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The introduction of metamaterials and transformation optics has brought the possibilities for manipulating
electromagnetic waves to an unprecedented level, suggesting applications like super-resolution imaging, cloaking,
subwavelength focusing, and field localization. The refractive index of metamaterial structures in transformation
optics typically has to be spatially graded. This paper presents a full analytical method for description of the field
propagation through composites with gradient refractive index. The remarkable property of this approach is that
it gives explicit general expressions for the field intensity and transmission and reflection coefficients, without
reference to any boundary conditions. This opens a possibility for a novel fundamental theory of a number of
important electromagnetic phenomena. The method enables calculation of wave propagation parameters within
structures with arbitrary losses, arbitrary spectral dispersions, and arbitrary slopes of permittivity and permeability
gradients, from mild to abrupt.
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I. INTRODUCTION

One of the primary goals in electromagnetics is the
manipulation of wavefronts of propagating and evanescent
waves. A new degree of freedom is obtained if a spatial gradient
of refractive index is introduced and interface phenomena are
replaced by bulk effects. According to Fermat’s principle, light
travels through such materials along curved trajectories with
the extreme value of optical path, usually the shortest [1,2].
This approach is the basis of gradient index lenses, the oldest
examples being Maxwell’s fish-eye and Luneburg lenses [3].

The problem with conventional optical materials is that the
range of available values of the refractive index is limited to
those found in nature. The introduction of electromagnetic
metamaterials [4,5] enabled vast widening of that range. Sub-
wavelength structuring enables direct control of the resonant
electromagnetic behavior of a material, thus allowing tailoring
of its refractive index to values not readily found in nature,
including very high, near-zero, and negative. Simultaneously,
it ensures control over frequency dispersion. This led to the
introduction of transformation optics [6,7], where one optical
space is mapped into another.

The spatial gradient of the refractive index is necessary
for a vast majority of the applications of transformation
optics. A number of applications using the spatial gradi-
ent of metamaterial-containing media have been proposed.
Some examples include super-resolution imaging [8,9] and
hyperlensing [10], electromagnetic cloaking [6,11,12] and
illusion optics [13], superabsorption [14] and optical black
holes [15], and subwavelength focusing and extreme field
localization [16]. Other proposed applications include beam
shaping and directing [17], enhancement of nonlinear effects
[18], etc. Graded metamaterials were proposed as the basis
for analog optical computing [19] that can perform, e.g.,
spatial differentiation and integration. The same approach is
valid throughout the electromagnetic spectrum. Besides to
propagating waves, the concepts can be applied to evanescent
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waves as well. The possibility to efficiently couple evanescent
and propagating waves was considered in Refs. [20–22].

At this point, it is important to emphasize that there
are a number of major physical differences between graded
interfaces and sharp interfaces. These differences are ad-
dressed in the literature [6–22] in detail, as described in
the previous paragraph. These physical differences actually
allow for realization of some entirely new applications which
are not possible using structures with conventional sharp
interfaces between positive-refractive-index media (PIM) and
negative-refractive-index media (NIM) media. Since the main
objective of the present paper is the analytical description of
the fundamental concepts behind these exciting applications,
it is not possible to include a detailed account of all them here.
A reader interested in a detailed introduction to the physical
differences between graded interfaces and sharp interfaces is
therefore referred to Refs. [6–22].

The approaches utilized in transformation optics can be
applied also to other fields where wave propagation occurs.
This includes acoustics [23,24], heat flow control and ther-
modynamics [25], matter waves in quantum mechanics [26],
gravity and celestial mechanics [27], etc.

Analytical approaches to the calculation of wave propa-
gation in graded metamaterial-containing structures are of
special interest since they ensure fast, simple, and direct
determination of the field distribution and the calculation
of the wave propagation parameters [28–32]. A convenient
mathematical form to describe interfaces between PIM and
NIM is by a weighted tangent hyperbolic, since it can be used
to describe a range of graded interfaces, from mild to abrupt
ones. Previous analytical solutions for the field propagation
through graded interfaces were limited to the case of constant
impedance throughout the structure, and consequently without
reflection [30–32].

In this paper, we present a complete analytical solution
of Helmholtz’ equation for the wave propagation through
lossy graded metamaterial structures, where the dielectric
permittivity and magnetic permeability can be described by
hyperbolic-tangent functions and are generally independent of
each other. Contrary to our previous considerations, we assume
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FIG. 1. Oblique incidence on an interface between the positive-
refractive-index media (PIM) and the negative-refractive-index media
(NIM).

general hyperbolic-tangent spatial gradients of the permittivity
and permeability functions, and thus take reflections between
the two media into account. We determine explicit relations for
the field intensities and reflection and transmission coefficients
across the structure, and show that they reproduce the well-
known results in the limit of abrupt transition.

