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Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media

Da Zhang,1 Changbiao Li,1 Zhaoyang Zhang,1 Yiqi Zhang,1 Yanpeng Zhang,1,* and Min Xiao2,3,†
1Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory

of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049, China
2Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA

3National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
(Received 27 November 2016; published 18 October 2017)

Narrow-band intensity-difference squeezing (IDS) beams have important applications in quantum metrology
and gravitational wave detection. The best way to generate narrow-band IDS is to employ a parametrically
amplified (PA) four-wave mixing (FWM) process in high-gain atomic media. Such IDS can be further enhanced
by cascading multiple PA FWM processes in separate atomic media. The complicated experimental setup, added
losses, and mechanical stability can limit the wide use of such a scheme in practical applications. Here we show
that by modulating the internal energy level(s) with an additional laser (or lasers), the degree of original IDS can
be substantially increased. With an initial IDS of (−3.6 ± 0.4) dB using a PA nondegenerate FWM process in
a three-level �-type configuration, the degree of IDS can be enhanced to (−7.0 ± 0.4) dB or (−9.0 ± 0.4) dB
when we use one (two) laser beam (beams) to modulate the involved ground (excited) state (states). Our results
show a low-loss, robust, and efficient way to produce a high degree of IDS and facilitate its potential applications.
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I. INTRODUCTION

Traditionally, quantum correlated bright laser beams are
generated through parametrically amplified (PA) optical down-
conversion processes in nonlinear optical crystals [1–4]. The
produced entangled beams typically have broad spectral width
and therefore short coherence time due to the broad phase-
matching width in nonlinear crystals [5–7]. Recently, narrow-
band bright entangled light beams have been produced through
a PA four-wave mixing (FWM) process in high-gain atomic
media [8]. The intensity-difference squeezing (IDS) between
the two beams can reach −8.0 dB without compensating for
any system noise or correcting for transmission or detection
efficiency [9]. Subsequently, as much as −9.2 dB IDS has
been reported by using a pair of high-quantum-efficiency pho-
todiodes [10]. Several interesting applications of using such
narrow-band entangled beams, such as in entangled images
[11,12], FWM slow light [13], delay of Einstein-Podolsky-
Rosen entanglement [14,15], and quantum metrology [16–21],
have all been experimentally demonstrated. In order to further
increase the degree of IDS, the technique of cascading more
stages of the PA FWM process has been employed. In one
experiment, a second PA FWM process in a separate atomic
vapor cell was used to enhance the IDS from (−5.5 ± 0.1)
dB or (−4.5 ± 0.1) dB to (−7.0 ± 0.1) dB [22]. Similarly,
enhanced continuous-variable squeezed states have also been
realized by cascading two PA down-conversion processes
using two separate nonlinear crystals [23]. An ultimate
enhancement limit reachable by using more stages of such
cascade setups can be theoretically derived [24]. Although the
cascading technique is conceptually simple to consider, the
added complications in the experimental setup and the required
high-power pump laser with the increase of number of stages,
as well as maintaining the phase coherence, between different
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stages will severely limit the broad applications in using such
a generated high degree of IDS.

Here we implement a totally different approach to enhance
the IDS produced from the two correlated light beams
generated from the PA FWM process in a three-level �-type
atomic system. Since the degree of IDS is mainly determined
by the high optical gain realizable in the PA FWM process [8],
we set to find an efficient way to enhance the optical gain in the
same atomic system: in our experiments, the dressing fields,
to significantly improve the conversion efficiency in four-
wave mixing as a major benefit of constructive interference
between different transition probability amplitudes [25], which
produces efficient higher-order multiwave mixing processes
[26–28]. This scheme of enhancing parametric gain, and
therefore the generated IDS, in the system by modulating
the internal states of a multilevel atomic system has certain
obvious advantages over using separate cascading stages in
enhancing IDS. The first is the lower optical path loss. The
second is a higher squeezing limit with fewer vacuum losses
because of a one-stage rubidium cell. The third is that the
dressing field can improve the noise figure of the system and
make it close to the quantum limit. At the same time, the degree
of IDS can be not only greatly enhanced, but also suppressed by
simply varying the frequency detunings of the additional driv-
ing fields. Compared with the case of a single cell, our model
has a lower-pump-power limit and higher-gain saturation limit
because of the degenerate multiwave-mixing process. These
merits will greatly facilitate the potential applications of such
IDS light sources in entanglement imaging [11,12], quantum
metrology [16–21], quantum communication [29–32], and
quantum information processing [29,32].

