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Numerous inequalities involving moments of integrated intensities and revealing nonclassicality and
entanglement in bipartite optical fields are derived using the majorization theory, nonnegative polynomials,
the matrix approach, and the Cauchy-Schwarz inequality. Different approaches for deriving these inequalities
are compared. Using the experimental photocount histogram generated by a weak noisy twin beam monitored
by a photon-number-resolving intensified CCD camera, the performance of the derived inequalities is compared.
A basic set of 10 inequalities suitable for monitoring entanglement of a twin beam is suggested. Inequalities
involving moments of photocounts (photon numbers) as well as some containing directly the elements of
photocount (photon-number) distributions are also discussed as a tool for revealing nonclassicality.
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I. INTRODUCTION

The notion of a nonclassical field was rigorously defined
once the famous Glauber-Sudarshan representation of the
density matrix of an optical field was formulated [1,2].
Since that time, any optical field with a nonpositive Glauber-
Sudarshan quasidistribution has been considered nonclassical
[3–6]. Analysis of more complex optical fields involving
several optical modes has shown that one of the reasons for a
field’s nonclassicality is the presence of quantum correlations
(entanglement) among the modes that constitute the field.
As entanglement is interesting both for fundamental reasons
and for various applications (in metrology, quantum-key
distribution, etc.), it has been extensively studied in numerous
publications in the last 10 years. The simplest case of
entanglement between two fields has naturally attracted the
greatest attention. In this case, even the quantification of
entanglement has been found using the Schmidt number for
pure states [7] and its generalization to mixed states based on
finding the closest pure entangled state. Also, an alternative
quantification derived from the shape of the Wigner function
has been given [8]. Unfortunately, these theoretical approaches
are difficult to apply to experimental optical fields [9,10]. From
the experimental point of view, joint homodyne tomography
[11,12] of both fields is needed to reveal the joint phase-space
quasidistribution of these fields and, subsequently, quantify
the entanglement via the mentioned theoretical approaches.

The great experimental demands of entanglement quantifi-
cation lead to the simpler concept of entanglement witnesses
(criteria) when dealing with entanglement. An entanglement
witness is a physical quantity which identifies entanglement
qualitatively through its values. Typically, this quantity is
constructed from an inequality fulfilled by any classical optical
field. The well-known and frequently used positive partial
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transpose (PPT) criterion [13,14] represents an entanglement
witness that exploits the eigenvalues of a certain matrix.
For specific systems, this witness can even be converted
into an entanglement measure called the negativity [15].
There exists in principle an infinite number of entanglement
witnesses. On the other hand, some of these witnesses are more
important (or useful) for physical reasons. These reasons are
pragmatic and they are related to the witnesses’ performance
in the experimental characterization of optical fields. As
quadratic optical detectors are by far the most frequently
used detectors in optical laboratories worldwide, witnesses
exploiting the moments of integrated intensity (henceforth, just
intensity) are extraordinarily important [16–20]. We note that
the measurement of the whole joint photocount distribution
of a bipartite optical field can be used to reconstruct the
joint quasidistribution of integrated intensities [3,16,21] and
to reveal its negative values observed for nonclassical states.

Here, we theoretically as well as experimentally analyze
the witnesses that indicate negative values of the Glauber-
Sudarshan quasidistribution of intensities. When applied to
the whole optical field they represent global nonclassicality
criteria (GNCCa). On the other hand, they serve as local
nonclassicality criteria (LNCCa) in cases of marginal fields
describing individual optical modes. For bipartite optical
fields with classical constituents, the GNCCa represent also
entanglement witnesses (criteria). The reason is that the global
nonclassicality in general reflects either local nonclassicalities
of the constituents, or entanglement between the constituents,
or both. Twin beams with their signal and idler beams con-
taining many photon pairs represent a typical example of such
bipartite optical fields. The GNCCa and LNCCa are derived
by several approaches that use the majorization theory [22],
consider nonnegative polynomials and quadratic forms (the
matrix approach) [23,24], and exploit the Cauchy-Schwarz
inequality. Relying on the Mandel photodetection formula
[3,4] the corresponding inequalities among the elements of
the joint photocount and photon-number distributions are also
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revealed. The performance of the derived GNCCa is tested
on the experimental data characterizing a twin beam with
around nine photon pairs on average and acquired by an
intensified CCD (iCCD) camera. In this case, the GNCCa
are also entanglement criteria.

The paper is organized as follows. In Sec. II, we give
the simplest inequalities among the intensity moments. More
complex inequalities including multiple intensity moments are
derived in Sec. III using different approaches. Inequalities
using the elements of the joint photocount and photon-number
distributions are discussed in Sec. IV, together with some
useful inequalities containing photocount and photon-number
moments. Section V is devoted to the application of the derived
inequalities to an experimental noisy twin beam. Conclusions
are drawn in Sec. VI. Additional inequalities for identifying
nonclassicality, which are redundant of those given in the text,
are summarized in the Appendix for completeness.

II. SIMPLE NONCLASSICALITY CRITERIA USING
INTENSITY MOMENTS

We consider a bipartite optical field composed of, in
general, two entangled fields, which we call the signal and
idler fields and which have intensities Ws and Wi, respectively.
The overall field is described by the joint signal-idler intensity
quasidistribution Psi(Ws,Wi) [25], which allows us to deter-
mine the normally ordered (intensity) moments [3] along the
relation

〈
Wk

s Wl
i

〉 =
∫ ∞

0
dWs

∫ ∞

0
dWi W

k
s Wl

i Psi(Ws,Wi),

k,l = 0,1, . . . . (1)

According to the majorization theory applied to polynomi-
als written in two independent variables [22,26], these intensity
moments fulfill certain classical inequalities. Their negation
gives us the series of global nonclassicality criteria∑

{k,l}

〈
Wk

s Wl
i

〉
<

∑
{k′,l′}

〈
Wk′

s Wl′
i

〉
, (2)

where the summation is performed over all possible permu-
tations of the indices and the indices k and l majorize the
indices k′ and l′ ({k,l} � {k′,l′}). We note that such GNCCa
are obtained in the general form of the sum (and difference)
of mean values.

To understand in detail the structure of these GNCCa,
we explicitly write those containing the intensity moments
up to the fifth order in the form that naturally arises in the
majorization theory:

〈
W 2

s

〉 + 〈
W 2

i

〉
< 2〈WsWi

〉
, (3)

〈
W 3

s

〉 + 〈
W 3

i

〉
<

〈
W 2

s Wi
〉 + 〈

WsW
2
i

〉
, (4)

〈
W 4

s

〉 + 〈
W 4

i

〉
<

〈
W 3

s Wi
〉 + 〈

WsW
3
i

〉
, (5)

〈
W 4

s

〉 + 〈
W 4

i

〉
< 2

〈
W 2

s W 2
i

〉
, (6)

〈
W 3

s Wi
〉 + 〈

WsW
3
i

〉
< 2

〈
W 2

s W 2
i

〉
, (7)

〈
W 5

s

〉 + 〈
W 5

i

〉
<

〈
W 4

s Wi
〉 + 〈

WsW
4
i

〉
, (8)

〈
W 5

s

〉 + 〈
W 5

i

〉
<

〈
W 3

s W 2
i

〉 + 〈
W 2

s W 3
i

〉
, (9)〈

W 4
s Wi

〉 + 〈
WsW

4
i

〉
<

〈
W 3

s W 2
i

〉 + 〈
W 2

s W 3
i

〉
. (10)

However, the inequalities in Eqs. (3)–(10) can be recast,
respectively, into the following:

〈(Ws − Wi)2〉 < 0, (11)

〈(Ws + Wi)(Ws − Wi)2〉 < 0, (12)〈(
W 2

s + WsWi + W 2
i

)
(Ws − Wi)2

〉
< 0, (13)〈(

W 2
s + 2WsWi + W 2

i

)
(Ws − Wi)2

〉
< 0, (14)

〈WsWi(Ws − Wi)2〉 < 0, (15)〈
(Ws + Wi)

(
W 2

s + W 2
i

)
(Ws − Wi)2

〉
< 0, (16)〈

(Ws + Wi)
(
W 2

s + WsWi + W 2
i

)
(Ws − Wi)2

〉
< 0, (17)

〈(Ws + Wi)WsWi(Ws − Wi)2〉 < 0. (18)

A common property of these inequalities is that they are
symmetric with respect to the exchange of indices s and i.
This has its origin in the majorization theory.