II. FIELD EQUATIONS

We start our analysis with the Maxwell equations in their
differential form. The only assumptions we introduce at
this point is that the fields are monochromatic and periodic
in time, depending on exp(iωt), and that the mesoscopic
material properties can be expressed by effective dielectric
permittivity and effective magnetic permeability. In the case
of metamaterials this assumption is valid, since the structuring
of metal and dielectrics to obtain negative refraction must be
at the subwavelength level so that the effective representation
holds at dimensions comparable to the wavelength. The
geometry of the problem is illustrated in Fig. 1.
The electric field strength vector is directed along the z axis,
while the magnetic field vector is in the xy plane as indicated
in Fig. 1, and we can write

H = H (x,y) cos θ ŷ − H (x,y) sin θ x̂, E = −E(x,y) ẑ. (1)

Thus the incident wave propagates along the direction of
the k1I vector, as shown in Fig. 1. The material properties
vary along the x axis only, and we have ε = ε(ω,x) and
μ = μ(ω,x). By keeping this in mind and substituting (1)
into the curl equations,

∇×E = −iωμH, ∇×H = iωε E, (2)

we obtain three scalar equations for the field intensities:

∂E

∂y
= −iωμH sin θ,

∂E

∂x
= −iωμH cos θ, (3)

∂H

∂x
cos θ + ∂H

∂y
sin θ = −iωεE. (4)

Substituting the equations (3) into (4), we obtain the following
equation for the electric field intensity:

∂2E

∂2x
+ ∂2E

∂2y
− 1

μ

∂μ

∂x

∂E

∂x
+ ωμεE = 0. (5)

It is generally sufficient to solve Eq. (5) for the electric field
intensity, since the magnetic field intensity can then easily
be obtained from any of the two equations (3). It should be
noted that in the present analysis, we have assumed transverse
electric polarization for the oblique wave incidence. However,
the case of transverse magnetic polarization can be treated in
a fully analogous way, in which case we solve an equation
analogous to (5) for the magnetic field intensity and then the
electric field intensity can be easily obtained from either of the
equations analogous to (3).

III. SOLUTIONS OF THE FIELD EQUATIONS

The temporal dispersions of the two materials and the
gradual transition between them is described by means of
the two functions ε = ε(ω,x) and μ = μ(ω,x). The spatial
dependence of these two functions can be studied using
various spatial functions, but the most suitable one is the
hyperbolic-tangent function, as it provides correct asymptotic
values in both materials and allows a detailed study of the
limit of the abrupt transition as well. Thus, by means of such a
model, it is possible to study the effects of the gradual transition
between the two media. We therefore choose the following
general functions:

μ(ω,x) = μ0μr (ω,x), ε(ω,x) = ε0εr (ω,x), (6)

with

μr (ω,x) = 1

2
(μ1 + μ2) − 1

2
(μ1 − μ2) tanh

x

x0
, (7)

εr (ω,x) = 1

2
(ε1 + ε2) − 1

2
(ε1 − ε2) tanh

x

x0
, (8)

where x0 is a length parameter that determines the slope of
transition, or the thickness of the graded interface, between the
two materials. The smaller x0 the more abrupt is the transition,
as shown in Fig. 2. Using now the above assumption that the
structuring of metal dielectrics to obtain negative refraction
must be at the subwavelength level, substituting Eqs. (6)–(8)
into Eq. (5) and separating the variables, we obtain a complete
analytic solution of Eq. (5) as follows:

E(x,y) = E0
�(p + q + s)�(p + q − s + 1)

�(2p + 1)�(2q)

× (1 + e2x/x0 )−i
k2x0

2 cos θt (1 + e−2x/x0 )−i
k1x0

2 cos θ

×F

(
p + q + s,p + q − s + 1,2p + 1;

1

1 + e2x/x0

)

× e−ik2y sin θt , (9)

where � is the Gamma function, F (a,b,c; z) is the ordinary
Gaussian hypergeometric function 2F1(a,b,c; z) represented
by the hypergeometric series, and E0 is the amplitude of the
incident electric field, far to the right from the graded interface
at x = 0. We also have the incident angle θ and the transmitted
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FIG. 2. Examples of transition profiles for different values of x0.