II. THEORETICAL MODEL

The five relevant energy levels are 5S1/2, F=2(|0〉); 5S1/2,

F = 3(|1〉); 5P3/2(|2〉); 5D5/2(|3〉); and 5P1/2(|4〉) in 85Rb, as
shown in Fig. 1(b). Levels |0〉 ↔ |2〉 ↔ |1〉 form the basic
�-type three-level system. A strong pump beam E1 (with
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FIG. 1. (a) Experimental setup: PBS, polarizing beam splitter; SA, spectrum analyzer. (b) Energy-level diagram of the (�-type (|0〉 ↔
|1〉 ↔ |2〉) rubidium atomic system with an E3 ladder-type dressing (between levels |2〉 and |3〉) and an E4 V-type dressing (between levels
|0〉 and |4〉) simultaneously. (c) Phase-matching conditions for the spontaneous parametric (c1) spontaneous FWM, (c2) spontaneous SWM1,
and (c) spontaneous EWM processes.

frequency ω1, k1, Rabi frequency G1, and vertical polarization)
is tuned to couple the D2 line (780-nm) transition and a
weak beam E2 (ω2, k2, Rabi frequency G2, and horizontal
polarization) works as a probe field. The detuning �i = �i–ωi

is defined as the difference between the resonant transition
frequency �i and the laser frequency ωi of Ei . With the
frequency of E1 tuned far away from the resonances, this sys-
tem forms the standard PA nondegenerate FWM configuration
to satisfy the phase-matching condition kF

S + kF
aS = 2k1 [as

shown in Fig. 1(c1)] and produces narrow-band IDS between
the parametrically amplified probe (anti-Stokes) and conjugate
(Stokes) beams. The generated IDS mainly depends on the
gain factor TF in the anti-Stokes channel. This nonlinear gain
factor TF can be modified by multiple parameters in multilevel
coherent atomic systems.

First, one can consider a situation such that there exists
n-dressing fields in the system of a three-level �-type
configuration. The interaction Hamiltonian of the n-dressing
PA FWM process can be expressed as (all pump and dressing
fields are treated as classical fields)

H = ih̄κnd â†b̂† + H.c., (1)

where κnd=| − iμ0�
2
S,aSχ

nd(3)E1
2/2kS,aS | is the pumping

parameter of the n-dressing PA FWM, which depends on
the nonlinear susceptibility tensor χnd(3) and the pump-field
amplitude, with �S,aS the central frequency of the generated
Stokes or anti-Stokes signal. In the dressed-state pictures, the
third-order nonlinear susceptibility tensor can be expressed as
χnd(3) = |Nμ20μ21ρ

nd(3)
(S,aS)/ε0h̄E2

1GS,aS |, where ρ
nd(3)
(S,aS) are the

corresponding n-dressing density matrix elements, which can
be obtained via perturbation chains ρ

(0)
11

ω1−→ ρ
(1)
21

ωaS−→ ρ
(2)
01

ω1−→
ρ

(3)
21(S) and ρ

(0)
00

ω1−→ ρ
(1)
20

ωS−→ ρ
(2)
10

ω1−→ ρ
(3)
20(aS). Thus, ρ

nd(3)
(S) and

ρ
nd(3)
(aS) can be described as

ρ
nd(3)
(S) = −iG2

1GaS

/
d21Dd01d21, (2)

ρ
nd(3)
(aS) = −iG2

1GS

/
d20Dd10Dd20, (3)

where d10D = �10 + i�1 − i�s , d20D=�20+i�1+G2
3/{�30+

i(�1 + �3) + G2
4/[�40+i(�1+�3+�4)+ · · · + G2

n+3/dn0]},
d01 = �01 + i�′

11 − i�aS , dn1 = �n1+i(�′
1+�3+�4 · · · +

�n+3), dn0 = �n0 + i(�1 + �3 + �4 · · · + �n+3), d21=�21+
i�1, and d20 = �20 + i(�1 − �S + �1).