The natural generalization of the above GNCCa that
removes this symmetry and that is based upon mean values of
nonnegative polynomials is written in the form of the following
global nonclassicality criteria:〈

Wk
s Wl

i (Ws − Wi)
2m

〉
< 0, k,l = 0,1, . . . , m = 1,2 . . . .

(19)

Considering m = 1 in Eq. (19) and intensity moments up to
the fifth order, we may define the following GNCCa E:

E001 ≡ 〈
W 2

s

〉 + 〈
W 2

i

〉 − 2〈WsWi〉 < 0, (20)

E101 ≡ 〈
W 3

s

〉 + 〈
WsW

2
i

〉 − 2
〈
W 2

s Wi
〉
< 0, (21)

E011 ≡ 〈
W 3

i

〉 + 〈
W 2

s Wi
〉 − 2

〈
WsW

2
i

〉
< 0, (22)

E201 ≡ 〈
W 4

s

〉 + 〈
W 2

s W 2
i

〉 − 2
〈
W 3

s Wi
〉
< 0, (23)

E021 ≡ 〈
W 4

i

〉 + 〈
W 2

s W 2
i

〉 − 2
〈
WsW

3
i

〉
< 0, (24)

E111 ≡ 〈
W 3

s Wi
〉 + 〈

WsW
3
i

〉 − 2
〈
W 2

s W 2
i

〉
< 0, (25)

E301 ≡ 〈
W 5

s

〉 + 〈
W 3

s W 2
i

〉 − 2
〈
W 4

s Wi
〉
< 0, (26)

E031 ≡ 〈
W 5

i

〉 + 〈
W 2

s W 3
i

〉 − 2
〈
WsW

4
i

〉
< 0, (27)

E211 ≡ 〈
W 4

s Wi
〉 + 〈

W 2
s W 3

i

〉 − 2
〈
W 3

s W 2
i

〉
< 0, (28)

E121 ≡ 〈
WsW

4
i

〉 + 〈
W 3

s W 2
i

〉 − 2
〈
W 2

s W 3
i

〉
< 0. (29)

The original GNCCa given in Eqs. (3)–(10) represent a
subset of the GNCCa reported in Eqs. (20)–(29). In detail,
the GNCCa in Eqs. (3)–(10) are expressed, respectively, as
E001, E101 + E011, E201 + E111 + E021, E201 + 2E111 + E021,
E111, E301 + E211 + E121 + E031, E301 + 2E211 + 2E121 +
E031, and E211 + E121.

Moreover, the consideration of m = 2 in Eq. (19) gives us
an additional three GNCCa:

E002 ≡ 〈
W 4

s

〉 − 4
〈
W 3

s Wi
〉 + 6

〈
W 2

s W 2
i

〉 − 4
〈
WsW

3
i

〉
+ 〈

W 4
i

〉
< 0, (30)
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E102 ≡ 〈
W 5

s

〉 − 4
〈
W 4

s Wi
〉 + 6

〈
W 3

s W 2
i

〉 − 4
〈
W 2

s W 3
i

〉
+ 〈

WsW
4
i

〉
< 0, (31)

E012 ≡ 〈
W 4

s Wi
〉 − 4

〈
W 3

s W 2
i

〉 + 6
〈
W 2

s W 3
i

〉 − 4
〈
WsW

4
i

〉
+ 〈

W 5
i

〉
< 0. (32)

These GNCCa can be expressed as linear combinations of
some of the GNCCa written in Eqs. (20)–(29):

E002 = E201 + E021 − 2E111,

E102 = E301 + E121 − 2E211,

E012 = E211 + E031 − 2E121. (33)

As negative signs occur in the combinations of GNCCa E

on the right-hand sides of Eqs. (33), the GNCCa E002, E102,
and E012 are nontrivial and enrich the set of GNCCa given in
Eqs. (20)–(29). We note that an analogous situation is met for
m > 2 in Eq. (19) and higher-order intensity moments.

III. NONCLASSICALITY CRITERIA CONTAINING
MULTIPLE INTENSITY MOMENTS

In this section, we derive the nonclassicality criteria that
involve products of intensity moments. We concentrate our
attention on the GNCCa containing products of two intensity
moments, though several GNCCa encompassing also products
of three intensity moments are mentioned. To determine these
GNCCa we first apply the majorization theory. Then we exploit
nonnegative polynomials to arrive at additional GNCCa. For
completeness, we mention the GNCCa reached by the matrix
approach, which uses nonnegative quadratic forms, and those
derived from the Cauchy-Schwarz inequality. In parallel, we
also reveal LNCCa containing intensity moments and provided
by the majorization theory.

A. Nonclassicality criteria based on the majorization theory

We use again the formulas of the majorization theory [22],
now in a systematic way. We begin with the majorization
theory applied to polynomials written in two independent
variables, Ws and Wi. Contrary to the approach in the
previous section, we carry out averaging with the factorized
quasidistribution function Ps(Ws)Pi(Wi), where Ps (Pi) stands
for the signal (idler) reduced quasidistribution function. The
original Eq. (2) attains in this case the form of the local
nonclassicality criteria,∑

{k,l}

〈
Wk

s

〉〈
Wl

i

〉
<

∑
{k′,l′}

〈
Wk′

s

〉〈
Wl′

i

〉
, (34)

with {k,l} � {k′,l′}. Considering intensity moments up to the
fifth order, we arrive at the following six LNCCa expressed
in terms of the intensity moments of the local signal and idler
fields:

B20
11 ≡ 〈

W 2
s

〉 + 〈
W 2

i

〉 − 2〈Ws〉〈Wi〉 < 0, (35)

B30
21 ≡ 〈

W 3
s

〉 + 〈
W 3

i

〉 − 〈
W 2

s

〉〈Wi〉 − 〈Ws〉
〈
W 2

i

〉
< 0, (36)

B40
31 ≡ 〈

W 4
s

〉 + 〈
W 4

i

〉 − 〈
W 3

s

〉〈Wi〉 − 〈Ws〉
〈
W 3

i

〉
< 0, (37)

B31
22 ≡ 〈

W 3
s

〉〈Wi〉 + 〈Ws〉
〈
W 3

i

〉 − 2
〈
W 2

s

〉〈
W 2

i

〉
< 0, (38)

B50
41 ≡ 〈

W 5
s

〉 + 〈
W 5

i

〉 − 〈
W 4

s

〉〈Wi〉 − 〈Ws〉
〈
W 4

i

〉
< 0, (39)

B41
32 ≡ 〈

W 4
s

〉〈Wi〉 + 〈Ws〉
〈
W 4

i

〉 − 〈
W 3

s

〉〈
W 2

i

〉 − 〈
W 2

s

〉〈
W 3

i

〉
< 0.

(40)

The above LNCCa can be completed with simpler criteria
that have their origin in the majorization theory applied to
polynomials written in two independent variables, Wa and
W ′

a , which uses averaging with the quasidistribution function
Pa(Wa)Pa(W ′

a), a = s,i. These local nonclassicality criteria
are obtained in the form [27–30]:

aL20
11 ≡ 〈

W 2
a

〉 − 〈Wa〉2 < 0, (41)
aL30

21 ≡ 〈
W 3

a

〉 − 〈
W 2

a

〉〈Wa〉 < 0, (42)
aL40

31 ≡ 〈
W 4

a

〉 − 〈
W 3

a

〉〈Wa〉 < 0, (43)
aL31

22 ≡ 〈
W 3

a

〉〈Wa〉 − 〈
W 2

a

〉2
< 0, (44)

aL50
41 ≡ 〈

W 5
a

〉 − 〈
W 4

a

〉〈Wa〉 < 0, (45)

aL41
32 ≡ 〈

W 4
a

〉〈Wa〉 − 〈
W 3

a

〉〈
W 2

a

〉
< 0. (46)

We note that the LNCCa given in Eqs. (35)–(46) occur in more
complex expressions derived below, which combine the local
nonclassicalities with the entanglement. We also note that the
simplest LNCC given in Eq. (41) was experimentally observed
already in 1977 using the light from fluorescence of a single
molecule [31].