angle θt with the minus signs, which are related to each other
by Snell’s law of refraction

k1 sin θ = k2 sin θt ⇒ n1 sin θ = |n2| sin θt , (10)

with k1 and k2 being the magnitudes of the wave vectors in the
two materials far away from the transition plane (|x| � x0).
It should be noted here that we have not a priori assumed
the Snell’s law of refraction (10) in deriving our solution.
Instead, Snell’s law follows naturally from the geometry in
Fig. 1 and the asymptotic forms of the solution (9). If losses
in the two materials are neglected, then both k1 and k2 are
real and positive quantities related to n1 and n2, the refraction
indices of the two materials, respectively. Here we note that we
have compensated for the negative sign of the refraction index
n2 in the negative-index part by a suitable convention for the
transmission angle (θt → −θt ), as can be seen in Fig. 1. In the
case that losses are included, which is particularly important
for NIM where they cannot be neglected, then k1 and k2

are complex numbers defined using the same convention. In
Eq. (9), we also introduced the following parameters:

p = −i
k2x0

2
cos θt , q = −i

k1x0

2
cos θ,

s =
√

r2 + 1

4
+ 1

2
, (11)

with

r2 = −ω2x2
0

4c2
(μ1 − μ2)(ε1 − ε2). (12)

The analytical result (9) is quite general and valid in the entire
space. The analysis of the asymptotic behavior of (9) for x →
+∞ (negative-index part) and x → −∞ (positive-index part)
gives the following results for the Fresnel transmission and
reflection coefficients for the structure described in Fig. 1:

τ = �(p + q + s)�(p + q − s + 1)

�(2p + 1)�(2q)
,

ρ = �(p + q + s)�(p + q − s + 1)�(−2q)

�(p − q − s + 1)�(p − q + s)�(2q)
(13)

It is now of interest to study these coefficients in the limit
of abrupt transition (x0 → 0). In this limit we see from (12)
that r2 is second order in the small parameter x0 and that (to
the first order in x0) it can be neglected altogether. Thus we
have s → 1, p � 1, q � 1. Using now the property of the
� functions �(z + 1) = z�(z) and the asymptotic expansion
of 1/�(z) given in Ref. [33], i.e., with

1

�(z)
=

∞∑
0

ckz
k, c1 = 1 ⇒ 1

�(z)
→ z, z � 1, (14)

as well as the definitions (11), we obtain the well-known results
for the Fresnel transmission and reflection coefficients in the
special case of abrupt transition,

τ = 2η1 cos θ

η1 cos θ + η2 cos θt

, ρ = η1 cos θ − η2 cos θt

η1 cos θ + η2 cos θt

, (15)

where η1 and η2 are the wave impedances of the positive-
and negative-index media, respectively. Thus we see that in
the special case of the abrupt transition, our results readily
reproduce the well-known results (15) without reference to
any boundary conditions between the two materials. However,
the more general results (13) can also be used for graded
transitions with different values of the length parameter x0,
being a measure of the size of the graded transition region
between the two materials.

IV. NUMERICAL RESULTS

The general result (9) can be used to describe the prop-
agation over the interface between positive- and negative-
refractive-index media for electromagnetic waves of any
frequency, as long as the mesoscopic properties of both
materials can be expressed by their respective effective
dielectric permittivities and effective magnetic permeabilities.
We illustrate the present results using a case of wave prop-
agation in the microwave range. In Figs. 3–5, we assume a
lossy transmission with f = 600 MHz (λ = 0.5 m), E0 = 1,
ε1 = 1 − 0.02i, μ1 = 1 − 0.01i, ε2 = −2.5 − 0.125i, μ2 =
−1.6 − 0.04i, and x0 = 0.25 m. Note here that the chosen
thickness x0 of the graded transition region is not small,
but rather is the size of half a wavelength. The electric
field intensities E(x,y) for four different incident angles
(θ = π/4, θ = π/6, θ = π/12, and θ = 0) are shown in
Fig. 3. From Fig. 3 we readily see that the transmitted waves
in the metamaterial composite (LHM) to the right of the
material boundary indeed propagate with the reverse direction
of the wave vector and with correct transmission angles
that are expected for metamaterial composites. The scales
(−2 � x,y � +2) in Figs. 3(a) and 3(b) are different from
the scales (−1 � x,y � + 1) in Figs. 3(c) and 3(d), in order to
better illustrate the different transmission angles. This choice
of scales does not imply any physical difference between the
two sets of graphical results.

In the present approach, the well-known property of
wave-vector reversal in metamaterials follows naturally from
the analytical solutions of Maxwell’s equations without any
a priori assumptions, except for negative values of the real
parts of the relative permittivity and permeability functions
as input parameters. Thus the present theory, based solely on
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[V/m] given by (9) for incident angles (a) θ = π/4, (b) θ = π/6,
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analytical solutions of the regular Maxwell equations, confirms
the well-known behavior of metamaterial composites.

In order to make the different properties of the results
presented in Fig. 3 more apparent, in Fig. 4 we show the
cross sections of the same functions in the plane y = 0. From
the results in Fig. 4, we see that for the given set of parameters
and increased incident angles, the amplitude of the transmitted
electromagnetic wave into the NIM decreases as expected. The
wave into the NIM to the right of the boundary between the two
materials is purely a transmitted wave, while the wave pattern

-2 -1 1 2

-1.0

-0.5

0.5

1.0

E(x, y = 0)

x (m)

(a)

-2 -1 1 2

-1.0

-0.5

0.5

1.0

E(x, y = 0)

(b)

-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

E(x, y = 0)

x (m)

x (m)

x (m)

(c)

-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

E(x, y = 0)

(d)

FIG. 4. The real part of the electric field intensity function
E(x,y = 0) [V/m] given by (9) for incident angles (a) θ = π/4,
(b) θ = π/6, (c) θ = π/12, and (d) θ = 0.