The boson-creation (-annihilation) operator satisfies the
Heisenberg operator equation of motion in the dipole approx-
imation

dâ

dz
= 1

ih̄
[â,Ĥ ] = κnd b̂†, (4)

db̂†

dz
= 1

ih̄
[b̂†,Ĥ ] = κnd â. (5)

After some algebra, we can get the anti-Stokes and Stokes
fields at the output site of the medium:

âout = cosh(κndL)âin + sinh(κndL)b̂†in, (6)

b̂
†
out = cosh(κndL)b̂†in + sinh(κndL)âin. (7)

Moreover, the probe field and vacuum field (i.e., |α,0〉)
are injected into the anti-Stokes and Stokes ports of a
spontaneous parametric FWM process, respectively. Then
the whole process can be viewed as a PA FWM process.
The photon numbers of the output signals at the Stokes and
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anti-Stokes ports can be expressed as

〈Na〉 = 〈â†
outâout〉 = cosh2(κndL)〈â†

inâin〉 + sinh2(κndL)

≈ T nd
F 〈â†

inâin〉 = T nd
F α2, (8)

〈Nb〉 = 〈b̂†outb̂out〉 = sinh2(κndL)〈â†
inâin〉 + cosh2(κndL)

≈ (
T nd

F − 1
)〈â†

inâin〉 = (
T nd

F − 1
)
α2. (9)

Here we define the n-dressing nonlinear gain coefficient
T nd

F = cosh2(κndL). The IDS in n-dressing PA FWM is

Sqnd
F = −10 log

(
2T nd

F − 1
)
. (10)

Both the T nd
F and Sqnd

F present in this system increase as
the number of dressing beams increases. Similarly, the noise
figure of the n-dressed configuration has the form

NFnd = η

(
2 − 2

T nd
F

+ 1

ηT nd
F

)
. (11)

This means that the dressing field can improve the noise
figure under the same η and make it close to the quantum
limit.

However, there exist inevitable losses in the system; such
losses with vacuum field coupling will make a limit value of
the squeezing [24]. If we consider the loss of the system, the
vacuum coupling terms (loss terms) mĉ1 and mĉ

†
2 occur in

Eqs. (4) and (5), respectively. The IDS of n-dressing PA FWM
can be modified as Sqnd

F = log10[(1+m2)/(2T nd
F − 1)] in our

system. With the increase of separate cascading stages, the loss
term in Refs. [22,24] is liable to rapid accumulation, leading
to the limit of squeezing. In the cascade system, the squeezing
limit depends on the added losses and gain saturation of the
system [22]. However, it also mainly depends on the gain
saturation in our system with the one-stage rubidium cell,
which means we have a higher-limit value.

We conjecture that there is a relation between n-dressing PA
FWM and the high-order wave-mixing nonlinear process. One
may find that n-dressed PA FWM can be converted into a super-
position of a series of special multiwave mixing (MWM) under
approximate conditions [33,34]. Correspondingly, ρ

nd(3)
(S,aS) can

be broken down into a superposition of FWM and special
(n − 1)-dressing six-wave mixing (SWM):

ρ
nd(3)
(S) =ρ

′(3)
(S) + (−G2

3

/
d21d31

)
ρ

′(3)
(S) =ρ

′(3)
(S) + ρ

(n−1)d(5)
(S) , (12)

ρ
nd(3)
(aS) =ρ

′(3)
(aS) + (−G2

3

/
d20d30

)
ρ

′(3)
(aS)=ρ

′(3)
(aS) + ρ

(n−1)d(5)
(aS) , (13)

where d31 = G2
4/[�41 + i(�′

1 + �3 + �4) · · · + G2
n+3/dn1],

d21 = �31 + i(�′
1 + �3), d20 = �30 + i(�1 + �3), and d30 =

G2
4/[�40 + i(�1 + �3 + �4) · · · + G2

n+3/dn0].
For the ladder-type dressing, E3 couples the transition

|2〉 ↔ |3〉 and creates the dressed states |G3±〉. If we set |2〉 as
the frequency reference point, the Hamiltonian can be written
as