To reveal more complex GNCCa, we first analyze the
formulas of the majorization theory with three independent
variables, Ws, Wi, and W ′

a , considering two kinds of averaging
with the quasidistribution functions Psi(Ws,Wi)Pa(W ′

a), a =
s,i. To demonstrate the structure of the obtained inequalities
without treating more complex formulas, we investigate the
inequalities including intensity moments up to the fourth
order. Detailed analysis of the majorization formulas denoted
in standard notation {200} � {110}, {300} � {210}, {400} �
{310}, and {310} � {220} reveals that all these inequalities are
obtained as suitable positive linear combinations of some of the
inequalities written in Eqs. (20)–(29) and (35)–(46) and so they
are redundant for the indication of nonclassicality. They can
be found in the Appendix [Eqs. (A17)–(A20)]. The remaining
majorization inequalities, {210} � {111} and {220} � {211},
considered with both types of averaging, then provide the
following four global nonclassicality criteria (a = s,i):

aD210
111 ≡ 2

〈
W 2

a

〉〈
Wa

〉 + 〈
W 2

s Wi
〉 + 〈

WsW
2
i

〉 + 〈
W 2

s

〉〈Wi〉
+ 〈Ws〉

〈
W 2

i

〉 − 6〈Wa〉〈WsWi〉 < 0, (47)

aD220
211 ≡ 〈

W 2
a

〉2 + 〈
W 2

s W 2
i

〉 + 〈
W 2

s

〉〈
W 2

i

〉 − 〈
Wa

〉
× [〈

W 2
s Wi

〉 + 〈
WsW

2
i

〉] − 〈
W 2

a

〉〈WsWi〉 < 0. (48)

In the next step, we analyze the majorization inequalities
with four independent variables, Ws, Wi, W ′

s , and W ′
i , and

we use the quasidistribution function Psi(Ws,Wi)Psi(W ′
s,W

′
i )

for averaging. The inequalities {2000} � {1100}, {3000} �
{2100}, {4000} � {3100}, and {3100} � {2200} can be ex-
pressed as positive linear combinations of those given in
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Eqs.(20)–(29) and (35)–(46), and as such they are not
interesting for revealing nonclassicality. Similarly, the doubled
inequality {2100} � {1110} [{2200} � {2110}] is obtained as
the sum sD210

111 +iD210
111 [sD220

211 +iD220
211] of the GNCCa written

in Eq. (47) [(48)]. More details are given in the Appendix [see
Eqs. (A21)–(A26)]. Only the inequality {2110} � {1111} is
recast into the following global nonclassicality criterion:

D2110
1111 ≡ [〈

W 2
s Wi

〉 + 〈
WsW

2
i

〉]
[〈Ws〉 + 〈Wi〉] + 〈WsWi〉

× [〈
W 2

s

〉 + 〈
W 2

i

〉] − 6〈WsWi〉2 < 0. (49)

The remaining inequalities up to the fourth or-
der are provided by the majorization inequalities
{2100} � {1110}, {2200} � {2110}, and {2110} � {1111}
if we perform averaging with the three quasidistri-
bution functions Psi(Ws,Wi)Pa(W ′

a)Pa(W ′′
a ), a = s,i, and

Psi(Ws,Wi)Ps(W ′
s )Pi(W ′

i ), respectively. The occurrence of
three intensity moments in a product represents their common
feature. Step by step, the corresponding global nonclassicality
criteria are derived in the form (a = s,i)

aT 2100
1110 ≡ 6

〈
W 2

a

〉〈Wa〉 + 〈
W 2

s Wi
〉 + 〈

WsW
2
i

〉 + 2
〈
W 2

s

〉〈Wi〉
+ 2〈Ws〉

〈
W 2

i

〉 − 6〈Wa〉〈WsWi〉
− 3〈Wa〉2[〈Ws〉 + 〈Wi〉] < 0, (50)

T 2100
1110 ≡ 2

〈
W 2

s

〉〈Ws〉 + 2
〈
W 2

i

〉〈Wi〉 + 〈
W 2

s Wi
〉 + 〈

WsW
2
i

〉
+ 3

〈
W 2

s

〉〈Wi〉 + 3〈Ws〉
〈
W 2

i

〉 − 3[〈Ws〉 + 〈Wi〉]
× 〈WsWi〉 − 3〈Ws〉2〈Wi〉 − 3〈Ws〉〈Wi〉2 < 0,

(51)

aT 2200
2110 ≡ 6

〈
W 2

a

〉2 + 2
〈
W 2

s W 2
i

〉 + 4
〈
W 2

s

〉〈
W 2

i

〉
− 2〈Wa〉2

〈
W 2

a

〉 − 〈Wa〉2
[〈
W 2

s

〉 + 〈
W 2

i

〉]
− 2〈Wa〉

[〈
W 2

s Wi
〉 + 〈

WsW
2
i

〉]
− 2

〈
W 2

a

〉
[〈WsWi〉 + 〈Ws〉〈Wi〉] < 0, (52)

T 2200
2110 ≡ 2

〈
W 2

s

〉2 + 2
〈
W 2

i

〉2 + 2
〈
W 2

s W 2
i

〉 + 6
〈
W 2

s

〉〈
W 2

i

〉
− [〈Ws〉 + 〈Wi〉]

[〈
W 2

s Wi
〉 + 〈

WsW
2
i

〉]
− [〈

W 2
s

〉 + 〈
W 2

i

〉]
[〈WsWi〉 + 2〈Ws〉〈Wi〉]

− 〈
W 2

s

〉〈Wi〉2 − 〈Ws〉2
〈
W 2

i

〉
< 0, (53)

aT 2110
1111 ≡ 2

〈
W 2

a

〉〈Wa〉2 + 2〈Wa〉
[〈
W 2

s Wi
〉 + 〈

WsW
2
i

〉]
+ 〈Wa〉2[〈W 2

s

〉 + 〈
W 2

i

〉]
+ 2

〈
W 2

a

〉
[〈WsWi〉 + 〈Ws〉〈Wi〉]

− 12〈Wa〉2〈WsWi〉 < 0, (54)

T 2110
1111 ≡ [〈Ws〉 + 〈Wi〉]

[〈
W 2

s Wi
〉 + 〈

WsW
2
i

〉]
+ [〈

W 2
s

〉 + 〈
W 2

i

〉]
[〈WsWi〉 + 2〈Ws〉〈Wi〉]

+ 〈
W 2

s

〉〈Wi〉2 + 〈Ws〉2〈W 2
i

〉
− 12〈Ws〉〈Wi〉〈WsWi〉 < 0. (55)

We note that the approach leading to Eqs. (50)–(55) provides
also additional redundant GNCCa, which are summarized in
the Appendix [see Eqs. (A27)–(A34)].

Additional nonclassicality inequalities containing products
of three intensity moments are reached from the majorization
inequalities written for polynomials with three variables and
assuming averaging with the factorized quasidistributions
Ps(Ws)Pi(Wi)Pa(W ′

a), a = s,i. The majorization inequalities
{210} � {111} and {220} � {211} leave us with the following
local nonclassicality criteria in this case (a = s,i):

aB210
111 ≡ 〈

W 2
a

〉〈Wa〉 + 〈
W 2

s

〉〈Wi〉 + 〈
W 2

i

〉〈Ws〉
− 3〈Wa〉〈Ws〉〈Wi〉 < 0, (56)

aB220
211 ≡ 〈

W 2
a

〉2 + 2
〈
W 2

s

〉〈
W 2

i

〉 + 〈Wa〉2
〈
W 2

a

〉 − 〈Wa〉2

× [〈
W 2

s

〉 + 〈
W 2

i

〉] − 2
〈
W 2

a

〉〈Ws〉〈Wi〉 < 0. (57)

Analyzing the inequalities originating in the majoriza-
tion theory with intensity moments up to the fourth or-
der, we finally arrive at those written among the terms
with four intensity moments in the product. They are nat-
urally derived from the majorization inequalities written
for polynomials with four variables considering, in turn,
the quasidistributions Ps(Ws)Pi(Wi)Pa(W ′

a)Pa(W ′′
a ), a = s,i,

and Ps(Ws)Pi(Wi)Ps(W ′
s )Pi(W ′

i ). In detail, the majorization
inequality {2110} � {1111} is recast considering the above
averaging into the following local nonclassicality criteria
(a = s,i):

aB2110
1111 ≡ 〈Wa〉2

[〈
W 2

s

〉 + 〈
W 2

i

〉] + 2
〈
W 2

a

〉〈Ws〉〈Wi〉
− 4〈Wa〉2〈Ws〉〈Wi〉 < 0, (58)

B2110
1111 ≡ 〈

W 2
s

〉〈Wi〉2 + 〈Ws〉2
〈
W 2

i

〉 + 2
[〈
W 2

s

〉 + 〈
W 2

i

〉]
× 〈Ws〉〈Wi〉 − 6〈Ws〉2〈Wi〉2 < 0. (59)

We note that also additional LNCCa arise from the ma-
jorization theory written for polynomials with three and four
variables. However, they can be expressed as positive linear
combinations of the above written LNCCa and so they are
redundant. They are explicitly given in Eqs. (A1)–(A16) in the
Appendix.

