-steepening can be compensated
by the GPM effect.

V. CONCLUSION

In summary, the GPM effect in CPA is theoretically and
experimentally demonstrated. In theory, the GPC-NLSE is

proposed to characterize the GPM, in which the gain is
accurately solved by the population dynamics involving the
gain induced by the instantaneous chirped frequency. In the
experiment, a short-length and high-gain YDF CPA system
was established to scale a self-steepening aberrant seed pulse
with an average power of 20 mW and the repetition rate of
8 MHz. After amplification, the output average power and
pulse energy were 458.0 mW and 57.25 nJ, respectively, which
are close to the corresponding simulated results of 490.3 mW
and 60.72 nJ. The simulated wave forms and spectra show
great agreement with the experimental results, in contrast
to the model without GPM. Additionally, the self-steepening
aberration of the seed pulse is automatically compensated in
the output pulse after CPA. This compensation phenomenon is
confirmed to be induced by the GPM effect. The GPC-NLSE
and GPM theory can be further applied in fine pulse shaping,
phase modulation, distortion compensation, etc., in various
CPA systems.
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APPENDIX A: CONVENTIONAL NLSE INCLUDING GAIN

Considering gain, the NLSE is always written as
[5–13,15–17,34]

∂A

∂z
= − iβ2

2

∂2A

∂T 2
+ β3

6

∂3A

∂T 3︸ ︷︷ ︸
dispersion

+ iγ |A|2A︸ ︷︷ ︸
Kerr effect

+ g

2
A + g

2�2

∂2A

∂T 2︸ ︷︷ ︸
gain

,

(A1)

where the gain saturation relations, g = g0 exp(−Ep/Esat)
[11,15,17], g = g0/(1 + Ep/Esat) [12,13], and the tempo-
ral relation g = g0/(1 + |A|2/Psat) [16] are always used to
characterize the gain saturation effect. Here Ep = ∫ |A|2dT ,
Esat (Psat) is the saturation energy (power), and g0 is the
small signal gain. Unfortunately, these relations are only
applicable to the steady state and the accurate temporal
gain must be solved by the rate equations [18,30]. For the
frequency-dependent relationship, a Gaussian or its approx-
imate parabolic profile g(ω) = g0 exp(−ω̃2/�2) ≈ g0(1 −
ω̃2/�2) [8–11,15–17] is widely used, where ω̃ = ω − ω0

and ω = 2πc/λ. Therefore, the operator (1 + �−2∂2/∂T 2) in
Eq. (A1) represents the frequency-dependent principle based
on the Fourier transform relationship. However, the actual
gain spectrum of the active medium is not always a simple
Gaussian distribution, so that the conventional NLSE can only
roughly describe the light field evolution but cannot solve
the fine structure of the pulse and spectrum. The Raman and
self-steepening terms are omitted because these effects are
very weak during the CPA in this work.

APPENDIX B: CHIRP BISECTION ITERATION METHOD

The nonlinear chirped temporal or spectral phase are
expressed as a quartic polynomial:

φ(T ) = Ct1T
2 + Ct2T

3 + Ct3T
4, (B1)

ϕ(ω) = Cω1ω̃
2 + Cω2ω̃

3 + Cω3ω̃
4, (B2)

where Ct1, Ct2, and Ct3 are temporal linear, second-order, and
third-order chirp coefficients, respectively, and Cω1, Cω2, and
Cω3 are spectral linear, second-order, and third-order chirp
coefficients, respectively. The chirps of order higher than 3 are
omitted. Therefore, the temporal and spectral light fields are
given by

E(T ) =
√

Ps(T )e[i(ω0T +Ct1T
2+Ct2T

3+Ct3T
4)+··· ], (B3)

Ẽ(ω) =
√

Is(ω)e[i(Cω1ω̃
2+Cω2ω̃

3+Cω3ω̃
4)+··· ], (B4)

obeying the Fourier transform relations

E(T ) = F−1
[
Ẽ(ω)

] = 1√
2π

∫ ∞

−∞
Ẽ(ω)eiωT dω, (B5)

Ẽ(ω) = F[E(T )] = 1√
2π

∫ ∞

−∞
E(T )e−iωT dT . (B6)

The temporal and spectral chirp coefficients of various
orders, Ctn,Cωn,n = 1,2,3, . . . ,N (N represents the cutoff
order), are determined one-by-one by the following procedure:

FIG. 8. (a) The temporal upper- and lower-state population den-
sities in pulse range at z = 0. The average (b) laser and pump powers,
(c) upper- and lower-state population, and (d) pump absorption and
laser gain along the propagating distance.