H = h̄

[
0 G3

G∗
3 −�3

]
, (14)

from the equation H |G3±〉 = λ±|G3±〉, and we can obtain
λ± = [−�3 ±

√
�2

3 + 4|G3|2]/2. According to the dressed-
state picture, the enhancement and suppression conditions
are �1+�3 ± √

�2
3 + 4|G3|2/2 = 0 and �1 + �3 = 0, re-

spectively. Here the n-dressing nonlinear gain coefficient is
related to the matrix element ρ

nd(3)
(S,aS) as T nd

F = cosh2(κndL),

where κnd ∝ |ρ ′(3)
(S,aS) + ρ

(n−1)d(5)
(S,aS) |. When the dressed field E3

detuning meets the enhancement condition, one can obtain
the maximum nonlinear gain coefficient T nd

F = cosh2(κmL),
where κm ∝ |ρ ′(3)

(S,aS)| + |ρ(n−1)d(5)
(S,aS) | [constructive interference

between FWM and (n − 1)-dressing SWM]. The IDS in
n-dressing FWM can be divided into two parts: FWM
and (n − 1)-dressing SWM. The relationship can be writ-
ten as Sqnd

F = SqF + Sq
(n−1)d
S − log10 2 and Sqnd

F = SqF −
Sq

(n−1)d
S + log10 2, which correspond to dressed enhancement

and suppression conditions, respectively.
If we successively extend this limit to all dressing field,

Eqs. (2) and (3) can be rewritten as

ρ
nd(3)
(S) =ρ

′(3)
(S) + ρ

′(5)
(S) + · · · + ρ

′(2n+3)
(S) , (15)

ρ
nd(3)
(aS) = ρ

′(3)
(aS) + ρ

′(5)
(aS) + · · · + ρ

′(2n+3)
(aS) . (16)

The n-dressing FWM process corresponds to the sum of
n + 1 nonlinear processes, i.e., FWM + SWM + EWM +
· · · +(2n + 4) wave mixing (where EWM denotes eight-wave
mixing). Here ρ

′(2n+3)
(S) and ρ

′(2n+3)
(aS) are the (2n + 4)-wave

mixing signal processes, which can be deduced via the pert-

urbation chains ρ
(0)
11

ω1−→ ρ
(1)
21

ω3−→ ρ
(2)
31 · · · −ω3−−→ ρ

(2n+1)
21

(ωaS )∗−−−→
ρ

(2n+2)
01

ω1−→ ρ
′(2n+3)
21(S) and ρ

(0)
00

ω1−→ ρ
(1)
20

ω3−→ ρ
(2)
30 · · · −ω3−−→ ρ

(2n+1)
20

(ωs )∗−−→ ρ
(2n+2)
10

ω1−→ ρ
′(2n+3)
20(aS) , respectively, where ρ

′(2n+3)
(s) =

(−1)n[(G2
3/d21d31)(G′2

4 /d31d41) · · · (G2
n+3/d(n+2)1d(n+3)1)]ρ ′(3)

(s)

and ρ
′(2n+3)
(aS) = (−1)n[(G2

3/d20d30)(G′2
4 /d30d40) · · · (G2

n+3/

d(n+2)0d(n+3)0)]ρ ′(3)
(aS).

The interaction Hamiltonian (1) of the n-dressing PA FWM
process can be rewritten as

H = ih̄κ ′
3â

†b̂† + · · · + ih̄κ ′
2n+3â

†b̂† + H.c. (17)

Accordingly, the boson-creation and -annihilation operators
that satisfy the Heisenberg operator equation of motion in the
dipole approximation become, respectively,

dâ

dz
= 1

ih̄
[â,Ĥ ] = (κ ′

3 + κ ′
5 + · · · + κ ′

2n+3)b̂†, (18)

db̂†

dz
= 1

ih̄
[b̂†,Ĥ ] = (κ ′

3 + κ ′
5 + · · · + κ ′

2n+3)â. (19)

After similar mathematical operations with Eqs. (8) and (9),
the IDS relationships between n-dressing FWM and coexisting
n + 1 MWMs can be written as

Sqnd
F = SqF + SqS + Sq

(n−2)d
E − 2 log10 2 = · · ·

= SqF + · · · + Sq(2n+4) − n log10 2, (20)

Sqnd
F = SqF − SqS − Sq

(n−2)d
E +2 log10 2 = · · ·

= SqF − · · · − Sq(2n+4) + n log10 2, (21)
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which correspond to dressed enhancement (constructive inter-
ference) and suppression conditions (destructive interference),
respectively.