B. Nonclassicality criteria based on nonnegative polynomials

Similarly to the previous section, where we have used the
mean values of nonnegative polynomials in Eq. (19), here we
derive local and global nonclassicality criteria by negating the
following classical inequalities:〈

Wk
s Wl

i (Ws − 〈Ws〉)2m(Wi − 〈Wi〉)2n
〉
< 0,

k,l = 0,1, . . . , m,n = 0,1 . . . . (60)

Concentrating on the signal field (m = 1 and n = 0) and
restricting our attention to the LNCCa containing intensity
moments up to the fifth order we recognize in Eqs. (60) the
following LNCCa:

E0l10 ≡ 〈
W 2

s Wl
i

〉 + 〈Ws〉2
〈
Wl

i

〉 − 2〈Ws〉
〈
WsW

l
i

〉
< 0,

l = 1,2,3; (61)
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E1l10 ≡ 〈
W 3

s Wl
i

〉 + 〈Ws〉2〈WsW
l
i

〉 − 2〈Ws〉
〈
W 2

s Wl
i

〉
< 0,

l = 1,2; (62)

E2110 ≡ 〈
W 4

s Wi
〉 + 〈Ws〉2

〈
W 2

s Wi
〉 − 2〈Ws〉

〈
W 3

s Wi
〉
< 0. (63)

One additional LNCC (E0120) and one additional GNCC
(E1011) are expressed as linear combinations of the LNCCa
in Eqs. (61)–(63) with varying signs:

E0120 ≡ E2110 + 〈Ws〉2E0110 − 2〈Ws〉E1110 < 0, (64)

E1011 ≡ E1210 + 〈Wi〉2E1010 − 2〈Wi〉E1110 < 0. (65)

The LNCCa and GNCC given in Eqs. (61)–(65) with ex-
changed subscripts s and i provide additional LNCCa and
GNCC that can be derived from the symmetry. Moreover,
there exists another GNCC belonging to the fourth order and
being symmetric with respect to subscripts s and i:

E0011 ≡ E0210 + 〈Wi〉2 sL20
11 − 2〈Wi〉E0110 < 0. (66)

We note that Eq. (60) considered for l = n = 0 also gives
nontrivial LNCCa, which can be added to those written in
Eqs. (41)–(46). They are expressed as

E1010 ≡ sL30
21 − 〈Ws〉 sL20

11 < 0, (67)

E2010 ≡ sL40
31 − 〈Ws〉 sL30

21 < 0, (68)

E3010 ≡ sL50
41 − 〈Ws〉 sL40

31 < 0, (69)

E0020 ≡ sL40
31 − 3〈Ws〉 sL30

21 + 3〈Ws〉2 sL20
11 < 0, (70)

E1020 ≡ sL50
41 − 3〈Ws〉 sL40

31 + 3〈Ws〉2 sL30
21

− 〈Ws〉3 sL20
11 < 0. (71)

C. Global nonclassicality criteria based on the matrix approach

In this case, the GNCCa are based on considering classically
positive semidefinite matrices of dimension n × n for n =
2,3, . . . that describe mean values of quadratic forms defined
above the basis which includes different powers of the signal
and idler intensities. This approach has been elaborated in
general for both the amplitude and the intensity moments in
Refs. [23,32–34], summarized in Ref. [24], and applied in
Ref. [19]. The Bochner theorem has been used to arrive at
even more general forms of these inequalities [35,36]. For
n = 2 the global nonclassicality criteria are defined along the
relation (i,j,k,l � 0)

Mijkl ≡ 〈
W 2i

s W 2j
i

〉〈
W 2k

s W 2l
i

〉 − 〈
Wi+k

s Wj+l
i

〉2
< 0. (72)

Restricting our considerations to the GNCCa up to the fifth
order in intensity moments, we reveal only the following two
inequalities:

M1100 ≡ 〈
W 2

s W 2
i

〉 − 〈WsWi〉2 < 0, (73)

M1001 ≡ 〈
W 2

s

〉〈
W 2

i

〉 − 〈WsWi〉2 < 0. (74)

For comparison, we write two GNCCa originating in
the majorization inequalities {2200} � {1111} and {4000} �

{1111} considered with averaging over the quasidistribution
function Psi(Ws,Wi)Psi(W ′

s,W
′
i ):

D2200
1111 ≡ [〈

W 2
s

〉 + 〈
W 2

i

〉]2 + 2
〈
W 2

s W 2
i

〉 − 6〈WsWi〉2 < 0, (75)

D4000
1111 ≡ 〈

W 4
s

〉 + 〈
W 4

i

〉 − 2〈WsWi〉2 < 0. (76)

We note that the GNCCa D2200
1111 and D4000

1111 stem from the
GNCCa written in Eqs. (47)–(49) and the LNCCa summarized
in Eqs. (35)–(46).

Also, a 3 × 3 matrix built above the base vector (1,Ws,Wi)
results in one global nonclassicality criterion of the fourth
order:

M001001 ≡ 〈
W 2

s

〉〈
W 2

i

〉 + 2〈WsWi〉〈Ws〉〈Wi〉 − 〈WsWi〉2

− 〈
W 2

s

〉〈Wi〉2 − 〈Ws〉2〈W 2
i

〉
< 0. (77)

D. Global nonclassicality criteria derived from the
Cauchy-Schwarz inequality

To reveal additional global nonclassicality criteria, we
negate the Cauchy-Schwarz inequality:[∫

dWsdWiPsi(Ws,Wi)f (Ws,Wi)g(Ws,Wi)

]2

>

∫
dWsdWiPsi(Ws,Wi)f

2(Ws,Wi)

×
∫

dWsdWiPsi(Ws,Wi)g
2(Ws,Wi). (78)

In Eq. (78), f and g denote arbitrary real functions and Psi

stands for the joint quasidistribution of integrated intensities.
Restricting ourselves up to the fifth power of intensities, we
may in turn consider f = 1 together with g = WsWi, f =√

Ws together with g = √
WsWi, f = Ws together with g =

Wi, and f = Ws
√

Wi together with g = √
Wi to arrive at the

following GNCCa:

C00
22 ≡ 〈

W 2
s W 2

i

〉 − 〈WsWi〉2 < 0, (79)

C10
12 ≡ 〈

WsW
2
i

〉〈Ws〉 − 〈WsWi〉2 < 0, (80)

C20
02 ≡ 〈

W 2
s

〉〈
W 2

i

〉 − 〈WsWi〉2 < 0, (81)

C21
01 ≡ 〈

W 2
s Wi

〉〈Wi〉 − 〈WsWi〉2 < 0. (82)

The criterion C00
22 in Eq. (79) [C20

02 in Eq. (81)] coincides with
the criterion M1100 in Eq. (73) [M1001 in Eq. (74)] derived from
the matrix approach.

All inequalities among the intensity moments discussed
both in the previous and in this section can mutually be
compared quantitatively when we transform these inequalities
into the corresponding nonclassicality depths. In this approach,
we replace the usual (normally ordered) intensity moments
〈Wk〉 with the moments 〈Wk〉s related to a general s ordering
of the field operators according to the formula [3]

〈Wk〉s =
(

2

1 − s

)k〈
Lk

(
2W

s − 1

)〉
, (83)

in which Lk denotes the kth Laguerre polynomial [37]. Then
we formally consider all the above inequalities originally
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derived for normally ordered intensity moments with s-ordered
intensity moments and varying values of the parameter s. If
a given inequality indicates nonclassicality for the normally
ordered moments, decreasing values of the ordering parameter
s gradually suppress this nonclassicality due to the increasing
additional ’detection’ noise [38]. The nonclassicality is lost for
a certain threshold value sth. This value defines a nonclassical-
ity depth (NCD) τ [38] as follows:

τ = 1 − sth

2
. (84)

The greater the value of the NCD τ is, the stronger the
nonclassicality is.

IV. NONCLASSICALITY CRITERIA BASED ON THE
ELEMENTS OF PHOTOCOUNT AND PHOTON-NUMBER

DISTRIBUTIONS AND THEIR MOMENTS

All nonclassicality criteria based on intensity moments and
thoroughly discussed in the previous two sections can be
easily transformed into the corresponding criteria, which use
the elements of the photon-number [photocount] distribution
psi(ns,ni) [fsi(cs,ci)] [30,39–41]. To understand this, we first
write the two-dimensional Mandel photodetection formula
[3,4],

psi(ns,ni) = 1

ns! ni!