Step 1: (Predetermine first-order chirp coefficients). First,
make an upper estimate and lower estimate of the first-order
spectral chirp coefficients, C

(1)
ω1 and C

(2)
ω1 , and set higher-order

chirp coefficients as zero. The actual first-order spectral
chirp coefficient should be in the range [C(1)

ω1 ,C
(2)
ω1 ]. Then,

substitute them into the field function Eq. (B4) and perform
the inverse Fourier transform Eq. (B5) to obtain the functions
F

(1)
t and F

(2)
t . Next, compute the standard deviations D1 =

Std(|F (1)
t |2,Ps) and D2 = Std(|F (2)

t |2,Ps). A smaller deviation
value denotes better accordance, and the bisection method can
then be applied to further narrow the range of the first-order
chirp coefficients, i.e., if D1 > D2, the next search range
should be [(C(1)

ω1 + C
(2)
ω1 )/2,C

(2)
ω1 ]. After gradually narrowing

the search range within a tolerance range, the first-order
spectral chirp coefficient is ultimately determined.

The temporal first-order chirp coefficient is determined
similarly using Eqs. (B3) and (B6).

Step 2: (Predetermine nth-order chirp coefficient). First,
with the predetermined lower-order chirp coefficients fixed,
make an upper estimate and lower estimate of the nth-order
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spectral chirp coefficient of C(1)
ωn and C(2)

ωn, and set higher-order
chirp coefficients as zero. The actual nth-order spectral
chirp coefficient should be in the range [C(1)

ωn,C
(2)
ωn]. Then,

substitute them into the field function Eq. (B4) and perform
the inverse Fourier transform Eq. (B5) to obtain the functions
F

(1)
t and F

(2)
t . Next, compute the standard deviations D1 =

Std(|F (1)
t |2,Ps) and D2 = Std(|F (2)

t |2,Ps). As before, with a
smaller deviation value indicating a better agreement, the
bisection method can be applied to further narrow the range
of the nth-order chirp coefficient, i.e., if D1 > D2, the next
search range should be [(C(1)

ωn + C(2)
ωn)/2,C(2)

ωn]. After gradually
narrowing the search range within a tolerance range, the nth-
order spectral chirp coefficient is ultimately determined. The
temporal nth-order chirp coefficient is determined similarly
using Eqs. (B3) and (B6).

The above two steps can already determine the chirp coeffi-
cients of various orders. However, the influence of higher-order
chirps is ignored when solving lower-order chirps. Thus, the
following step 3 is necessary to modify the whole method.

Step 3: (Final determination of the chirp coefficients). A
comprehensive external iteration algorithm is conducted by
taking all investigated orders of chirp coefficients together to
accommodate the interplay with all considered chirp orders
present. The method involves first fixing the predetermined
n + 1,n + 2, . . . ,N th-order chirp coefficients and then refresh
the values of the nth-order chirp coefficients. After several
iterations, the various chirp coefficients will converge to a
stable solution. When the error converges to within tolerance
range, the chirp coefficients of various orders are refreshed
and finally determined.

With the various chirp coefficients evaluated, the temporal
and spectral light fields with full amplitude and phase
information can be obtained.

APPENDIX C: SOLUTION OF RATE EQUATIONS

In the rate equations, Eqs. (1)–(3), the effective absorption
and emission cross sections are calculated using [31]

σ
(m)
ab =

∫ ∞
−∞ Im(λ − λm)σab(λ − λm)dλ∫ ∞

−∞ Im(λ − λm)dλ
, (C1)

σ (m)
em =

∫ ∞
−∞ Im(λ − λm)σem(λ − λm)dλ∫ ∞

−∞ Im(λ − λm)dλ
, (C2)

where “m” represents “s” or “p.”
Because the pulse sequence has a rather high repetition

rate of 8 MHz compared with the response rate of YDF
(fr � 3/τ ≈ 3.6 kHz) [18], the spatial average power dis-
tribution should have nearly no difference from that of the
cw seed with identical initial average power. Under the
conditions of a cw pumped stable output pulse train, the
temporal changes of the upper- and lower-state population
densities in the first segment are solved by the rate equations,
Eqs. (1)–(3), as shown in Fig. 8(a). In this work, the
pump and laser are both forward single-pass in the YDF
amplifier, and hence the powers of the backward direction
are set to zero. Combined with the GPC-NLSE, various pulse
parameters in the next segment can be solved, and then
the pulse evolutions along the whole propagating distance
are solved. The numerical results of the laser and pump
average powers, the upper- and lower-state population, and
the pump absorption and laser gain evolutions are shown in
Figs. 8(b)–8(d). The maximum laser power takes place at
about z = 0.6 m as a consequence of the laser-reabsorption
effect.
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