Next, let us turn our attention to energy-level modula-
tion (one-beam dressing) with an additional laser beam E4

(ω4, k4,G4, and �4) in the V-type dressing scheme [Fig. 1(b)].
It behooves us to think of the population transfer effect when
the dressed field E4 acts on the ground state. We assume
that T p results from the initial population probability in each
energy level expressed as

T p ∝ ρ
(2)
22 + ρ

(2)
44 + ρ

(4)
22 + ρ

(4)
44 , (22)

where ρ
(2)
22 = − G2

1/d20�22, ρ
(2)
44 = − G2

4/d40�44, ρ
(4)
22 =G2

1G
2
4/

d40�00d20�22, d40=�40 + i�4, and ρ
(4)
44 =G2

1G
2
4/d20�00d40�44

(deduced via perturbation chains ρ
(0)
00

ω1−→ ρ
(1)
20

(ω1)∗−−→ ρ
(2)
22 ,

ρ
(0)
00

ω4−→ ρ
(1)
40

(ω4)∗−−→ ρ
(2)
44 , ρ

(0)
00

ω4−→ ρ
(1)
40

(ω4)∗−−→ ρ
(2)
00

ω1−→ ρ
(3)
20

(ω1)∗−−→
ρ

(4)
22 , and ρ

(0)
00

ω1−→ ρ
(1)
20

(ω1)∗−−→ ρ
(2)
00

ω4−→ ρ
(3)
40

(ω4)∗−−→ ρ
(4)
44 , respec-

tively). So the E4-dressed nonlinear gain T 1d
F2 will be modified

by the population gain T p and the total nonlinear gain be-
comes T 1d

F ′ = T p + T 1d
F2 . Therefore, we modify the squeezing

formula under the condition of dressed enhancement and
suppression as Sq1d

F ′ = SqF ′ + SqS2 − log10 2 and Sq1d
F ′ =

SqF ′ − SqS2+ log10 2, respectively.
Note that we have used different orders of MWM processes

to describe the modified (dressed) PA FWM processes, which
give a clear physical picture for the complicated situations and
is valid under certain approximations of the dressing fields
[33,34]. With the clear decompositions of the dressed-state
formulism for the multibeam-dressed PA FWM, we can better
identify the contributions of the modified IDS from different
wave-mixing processes. Such methods show a robust and
efficient way to produce a high degree of IDS.

III. EXPERIMENT RESULTS

As mentioned above, there are two ways to dress the �-type
three-level (|0〉 ↔ |1〉 ↔ |2〉) system, one by applying E3

between levels |2〉 and |1〉 (i.e., ladder-dressing configuration)
and another by applying E4 between levels |0〉 and |4〉
(V-dressing configuration), as shown in Fig. 1(b), which

modify the original PA FWM process differently and there-
fore provide different enhancement factors for IDS. In the
following, we consider their effects separately. We use light
of 500 mW from a cw Ti:sapphire laser as the 780-nm
pump beam (E1) and another light up to 0.2 mW from an
external cavity diode laser as the 780-nm probe beam (E2).
They couple with the �-type atomic system in a naturally
abundant rubidium vapor cell by a polarizing beam splitter.
The vapor cell is wrapped with μ-metal sheets to shield
the stray magnetic field from the environment and heated
to 125 °C to provide an atomic density of 3×1013 cm−3.
The beam E2 propagates in the same direction as E1 with
a small angle of 0.26°. These two laser beams form the
standard double-� configuration and produce the PA FWM
IDS. When E4 (795 nm, 4 mW) is added to E1 (in the same
direction) and E3 (776 nm, 8 mW) counterpropagates with E1,
they establish two electromagnetically induced transparency
windows in the system and significantly modify (dressing)
the original PA FWM process [28,35]. The dressing fields
of 776 and 795 nm are provided by two Toptica lasers.
Their frequencies are locked but phases are unlocked. The
spatial alignments of the beams are shown in Fig. 1(a).
The output probe and conjugate beams are detected by two
balanced photodetectors. The difference of the two detected
signals is sent to a radio-frequency spectrum analyzer with a
resolution bandwidth of 300 kHz and a video bandwidth of
10 kHz. All intensity difference measurements presented in
this paper are taken at an analysis frequency of 1 MHz.