∫ ∞

0
dWs

∫ ∞

0
dWi W

ns
s Wni

i

× exp[−(Ws + Wi)]Psi(Ws,Wi), (85)

where Psi(Ws,Wi) is the above used joint quasidistribution of
integrated intensities. Introducing the modified elements p̃si

of the photon-number distribution,

p̃si(ns,ni) ≡ ns! ni! psi(ns,ni)

psi(0,0)
, (86)

and the properly normalized quasidistribution P̃si,

P̃si(Ws,Wi) ≡ exp[−(Ws + Wi)]Psi(Ws,Wi)

[ ∫ ∞

0
dWs

×
∫ ∞

0
dWi exp[−(Ws + Wi)]Psi(Ws,Wi)

]−1

,

(87)

the Mandel photodetection formula in Eq. (85) is recast in a
form defining the modified elements p̃si as the moments of the
quasidistribution P̃si:

p̃si(ns,ni) =
∫ ∞

0
dWs

∫ ∞

0
dWi W

ns
s Wni

i P̃si(Ws,Wi). (88)

The formal substitution in the above derived nonclassicality
criteria for intensity moments suggested by formula (88) is
expressed as 〈

Wns
s Wni

i

〉 ←− p̃si(ns,ni). (89)

As an example, we rewrite the inequalities in Eq. (19) for
m = 1 into the following global nonclassicality criteria:

Fkl1 ≡ p̃si(k + 2,l) + p̃si(k,l + 2) − 2p̃si(k + 1,l + 1) < 0,

k,l = 0,1, . . . . (90)

Alternatively, the inequalities for intensity moments can
be directly transformed into the moments of photon numbers
(photocounts) exploiting the relation between the ’factorial’
photon-number moments (intensity moments) 〈Wk〉 and the
usual photon-number moments 〈nk〉. Using the Stirling num-
bers S(k,l) of the second kind [28], its two-dimensional variant
is expressed in the form

〈
nks

s nki
i

〉 =
ks∑

ls=1

S−1(ks,ls)
ki∑

li=1

S−1(ki,li)W
ls
s Wli

i ,

ks,ki = 1,2, . . . . (91)

The Stirling numbers S(k,l) of the second kind for the first
five moments are conveniently expressed as a matrix Skl that,
together with its inverse matrix S−1

kl giving the Stirling numbers
of the first kind, takes the form

Skl =

⎡
⎢⎢⎢⎣

1 0 0 0 0
1 1 0 0 0
1 3 1 0 0
1 7 6 1 0
1 15 25 10 1

⎤
⎥⎥⎥⎦,

S−1
kl =

⎡
⎢⎢⎢⎣

1 0 0 0 0
−1 1 0 0 0

2 −3 1 0 0
−6 11 −6 1 0
24 −50 35 −10 1

⎤
⎥⎥⎥⎦. (92)

We note that the above formulas between the intensity and
the photon-number moments assume an effective single-mode
field. However, generalization to multimode fields may be
considered, as has been done for multimode twin beams in
Refs. [17] and [42]. Also, different LNCCa expressed in
either the intensity or the photon-number moments have been
compared in [30].

The linear relations between the photon-number moments
and the intensity moments formulated in Eq. (91) can be used
to rewrite the nonclassicality criteria from the previous two
sections in terms of the photon-number moments. This is
interesting, as the joint photocount distributions are directly
experimentally accessible and the joint photon-number distri-
butions are reached once we correct the experimental data for
finite detection efficiencies [43]. The rewritten nonclassicality
criteria, however, usually attain more complex forms compared
to the original ones written for intensity moments. For this
reason, we derive here only the nonclassicality criteria that
involve cross-correlation moments containing different powers
of the signal and idler photon numbers. They are obtained as
suitable positive linear combinations of the GNCCa E written
in Eqs. (20)–(29):

N11 ≡ E001

=
∑
a=s,i

[〈
n2

a

〉 − 〈na〉
] − 2〈nsni〉 < 0, (93)

N21 ≡ E101 + E011 + E001

=
∑
a=s,i

[〈
n3

a

〉 − 2
〈
n2

a

〉 + 〈na〉
] − 〈

n2
s ni

〉 − 〈
nsn

2
i

〉
< 0,

(94)
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N31 ≡ E201 + E021 + E111 + 3(E101 + E011 + E001)

=
∑
a=s,i

[〈
n4

a

〉 − 3
〈
n3

a

〉 + 5
〈
n2

a

〉 − 3〈na〉
] − 4〈nsni〉

− 〈
n3

s ni
〉 − 〈

nsn
3
i

〉
< 0, (95)

N22 ≡ E201 + E021 + 2E111 + 2(E101 + E011 + E001)

=
∑
a=s,i

[〈
n4

a

〉 − 4
〈
n3

a

〉 + 7
〈
n2

a

〉 − 4〈na〉
] − 2〈nsni〉

− 2
〈
n2

s n
2
i

〉
< 0, (96)

N41 ≡ E301 + E031 + E211 + E121 + 6(E201 + E021

+ E111) + 7(E101 + E011 + E001)

=
∑
a=s,i

[〈
n5

a

〉 − 4
〈
n4

a

〉 + 6
〈
n3

a

〉 + 2
〈
n2

a

〉 − 5〈na〉
]

− 12〈nsni〉 − 〈
n4

s ni
〉 − 〈

nsn
4
i

〉
< 0, (97)

N32 ≡ E301 + E031 + 2E211 + 2E121 + 4(E201 + E021)

+ 7E111 + 4(E101 + E011) + E001

=
∑
a=s,i

[〈
n5

a

〉 − 6
〈
n4

a

〉 + 15
〈
n3

a

〉 − 17
〈
n2

a

〉 + 7〈na〉
]

− 〈
n3

s n
2
i

〉 − 〈
n2

s n
3
i

〉
< 0. (98)

V. EXPERIMENTAL VERIFICATION OF THE DERIVED
NONCLASSICALITY AND ENTANGLEMENT CRITERIA

In order to experimentally judge the performance of the
above derived nonclassicality criteria, we have applied them
to the analysis of entanglement between the signal and the
idler fields constituting a weak twin beam generated in the pro-
cess of spontaneous parametric down-conversion [4,21]. The
marginal signal and idler fields are generated with multimode
thermal statistics which is a consequence of the spontaneous
emission. As such the twin beam is locally classical and so
the applied GNCCa are also the entanglement criteria. The
twin beam was generated in a 5-mm-long type I barium-
borate crystal (BaB2O4; BBO) cut to a slightly noncollinear
geometry (for the experimental scheme, see Fig. 1). Parametric
down-conversion was pumped by pulses originating in the
third harmonics (280 nm) of a femtosecond cavity dumped

FIG. 1. Scheme of the experimental setup: A twin beam origi-
nating in a nonlinear crystal (BBO) pumped by an ultrashort pulse
generates a weak twin beam. The signal field and the idler field (after
reflection on the mirror; HR) are filtered with a bandpass interference
filter (IF) and then detected by an iCCD camera. The pump-
beam intensity is actively stabilized with feedback provided by the
detector (D).

Ti:sapphire laser that produced pulses with a duration of
150 fs and a central wavelength of 840 nm. The signal field
as well as the idler field was detected in different strips of the
photocathode of the iCCD camera (Andor DH334-18U-63).
Before detection, the nearly-frequency-degenerate signal and
idler photons at the wavelength of 560 nm were filtered
with a 14-nm-wide bandpass interference filter. Moreover,
to stabilize the pump intensity, and thus also the twin beam
intensity, to minimize fluctuations in the measured photocount
distribution, the pump beam was actively stabilized via a
motorized half-wave plate followed by a polarizer and detector
that monitored the actual intensity.

In the experiment, a joint signal-idler photocount histogram
fsi(cs,ci) was determined, repeating the measurement 1.2 ×
106 times. This histogram, obtained with a high precision
due to the high number of repetitions, has allowed us
to reconstruct the original joint signal-idler photon-number
distribution psi(ns,ni), which characterizes the twin beam
before being detected. We have used two methods for the
reconstruction. First, we have applied a method developed
originally for detector calibration [44]. This method, in
addition to giving the detection efficiencies ηs and ηi in the
signal and idler fields, respectively, also gives the parameters
of the twin beam used, though in the specific form of a
multimode Gaussian field. Knowing the detection efficiencies
as well as other parameters of the used iCCD camera, we
have reconstructed the measured twin beam by the general
approach of expectation maximization (maximum-likelihood
approach) [45].