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

-1

1

2

E(x, y = 0)

x (m)

(a)

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

-1.0

-0.5

0.5

E(x, y = 0)
x (m)

(b)

0.5 1.0 1.5 2.0

0.6

0.4

0.2

0.2

0.4

E(x, y = 0)

x (m)

(c)

FIG. 5. Incident (a), reflected (b), and transmitted (c) waves for a
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in the positive-index media to the left of the boundary is a
superposition of the incident wave and reflected wave. Using
the transformation properties of the hypergeometric functions,
it is possible to visualize the incident reflected and transmitted
waves separately, as shown for θ = π/12 in Fig. 5. From the
wave patterns in Fig. 5, we see that far from the boundary, the
incident and reflected waves behave as simple sinusoidal plane
waves, as expected. Thus, using the asymptotic properties
of the hypergeometric functions, we obtain the well-known
asymptotic solutions

E(x,y) → E0{exp[−ik1(x cos θ + y sin θ )]

+Rexp[−ik1(−x cos θ + y sin θ )]},
x → −∞ (16)

E(x,y) → E0T {exp[−ik2(−x cos θt + y sin θt )]},
x → +∞ (17)

where we note the reverse direction of the wave vector in
the NIM, which arises naturally as a result of the analytical
solution of the Maxwell equations (9). In the vicinity of the
graded boundary, the wave patterns become distorted and there
is a less clear distinction between the incident and reflected
waves. However, the superposition of the two waves is well
behaved, as can be seen from Fig. 4. Thus, the deviations
in the incident and reflected waves are approximately equal
and opposite to each other such that they cancel each other,
as can be seen in Figs. 5(a) and 5(b) near the boundary
(x = 0).

In the above graphs, it is easy to compare the results
obtained for graded interfaces to the regular results for sharp
interfaces. In fact, for sharp interfaces the sinusoidal shape
of the waves, as described by the asymptotic results (16)
and (17), is observed throughout the structure, including the
transition region around the boundary plane (x = 0). Contrary
to the conventional wave shapes for graded interfaces, we
observe transition phenomena about the boundary plane (x =
0) and the wave shapes deviate from the sinusoidal shapes
obtained using the sharp interface analysis. These deviations
are quite distinctly visible in Fig. 4, in particular in Figs. 4(a)
and 4(b). These deviations constitute the basis for a number of
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new physical phenomena, as described in Refs. [6–22]. An
important feature of graded interfaces is that wave shapes
can be artificially changed to fit the needs of a particular
application by varying the grading properties of the interface.
It is also important to note that the formulas (13) indeed include
(15) as important special cases, but that (13) are much more
general and allow for analytical calculation of the transmission
parameters even when the transition is very smoothly graded.

Although the analysis in the present paper focuses on the
case of double negative-refractive-index media, the analytical
methods developed here can readily be generalized to both
single negative cases and even to graded transitions between
two ordinary PIM media. Such applications are, however, less
common in the literature. Furthermore, as it is pointed out
in the Introduction, although the present paper is concerned
with propagating waves, the general solution (9) can readily
be adapted to include the evanescent waves by replacing the
appropriate real parameters by their imaginary counterparts.
Thus, evanescent waves can also be included in the present
method. However, it requires a careful algebraic redesign of
the solution, which is not the subject of the present study.

V. CONCLUSIONS

We have investigated electromagnetic wave propagation
across a graded interface between positive-refractive-index
media and negative-refractive-index media, in a general case
where the material parameters of the two media are indepen-
dent from each other, thus taking reflections into account. We
derived and analyzed a general analytical result for the electric
field intensity and the transmission and reflection coefficients,
for the case of oblique incidence with transverse electric
polarization. The transverse magnetic case can be solved as
well using an analogous approach. Thereby we have shown
that all the fundamental properties of metamaterial composites
readily follow from the analytical solution for the electric field
intensity in the entire space, without reference to any boundary
conditions or a priori assumptions. We believe that the
results presented in the present paper constitute an important
step towards a new paradigm in our fundamental theoretical
description of the electromagnetic wave propagation over
interfaces between positive- and negative-refractive-index
media, applicable to a majority of practical situations that
arise in the field.
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(Bristol, UK) 14, 065102 (2012).
[32] M. Dalarsson, M. Norgren, T. Asenov, N. Dončov, and Z. Jakšić,
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