Figure 2 shows PA FWM signals in the probe and
corresponding conjugate channels in the three-level �-
type 85Rb atomic system, respectively, with and without
the E3 beam. With E3 off and the pump field detuning
�1 detuned to ∼1.12 GHz, we scan the probe field E2

over 8 GHz across the D2 line and observe a number
of features in transmission and its conjugate channels, as
shown in Figs. 2(a1) and 2(a3), respectively. When E3

turns on, as shown in Fig. (c2), the one-beam dressing
FWM [coexisting FWM and SWM1, with phase-matching
condition kS1

S + kS1
aS = 2k1 + k3 − k3, Fig. 1(c2)] [28] signal

in Fig. 2(a2) gets stronger than that in Fig. 2(a1), which
indicates an enhanced FWM process. The E3-dressed PA
FWM signal is enhanced due to the constructive interference

FIG. 2. (a) Measured probe transmission (EaS) and corresponding conjugate (ES) signal versus probe frequency detuning with (a1) and (a3)
E3 off and (a2) and (a4) E3 on, for �1 = 1.12 GHz and �3 = –1 GHz. (b) Relative intensity noise levels versus spectrum analyzer frequency
for (b1) SQL, (b2) FWM, and (b3) dressed FWM (FWM plus SWM1) when E3 is applied, and electronic noise. (c) Relative intensity noise
power at different total optical power for curve A, SNL (diamonds); curve B, FWM (circles); and curve C, single-dressing FWM (triangles).
All three of these noise power curves fit to straight lines. The electronic noise floor and background noise are subtracted from all of the traces
and data points.
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FIG. 3. Same as Fig. 2 but with (a1) and (a3) E4 off and (a2) and (a4) E4 on, for �1 = 1.12 GHz and �4 = –1 GHz. (b) Relative intensity
noise levels versus spectrum analyzer frequency for (b1) SQL, (b2) FWM, and (b3) dressed FWM (FWM plus SWM2) when field E4 is
applied. (c) and (d) Same as (a) and (b) but for (c) �1 = 1.15 GHz and (d) �4 = 1.15 GHz, respectively. (e) Relative intensity noise power at
different total optical power for SNL (diamonds), FWM (triangles), and enhanced E4-dressing FWM (circles). (f) Same as (e) except that it is
suppressed E4-dressing FWM. All these noise power curves fit to straight lines. The electronic noise floor and background noise are subtracted
from all of the traces and data points.

between FWM and SWM1, satisfying the dressed enhance-
ment condition �1+�3 ± √

�2
3 + 4|G3|2/2 = 0. Similar to

the probe channel, the corresponding conjugate signal is also
enhanced due to the existing PA SWM1 process, as shown
in Fig. 2(a4). So the dressed gain coefficient is enhanced
compared to the gain coefficient without the E3 beam
[Fig. 2(a3)].

Subsequently, the noise spectra of the relative intensities
between the probe and conjugate channels are measured. First,
E1 passes through an acousto-optic modulator of 1.5 GHz
twice to have a frequency difference of 3 GHz. The beam
is then injected into the probe channel and the field E2 is
off. To calibrate the standard quantum limit (SQL) for the
total optical power arriving at the photodetectors, a coherent
beam with the same power is split by a 50/50 beam splitter,
directing the resulting beams into a balanced and amplified
photodetector with a transimpedance gain of 105 V/A and
81% quantum efficiency. The measured IDS of the PA FWM
signal [Fig. 2(b2)] is (−3.6 ± 0.4) dB below the normalized
SQL. With the dressing field E3 on, the measured IDS of the
E3-dressed FWM signal [Fig. 2(b3)] is about (−6.1 ± 0.4)
dB below the SQL, which indicates that the degree of IDS
is significantly increased by the enhanced nonlinear gain
coefficient due to the E3 dressing effect, as shown in Fig. 2(b3).
Furthermore, one can infer IDS of the pure PA SWM1 to be
(−2.8 ± 0.4) dB.