In the calibration method, the twin beam has been revealed
in the analytical form of a multimode Gaussian field composed
of independent multimode paired, noise signal and noise idler
components characterized by mean photon(-pair) numbers
Ba per mode and numbers Ma of independent modes, a =
p,s,i [21,25]. The corresponding photon-number distribution
psi(ns,ni) attains in this case the form of a twofold convolution
among three Mandel-Rice photon-number distributions [3]
belonging to the constituting paired, noise signal, and noise
idler components [21,25,44]:

psi(ns,ni) =
min[ns,ni]∑

n=0

p(ns − n; Ms,Bs)p(ni − n; Mi,Bi)

× p(n; Mp,Bp). (99)

The Mandel-Rice distribution p(n; M,B) is given as
p(n; M,B) = �(n + M)/[n! �(M)]Bn/(1 + B)n+M using the
� function. Moreover, the response of the iCCD camera has
to be described by an appropriate positive-operator-valued
measure (POVM). For an iCCD camera with Na active pixels,
detection efficiency ηa , and mean dark count number per
pixel Da , this POVM, denoted Ta(ca,na), has been derived
in Ref. [43]:

Ta(ca,na) =
(

Na

ca

)
(1 − Da)Na (1 − ηa)na (−1)ca

×
ca∑

l=0

(
ca

l

)
(−1)l

(1 − Da)l

(
1 + l

Na

ηa

1 − ηa

)na

.

(100)
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We note that the POVM Ta(ca,na) gives the probability
of having ca photocounts when detecting a field with na

photons, a = s,i. With these premises, the method of the least
squared declinations based on the distribution psi in Eq. (99)
and POVMs Ts and Ti for the signal and idler detection
arms, respectively, gives both the detection efficiencies ηs

and ηi and the parameters of the used twin beam. The
calibration method applied to the experimental photocount
histogram fsi(cs,ci) gave us the parameter values ηs =
0.230 ± 0.005, ηi = 0.220 ± 0.005, Mp = 270, Bp = 0.032,
Ms = 0.01, Bs = 7.6, Mi = 0.026, and Bi = 5.3 (relative
experimental errors: 7%; for details, see [21]), in addition to
those determined independently: Ns = 6528, Ni = 6784, and
DsNs = DiNi = 0.040 ± 0.001. We note that the distribution
with a number M of modes considerably lower than 1 is
highly peaked around the value n = 0, which is a consequence
of the specific form of the noise occurring in the detection
process. The obtained parameters reveal that the measured
weak twin beam was composed of, on average, 8.8 photon
pairs and 0.07 (0.15) noise signal (idler) photon. Its joint
signal-idler photon-number distributions psi(ns,ni), obtained
by the maximum-likelihood approach as well as the calibration
method, and the experimental joint signal-idler photocount
histogram fsi(cs,ci) [see Fig. 2(a)] are plotted in Figs. 2(b) and
2(c), respectively. Thus, the analyzed twin beam contains tight
(quantum) correlations between the signal and the idler photon
numbers on one side, and on the other side its marginal signal
and idler photon-number distributions are multithermal, i.e.,
very classical [16,46]. We note that the quantum properties
of such weak noisy twin beams in multimode Gaussian
states have been theoretically analyzed in Ref. [47] and
the nonclassicality invariant describing the behavior of their
entanglement on a beam splitter has been discussed in Refs.
[48] and [49].

On the other hand, application of the maximum-likelihood
approach provides a joint signal-idler photon-number distri-
bution psi(ns,ni) as a steady state of the following iteration
procedure [43,45]:

p(l+1)
si (ns,ni) = p(l)

si (ns,ni)

×
∑
cs,ci

fsi(cs,ci)Ts(cs,ns)Ti(ci,ni)∑
n′

s ,n
′
i
Ts(cs,n′

s)Ti(ci,n′
i)p

(l)
si (n′

s,n
′
i)

,

l = 0,1, . . . . (101)

The uniform initial distribution p(0)
si (ns,ni) is assumed in the

iteration procedure. Compared to the joint photon-number dis-
tribution psi obtained in the calibration method, the distribution
psi revealed by the iteration procedure in Eq. (101) is broader,
as documented in Fig. 2(b). This reflects slightly weaker
correlations between the signal and the idler photon numbers
(weaker pairing of photons), i.e., greater mean numbers of the
noise signal and noise idler photons. As shown below, this is
manifested when considering various entanglement criteria.

Nonclassicality (originating in local nonclassicality or en-
tanglement) of a bipartite field is inscribed into its joint signal-
idler quasidistribution Psi(Ws,Wi) of integrated intensities Ws

and Wi, which either attains negative values or does not exist as
a regular analytical function [1,2]. In our case, we can obtain
regularized forms of this quasidistribution either by direct

(a)

(b)

(c)

FIG. 2. (a) Experimental photocount histogram fsi(cs,ci) and
reconstructed photon-number distributions psi(ns,ni) obtained by (b)
maximum-likelihood and (c) calibration methods.
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(a)

(b)

(c)

FIG. 3. Topo graphs of regularized quasidistributions Psi(Ws,Wi)
of integrated intensities derived from (a) the experimental photocount
histogram fsi (via its multi-mode Gaussian fit) for the ordering
parameter s = 1, (b) the photon-number distribution psi reconstructed
by the expectation-maximization approach (via the decomposition
into Laguerre polynomials) for s = 0, and (c) the photon-number

evaluation (for a multimode Gaussian field) [25] or by use of
the decomposition of the quasidistribution into specific series
of Laguerre polynomials, with the weights derived from the
appropriate joint photocount and photon-number distributions
[16]. In both cases, regularization of the quasidistribution
is provided by the experimental noise. Parallel strips with
negative values are characteristic for the obtained regularized
quasidistributions Psi(Ws,Wi), which are plotted in Fig. 3.

As the experimentally investigated noisy twin beams are
mainly composed of photon pairs and exhibit multimode
thermal photon-number statistics in both the signal and the
idler fields, they cannot be locally nonclassical, but they exhibit
entanglement. For this reason, we apply to the experimental
histogram only the GNCCa derived in the previous two
sections. We analyze both the joint experimental photocount
histogram and the reconstructed joint photon-number distri-
butions arising in the calibration and maximum-likelihood
methods. We first pay attention to the GNCCa containing
intensity moments. To allow for certain comparison among
different GNCCa, we rewrite them in dimensionless units
by introducing the normalized GNCCa (denoted by tildes).
They are determined from the above written GNCCa by
dividing them by appropriate powers of the mean intensity
〈W 〉 = (〈Ws〉 + 〈Wi〉)/2. However, fair comparison of the
performance of various GNCCa containing intensity moments
of different orders is based on the corresponding (global)
NCDs τ introduced in Eq. (84). In the second step and for
comparison, we analyze the GNCCa given in Eqs. (93)–(98),
which use photon-number moments, and also some GNCCa
involving the elements of photocount and photon-number
distributions.

In our opinion, the GNCCa E001, . . . ,E121 given in
Eqs. (20)–(29) represent the basic set of GNCCa suggested
for the analysis of entanglement restricted up to the fifth-order
intensity moments. This is so because of their simple forms
and the systematic inclusion of intensity moments of different
orders. Moreover, they can be derived in parallel from the ma-
jorization theory and the inversion of simple classical inequal-
ities valid for nonnegative polynomials. Also, the simplest
GNCC written in Eq. (3) was experimentally measured already
in 1991 [50]. The values of these GNCCa determined for the
experimental photocount histogram (red stars), reconstructed
photon-number distribution using the maximum-likelihood
method (green triangles), and reconstructed photon-number
distribution obtained by the calibration method (solid blue
curve) are plotted in Fig. 4, together with the corresponding
NCDs. Except for the GNCCa E301 and E031 applied to the
photocount histogram, all other GNCCa from this basic set
are negative, exhibiting entanglement. Positive values of the
GNCCa E301 and E031 for the photocount histogram are related
to the occurrence of the fifth-order marginal intensity moments
in their definitions in Eqs. (26) and (27). Both types of the

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
distribution psi reconstructed by the calibration method (via its
multimode Gaussian fit) for s = 0.1. In (a), the maximum of Psi

within the white area equals 3.6 × 10−2; in (c), 2.7 × 10−2. When
determining Psi in (a) and (c), one effective mode comprising the
whole signal (idler) beam was assumed [3,16,21,25].
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(a)

(b)

FIG. 4. (a) Normalized global nonclassicality criteria Ẽ defined
in Eqs (20)–(29) and (b) the corresponding nonclassicality depths τ .
Values determined from the experimental photocount histogram are
plotted with red stars; those appropriate for the reconstructed photon-
number distribution reached by the maximum-likelihood (calibration)
method by green triangles (solid blue curve). Some error bars are
smaller than the symbols used.

applied reconstructions that partly remove the noise from the
detected photocount histogram lead to negative values of the
GNCCa E301 and E031. The analysis of the corresponding
NCDs τ reveals that the values of NCDs τ decrease with
increasing order of the intensity moments involved in the
GNCCa. We note that a similar decrease in the values of
NCDs with increasing order of intensity moments has been
observed in [30] in the case of LNCCa. Naturally, the values of
NCDs τ are considerably greater for the reconstructed photon-
number distributions compared to the original experimental
photocount histogram.

The basic set of GNCCa is accompanied by an additional
six GNCCa that are derived similarly: E002 [Eq. (30)], E102

[Eq. (31)], E012 [Eq. (32)], E0011 [Eq. (66)], E1011 [Eq. (65)],
and E0111. Unfortunately, none of these GNCCa indicates
entanglement in the measured twin beam, as documented in
Fig. 5. Positive values of the GNCCa E002, E102, and E012 can
again be related to the presence of the fourth- and fifth-order
marginal intensity moments in the definitions of these GNCCa.
On the other hand, the GNCCa E0011, E1011, and E0111 contain
in their definitions terms with two and even three intensity

FIG. 5. Normalized global nonclassicality criteria Ẽ defined in
Eqs (30)–(32), (65), and (66). For description, see the caption to
Fig. 4.

moments in a product, which seriously limits their ability to
reveal entanglement.

Restricting our consideration to fourth-order intensity mo-
ments, the majorization theory provides five GNCCa [denoted
D; Eqs. (47)–(49)] for which products of two intensity
moments are characteristic, together with nine GNCCa [de-
noted T ; Eqs. (50)–(55)] containing terms with up to three
intensity moments in a product. All these GNCCa indicate
by their negative values entanglement in both the photocount
histogram and the reconstructed photon-number distributions,
as documented in Figs. 6 and 7. Mutual comparisons of NCDs
τ for the GNCCa E, D, and T plotted in Figs. 4, 6, and
7, respectively, reveal that the entanglement described by the
GNCCa E is the most resistant against noise, the GNCCa D are
considerably worse from this point of view, and the resistance
of the GNCCa T against noise is already weak. This behavior
can qualitatively be explained by the occurrence of multiple
products of intensity moments in the expressions giving the
GNCCa D and T . These products do not naturally describe any
correlation and so their presence in the GNCCa only weakens
the ability of a given GNCCa to identify entanglement.

The widely used matrix approach [19,23,24] gives us three
GNCCa, M1100 [Eq. (73)], M1001 [Eq. (74)], and M001001

[Eq. (77)], for investigating entanglement, provided that
intensity moments up to the fifth order are taken into account.

(a () b)

FIG. 6. (a) Normalized global nonclassicality criteria D̃ defined
in Eqs (47)–(49) and (b) the corresponding nonclassicality depths τ .
For description, see the caption to Fig. 4.
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(a)

(b)

FIG. 7. (a) Normalized global nonclassicality criteria T̃ defined
in Eqs (50)–(55) and (b) the corresponding nonclassicality depths τ .
For description, see the caption to Fig. 4.

For our experimental data, only the GNCCa M1001 and M001001

identify entanglement (see Fig. 8). We note that negativity
of the experimental GNCCa M1001 has been reported in
[17]. The values of the corresponding NCDs τ plotted in
Fig. 8 are comparable to those characterizing the GNCCa
E from the basic set. This shows their high performance
in identifying entanglement. A bit surprisingly, the GNCC
M1100 is positive. In our opinion this is a consequence of
the thermal statistics of photon pairs. Loosely speaking and
relying on the quantum theory, we may define a ’photon-pair
intensity’ Wsi ≈ WsWi, which allows us to rewrite Eq. (73) in
the form M1100 ≈ 〈W 2

si〉 − 〈Wsi〉2, explaining the positivity of
the GNCC M1100 for the analyzed weak twin beam.

The Cauchy-Schwarz inequality provides two simple
GNCCa not mentioned above, C10

12 [Eq. (80)] and C21
01

[Eq. (82)], whose performance in revealing entanglement lies
between that of the GNCC M1001 and that of the GNCC M1100

(see Fig. 8). For the experimental twin beam, only the GNCC
C21

01 applied to the reconstructed photon-number distributions
indicates entanglement. As the GNCC C10

12 is derived from
the GNCC C21

01 by substitution s ↔ i, this demonstrates strong
sensitivity of both GNCCa to the level of noise. The slightly
lower mean of the signal noise photon number compared to that
of the idler field (0.07 versus 0.15) is sufficient to observe the
negative GNCC C21

01 . For comparison, we plot in Fig. 8 another
two GNCCa, D2200

1111 [Eq. (75)] and D4000
1111 [Eq. (76)], which

also contain the cross-correlation intensity moments 〈WsWi〉

(a)

(b)

FIG. 8. (a) Normalized global nonclassicality criteria M̃ , C̃, and
D̃ defined in Eqs (73)–(77), (80), and (82) and (b) the correspond-
ing nonclassicality depths τ . For description, see the caption to
Fig. 4.

and 〈W 2
s W 2

i 〉 and are expressed as positive linear combinations
of the already analyzed GNCCa. However, their NCDs τ are
lower due to the additional terms with marginal higher-order
intensity moments occurring in their definitions compared to
the formulas for the GNCCa M written in Eqs. (74) and (77).

All the above discussed GNCCa, which are based on the
intensity moments, can straightforwardly be converted into
the corresponding GNCCa, which contain photocount and
photon-number moments, using the linear relations between
the two types of moments quantified by the Stirling numbers S

[see Eq. (92)]. This is more or less formal for the reconstructed
photon-number distributions. Contrary to this, such GNCCa
are useful and convenient when experimental photocount
histograms are analyzed. The reason is that these GNCCa
can be applied directly to the experimental data. This is why
we have suitably combined various GNCCa written for the
intensity moments to arrive at a specific set of six simple
GNCCa N written in Eqs. (93)–(98). All of them have been
able to reveal entanglement in the experimental histogram, as
documented in Fig. 9. However, we note that the GNCCa N

are expressed as sums of intensity moments of different orders,
and as such, their structure is less transparent compared to the
original GNCCa based on the intensity moments.

The comparison of the results reached by the above
discussed GNCCa applied to the photon-number distributions
reconstructed by the maximum-likelihood approach and the
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FIG. 9. Normalized global nonclassicality criteria Ñ defined in
Eqs (93)–(98). For description, see the caption to Fig. 4. Normal-
ization is done with respect to the corresponding quantities N ref

determined for the factorized distribution Ps(Ws)Pi(Wi).

calibration method reveals the following. Negative values of
the GNCCa, which reveal entanglement, reached by both
approaches equal within the experimental errors or the values
provided by the maximum-likelihood approach are greater
than those reached by the calibration method. In consequence,
the corresponding NCDs from both approaches coincide
within the experimental errors or those arising in the calibra-
tion method are greater. This behavior naturally stems from the
fact that the calibration method is more efficient in removing
noise from the experimental data. This is so as the calibration
method works with a predefined form of the photon-number
distribution and applies it simultaneously to the whole two-
dimensional experimental photocount histogram.

Finally, all the above written GNCCa as well as LNCCa can
be transformed into the corresponding GNCCa and LNCCa,
which involve the elements of photocount histogram or
reconstructed photon-number distributions, using the formal
substitution written in Eq. (89). The use of such GNCCa,
however, requires an approach different from that applied
to the GNCCa containing intensity moments. Whereas only
intensity moments up to a certain order are useful, owing to
the increasing experimental error with increasing order of the
intensity moment, useful and reliable GNCCa in the case of
the distributions involve their elements (probabilities) having
the highest available values. As both the joint photocount
histogram fsi and the joint reconstructed photon-number
distributions psi have such elements around the diagonal (see
Fig. 2), we consider the GNCCa involving the elements at
the diagonal [41,51] and the closest neighbor parallel lines,
as described in turn by the functions Fkk1, F(k+j )k1, and
Fk(k+j )1, j = 1,2, with the varying index k (see Fig. 10). The
GNCCa F defined in Eq. (90) reliably reveal entanglement
via their negative values in the area around the peaks of
both the photocount histogram (k ≈ 2) and the reconstructed
photon-number distributions (k ≈ 9). We note that negative
values of the GNCCa F(k+j )k1 and Fk(k+j )1 for j = 2, . . .