To better show the squeezing enhancement as predicted by
the theory, we measure the relative intensity noise power for
the FWM [curve B in Fig. 2(c)] and single-dressing FWM
(curve C) at 1 MHz as a function of the total optical power
impinging on the photodetectors. We also record the noise
powers of a coherent beam at different optical powers using

the shot-noise limit (SNL) measurement method described
above (curve A). We can see that the ratios of the slopes
for curves B and A and curves C and A are 0.437 ± 0.038
and 0.245 ± 0.038, respectively, which indicate the degrees
of squeezing of the FWM and single-dressed FWM to be
about (−3.6 ± 0.4) dB and (−6.1 ± 0.4) dB, respectively. The
optical path transmission is 80%, resulting in a total detection
efficiency of 64.8%; the uncertainty is estimated at 1 standard
deviation. The inferred degrees of squeezing for the FWM
and E3-dressed FWM beams are −8.5 and −11.0 dB after
correction for losses, respectively.

Next we consider the case with E4-dressed PA FWM
instead of E3. Figures 3(a2) and 3(c2) show that, com-
pared to the original PA FWM [Figs. 3(a1) and 3(c1)],
the E4-dressed FWM signal in the probe channel can
be either enhanced or suppressed. The field E4 dresses
the ground state |0〉 and creates the dressed states |G4±〉.
Thus, due to the fulfillments of dressed enhancement and
suppression conditions, i.e., �1 − �4 ± √

�2
4 + 4|G4|2/2 =

0 and �1 + �4 = 0, the PA FWM signal can be either
enhanced or suppressed [27,28]. The increase or decrease
of the probe and conjugate field intensities [Figs. 3(a2) and
3(c2)] is caused by constructive or destructive interference
between the generated FWM and SWM2 fields. Therefore,
the corresponding dressed gain T 1d

F2 becomes large or small
accordingly.

Figures 3(b) and 3(d) depict the measured IDS of E4-
dressed FWM, corresponding to enhanced [Fig. 3(b)] and
suppressed [Fig. 3(d)] conditions, respectively. The measured
degree of IDS for this E4-dressed FWM [Fig. 3(b3)] is
(−7.0 ± 0.4) dB, which is much larger than that of the original
PA FWM [(−3.6 ± 0.4) dB] [Fig. 3(b2)]. The relative intensity
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FIG. 4. (a) Measured probe transmission signal EaS versus the
probe detuning with (a1) E3 and E4 off, (a2) E3 on, (a3)E4 on,
and (a4) E3 and E4 both on, for �1 = 1.12 GHz, �3 = –0.9 GHz,
and �4 = 0.95 GHz. (b1)–(b4) Corresponding conjugate signal ES

of (a1)–(a4), respectively. (c) Relative intensity noise levels versus
spectrum analyzer frequency for (c1) SQL, (c2) FWM, (c3) E3-
dressed FWM, (c4) E4-dressed FWM, and (c5) E3- and E4-dressed
FWM (FWM plus SWM plus EWM). (d) Relative intensity noise
power at different total optical power for curve A, SNL (diamonds);
curve B, FWM (triangles); curve C, E3-dressing FWM (circles);
curve D, E4-dressing FWM (pentagons); and curve E, double-
dressing FWM (crosses). All five of these noise power curves fit
to straight lines. The electronic noise floor and background noise are
subtracted from all of the traces and data points.

noise powers for FWM (triangles) and E4-dressed FWM
(circular) are shown in Fig. 3(e) with the change in total optical
power. Since they are similar to Fig. 2(c), we will not repeat
here. Moreover, the inferred −3.7 dB IDS for the PA SWM2
process is larger than the −2.8 dB IDS for the PA SWM1
process with E3 dressing shown in Fig. 2(b3). The reason is
that E4 has the effects of both population transfer and dressing
[Eq. (22)] while E3 only has the dressing gain, resulting in a
much larger total nonlinear gain T 1d

F ′ for the E4-dressed case.
However, due to the existing population gain T p for the V-

type dressing scheme, the E4-dressed PA FWM cannot realize
a suppression of IDS below the original PA FWM value. In fact,
under the suppressed gain condition (destructive interference
between the FWM and SWM2 fields), the measured IDS of
the E4-dressed PA FWM is still as large as (−6.5 ± 0.4) dB
[Fig. 3(d3)]. Figure 3(f) shows the corresponding dependences
of SNL, FWM, and E4-dressed FWM signals on optical power.