[j = 1, . . .] have not been observed for the photon-number
distribution reconstructed by the maximum-likelihood [cali-
bration] method, which is a consequence of its narrow ’cigar’
shape, clearly visible in Fig. 2(b) [2(c)].

4 5 6 7 8 9 10 11 12 13 14

0 1 2 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-10

-8

-6

-4

-2

0

4 5 6 7 8 9 10 11 12

(a)

(b)

(c)

FIG. 10. Normalized global nonclassicality criterion F̃k′ l′1
given in Eq. (90) for (a) the experimental photocount histogram
fsi and k′l′ = kk (red stars), (k + 1)k (green stars), (k + 2)k
(yellow stars), k(k + 1) (light-blue stars), and k(k + 2) (dark-blue
stars); (b) the photon-number distribution psi reconstructed by
the maximum-likelihood approach and k′l′ = kk (red triangles),
(k + 1)k (green triangles), and k(k + 1) (blue triangles); and
(c) the photon-number distribution psi reconstructed by the
calibration method for k′l′ = kk (solid blue curve), where
F̃kl1 ≡ [(k + 1)(k + 2)psi(k + 2,l) + (l + 1)(l + 2)psi(k,l + 2) −
2(k + 1)(l + 1)psi(k + 1,l + 1)]/[(k + 1)(k + 2)pP

s (k + 2)pP
i (l) +

(l + 1)(l + 2)pP
s (k)pP

i (l + 2) − 2(k + 1)(l + 1)pP
s (k + 1)pP

i (l + 1)]
and pP

a (n) is the Poissonian distribution, with the mean 〈na〉
normalized such that pP

a (0) = 1, a = s,i.
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VI. CONCLUSIONS

We have derived numerous inequalities among the moments
of integrated intensities aimed at identifying local as well as
global nonclassicality using (a) the majorization theory, (b)
nonnegative polynomials, (c) the matrix approach based on
quadratic forms, and (d) the Cauchy-Schwarz inequality. We
have mutually compared different approaches, grouped the
obtained nonclassicality criteria according to their structure,
and tested their performance on the experimental data char-
acterizing a weak twin beam with about nine photon pairs
per pulse and a small amount of additional noise. We have
identified a basic set of 10 global nonclassicality criteria that
reveal entanglement in the analyzed twin beam. We have also
paid attention to the counterparts of the nonclassicality criteria
written in the moments of photocounts and photon numbers
and also the elements of photocount and photon-number
distributions. We have demonstrated their performance on the
same experimental data. For twin beams with a small amount
of the noise all three kinds of nonclassicality criteria represent
strong tools for revealing entanglement.
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APPENDIX: ADDITIONAL (REDUNDANT)
NONCLASSICALITY CRITERIA

In this Appendix, we summarize the nonclassicality criteria
derived from the majorization theory with polynomials written
in three and four variables and being redundant with respect
to those presented in the text. This means that these LNCCa
and GNCCa are expressed as positive linear combinations of
the LNCCa and GNCCa reported in the text.

First, we summarize the redundant (and properly nor-
malized) LNCCa that complement the LNCCa contained in
Eqs. (35)–(40) and (56)–(59) (a = s,i):

aB200
110 = aL20

11 + B20
11 < 0, (A1)

aB300
210 = aL30

21 + B30
21 < 0, (A2)

aB400
310 = aL40

31 + B40
31 < 0, (A3)

aB310
220 = aL31

22 + B31
22 < 0, (A4)

aB2000
1100 = 2 aL20

11 + B20
11 < 0, (A5)

B2000
1100 = sL20

11 +i L20
11 + 2B20

11 < 0, (A6)

aB3000
2100 = 2aL30

21 + B30
21 < 0, (A7)

B3000
2100 = sL30

21 +i L30
21 + 2B30

21 < 0, (A8)

aB2100
1110 = 〈Wa〉 aL20

11 +a B210
111 < 0, (A9)

B2100
1110 = sB210

111 +i B210
111 < 0, (A10)

aB4000
3100 = 2 aL40

31 + B40
31 < 0, (A11)

B4000
3100 = sL40

31 +i L40
31 + 2B40

31 < 0, (A12)

aB3100
2200 = 2 aL31

22 + B31
22 < 0, (A13)

B3100
2200 = sL31

22 +i L31
22 + 2B31

22 < 0, (A14)

aB2200
2110 = 〈

W 2
a

〉
aL20

11 +a B220
211 < 0, (A15)

B2200
2110 = sB220

211 +i B220
211 < 0. (A16)

The redundant (and properly normalized) GNCCa contain-
ing terms with up to two intensity moments in a product attain
the form (a = s,i)

aD200
110 = aL20

11 + (
E001 + B20

11

)/
2 < 0, (A17)

aD300
210 = 2 aL30

21 + E101 + E011 + B30
21 < 0, (A18)

aD400
310 = 2 aL40

31 + E201 + E111 + E021 + B40
31 < 0, (A19)

aD310
220 = 2 aL31

22 + E111 + B31
22 < 0, (A20)

D2000
1100 = sL20

11 +i L20
11 + E001 + B20

11 < 0, (A21)

D3000
2100 = sL30

21 +i L30
21 + E101 + E011 + B30

21 < 0, (A22)

D2100
1110 = (s

D210
111 +i D210

111

)/
2 < 0, (A23)

D4000
3100 = sL40

31 +i L40
31 + E201 + E111 + E021 + B40

31 < 0,

(A24)

D3100
2200 = sL31

22 +i L31
22 + E111 + B31

22 < 0, (A25)

D2200
2110 = sD220

211 +i D220
211 < 0. (A26)

Finally, the redundant (and properly normalized) GNCCa
expressed via triple products of intensity moments are derived
as follows (a = s,i):

aT 2000
1100 = 6 aL20

11 + E001 + 2B20
11 < 0, (A27)

T 2000
1100 = sL20

11 +i L20
11 + (

E001 + 3B20
11

)/
2 < 0, (A28)

aT 3000
2100 = 6 aL30

21 + E101 + E011 + 2B30
21 < 0, (A29)

T 3000
2100 = 2 sL30

21 + 2 iL30
21 + E101 + E011 + 3B30

21 < 0,

(A30)

aT 4000
3100 = 6 aL40

31 + E201 + E111 + E021 + 2B40
31 < 0,

(A31)

T 4000
3100 = 2 sL40

31 + 2 iL40
31 + E201 + E111 + E021

+ 3B40
31 < 0, (A32)

aT 3100
2200 = 6 aL31

22 + E111 + 2B31
22 < 0, (A33)

T 3100
2200 = 2 sL31

22 + 2 iL31
22 + E111 + 3B31

22 < 0. (A34)
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JAN PEŘINA, JR. et al. PHYSICAL REVIEW A 96, 043845 (2017)

[1] R. J. Glauber, Coherent and incoherent states of the radiation
field, Phys. Rev. 131, 2766 (1963).

[2] E. C. G. Sudarshan, Equivalence of Semiclassical and Quantum
Mechanical Descriptions of Statistical Light Beams, Phys. Rev.
Lett. 10, 277 (1963).
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[21] J. Peřina, Jr., O. Haderka, V. Michálek, and M. Hamar, State
reconstruction of a multimode twin beam using photodetection,
Phys. Rev. A 87, 022108 (2013).

[22] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory
of Majorization and Its Application, 2nd ed. (Springer, New
York, 2010).

[23] W. Vogel, Nonclassical Correlation Properties of Radiation
Fields, Phys. Rev. Lett. 100, 013605 (2008).

[24] A. Miranowicz, M. Bartkowiak, X. Wang, X.-Y. Liu, and F.
Nori, Testing nonclassicality in multimode fields: A unified
derivation of classical inequalities, Phys. Rev. A 82, 013824
(2010).
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[43] J. Peřina, Jr., M. Hamar, V. Michálek, and O. Haderka, Photon-
number distributions of twin beams generated in spontaneous
parametric down-conversion and measured by an intensified
CCD camera, Phys. Rev. A 85, 023816 (2012).
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