Finally, let us consider the case with both E3 and E4

dressing fields on at the same time for the five-level system,
as shown in Fig. 1(b), with phase-matching conditions given
in Fig. 1(c3). Figures 4(a) and 4(b) show modified PA FWM
signals in the probe and conjugate channels, respectively, when
a different beam or beams are blocked. With the frequency
detunings of E3 and E4 set to be −0.9 and 0.95 GHz,
the intensity of dressed PA FWM is expected to increase
relative to Fig. 4(a1), as shown in Figs. 4(a2) and 4(a3),
respectively. Similar to Figs. 2(a2) and 3(a2), two newly
generated PA SWM signals, i.e., SWM1 and SWM2, increase

in Figs. 4(a2) and 4(a3). In particular, with E3 and E4 both on
simultaneously, a two-beam-dressed FWM signal in Fig. 4(a4)
is greatly enhanced, which is the mixture of one pure PA FWM,
two SWMs, and one EWM (with phase-matching condition
kE

S + kE
aS = 2k1 + k3 − k3 + k4 − k4) processes. At the same

time, the intensity of the two-beam-dressed conjugate signal
(ES) is also changed accordingly, as shown in Fig. 4(b). So
the two-beam dressing gain T 2d

F is significantly enhanced.
Figure 4(c) presents the measured degrees of IDS for

modified PA FWM signals in Figs. 4(a) and 4(b). First, with
all external dressing fields (E3 and E4) blocked, the IDS of
pure PA FWM is measured to be (−3.6 ± 0.4) dB [Fig. 4(c2)].
The curve (c1) gives the SQL. When either E3 or E4 is on, the
measured IDS of one-beam-dressed FWM is (5.0 ± 0.4) dB
[Fig. 4(c3)] or (6.1 ± 0.4) dB [Fig. 4(c4)], respectively. When
both dressing fields (E3 and E4) are on at the same time,
the measured IDS of two-beam-dressed FWM [Fig. 4(c5)]
reaches (−8.1 ± 0.4) dB. Their corresponding dependences
of the SNL, FWM, E3-dressed FWM, E4-dressed FWM, and
double-dressed FWM signals on optical power are shown in
Fig. 4(d). After fitting all five of these noise power curves to
straight lines, we find that the ratios of slopes between curves
B, C, D, E, and A are equal to 0.436 ± 0.038, 0.316 ± 0.038,
0.245 ± 0.038, and 0.126 ± 0.038, respectively, which shows
that the degrees of IDS of the twin beams are about (−3.6 ±
0.4) dB, (−5.0 ± 0.4) dB, (−6.1 ± 0.4) dB, and (−9.0 ± 0.4)
dB, respectively. This largely increased degree of IDS is caused
by the enhancement in two-beam-dressed PA FWM gain with
coexisting and constructive interference PA FWM, SWM, and
EWM processes in the system. The inferred degree of IDS
for the pure PA EWM is (−2.3 ± 0.4) dB. Moreover, the
total degree of IDS can be easily controlled and modulated
by adjusting the frequency detunings of the dressing fields.

IV. CONCLUSION

We have observed the enhanced IDS for single- and
double-beam-modulated PA FWM processes in the same hot
atomic system. Compared to the simple PA FWM case (with
−3.6 dB IDS), the degrees of IDS for E3- are E4-modulated
PA FWM processes are measured to be −6.1 and −7.0 dB,
respectively. The degree of IDS for the two-beam-dressed
PA FWM process gets up to −9.0 dB, which indicates that
the generated higher-order PA MWM processes contribute
to the total parametric gain and therefore the quantum noise
suppression (or enhanced IDS). Under different dressing fre-
quency detunings, the generated high-order nonlinear signals
can interfere either constructively, which enhances the total
parametric gain, or destructively, which reduces the total gain.
Our current experiment demonstrates a robust and efficient
way to produce high degree of IDS on an integrated platform,
which can find potential applications in quantum metrology
and gravitational wave detection [20].
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