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Gapless surface states originating from accidentally degenerate quadratic band touching
in a three-dimensional tetragonal photonic crystal
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A tetragonal photonic crystal composed of high-index pillars can exhibit a frequency-isolated accidental
degeneracy at a high-symmetry point in the first Brillouin zone. A photonic band gap can be formed there by
introducing a geometrical anisotropy in the pillars. In this gap, gapless surface and domain-wall states emerge
under a certain condition. We analyze their physical properties in terms of an effective Hamiltonian, and a good
agreement between the effective theory and numerical calculation is obtained.
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I. INTRODUCTION

Gapless boundary states are often attributed to a certain
property in the bulk states. One representative example
is a quantum Hall system, where the so-called bulk-edge
correspondence is established [1,2]. Namely, if a system is
topologically nontrivial in the bulk, then the system sustains
gapless boundary states. Such boundary states are generally
robust against various perturbations. This bulk-edge corre-
spondence rule is found to hold in a wide variety of classical
and quantum systems, including photonic [3], mechanical [4],
acoustic [5], and magnonic [6] systems.

Closely related to this rule, two-dimensional (2D) massive
Dirac Hamiltonian has the gapless domain-wall states in
the system with two domains having opposite sign of the
mass term [7]. These domain-wall states have the linear
dispersion with the definite slope, irrespective of details in
the domain-wall profile. Solely the relative sign of the mass
term determines the slope. In this sense, the domain-wall
states are topological and robust against the modulation of
the domain-wall profile. Similar domain-wall states also exist
in a 2D quadratic Hamiltonian with a time-reversal violating
perturbation [8].

In optics, such boundary and domain-wall states in
2D systems can be used as a novel channel waveguide
that is robust against various perturbations. If the system
breaks the time-reversal symmetry by the magneto-optical
effect, resulting boundary states can form a nonreciprocal
(one-way) waveguide [3,9–11]. If the time-reversal sym-
metry holds, they can form a helical, or in other words,
polarization- or spin-dependent one-way waveguide [12–15].
These waveguides are quite extraordinary and not avail-
able by conventional designs of the optical nonreciprocity
[16–18].

In three-dimensional (3D) optical systems, similar bound-
ary and/or domain-wall states are also important. There
are several reasons for this statement: (1) In three spatial
dimensions, a wide variety of nontrivial topology [19–21]
and thus a wide variety of optical functionality are available.
(2) Optical 3D systems have the built-in photospin-orbit
interaction [22] that is essential for possible spin-dependent
light transport. (3) Ultimate photonic integrated circuits are
photonic 3D architectures [23]. Therefore, functional 3D
optical components that are robust against perturbations are
definitely in order.

In this paper, we propose a way to construct optical gapless
surface and domain-wall states in three spatial dimensions. We
focus on a 3D tetragonal photonic crystal (PhC) composed of
high-refractive-index pillars. At high symmetry points in the
Brillouin zone, four bands with two mutually different doubly
degenerate representations can be accidentally degenerate
quadratically. We first design this accidental degeneracy
by tuning geometries of the pillars. Then, we introduce a
symmetry-breaking perturbation for the parity with respect to
the pillar axis. This causes a gap opening. In the gap, gapless
surface and domain-wall states are shown to emerge.

Similar domain-wall states was reported in 3D hexagonal
PhCs [24] as 3D photonic topological insulators. There, a
linear band touching of the Dirac type (having four eigenstates
with two mutually degenerate bands) is argued. We extend this
argument to the case of a quadratic band touching. A related
structure of tetragonal photonic crystals was also proposed
to emulate the topological crystalline insulator (TCI) [25].
However, its design strategy, that is, dropping the system into
the tight-binding Hamiltonian of the TCI under the Rayleigh
approximation, is very different from ours.

This paper is organized as follows. We first demonstrate
numerically the emergence of the gapless surface–domain-
wall states in Sec. II. We then argue these features by
employing an effective Hamiltonian description with an aid of
group theory in Sec. III. Summary and discussions are given
in Sec. IV.

II. NUMERICAL RESULTS

We consider a 3D tetragonal PhC composed of high-
refractive-index pillars. A schematic illustration of the system
under study is shown in Fig. 1. We first deal with simple
circular pillars. Then, we consider two-step pillars that cause
the parity symmetry breaking in the z axis (taken as the
pillar axis). The point group of this PhC before the symmetry
breaking is D4h, which has two doubly degenerate irreducible
representations, Eg and Eu, at high symmetry points �, M, Z,
and A in the first Brillouin zone [26]. We can design an acci-
dental degeneracy there between the two modes, Eg and Eu.

Figure 2(a) shows the photonic band structure of a tetrag-
onal PhC with the accidentally degeneracy around ωa/2πc =
0.24 at the M point. The parameters of the PhC are specified
in the caption of Fig. 2. Here, ω is the angular frequency
of light, a is the lattice constant of the PhC in plane, and c
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FIG. 1. (a) Tetragonal photonic crystal composed of circular
pillars. The pillar axis is taken to be parallel to the z direction. (b)
Tetragonal photonic crystal composed of two-step circular pillars. The
parity symmetry in the z direction is broken. (c) The first Brillouin
zone for the bulk photonic crystals of panels (a) and (b), and the
surface Brillouin zone relevant to the system without the translational
invariance along the z direction. Points of high symmetry are also
indicated.

is the light velocity in vacuum. The rigorous coupled-wave
analysis (RCWA) is employed in the numerical calculation
[27–30]. The accidental degeneracy results in a quadratic band
touching among the four bands in the (kx,ky) plane. As for the
kz direction (along the MA axis), the band dispersion is linear
and doubly degenerate. Such a band anisotropy comes from
the structural anisotropy of the tetragonal PhC.

By introducing the symmetry breaking to the pillars, the
point group of the system reduces to C4v . Both the Eg and Eu

modes reduce to the E modes of C4v . Since the modes of the
same representation repel each other, the accidentally degen-
eracy between the Eg and Eu modes is lifted after introducing
the symmetry breaking, forming a band gap there. We can see
clearly the gap opening around ωa/2πc = 0.245 in Fig. 2(b).
This gap is shown to support gapless domain-wall states.

For later convenience, the electromagnetic field configura-
tions of the bulk modes near the accidental degeneracy are
shown in Fig. 2(c). The first and fourth modes become the Eg

mode at the M point. As seen in the figure, they are the electric-
dipole-like modes. The second and third modes become the Eu

mode at M. They are the magnetic-dipole-like modes.
In this example, we assume very high refractive index

for the pillars. The reason why we take a very high value
is as follows. In the PhC of high refractive-index pillars,
the photonic bands become flat in frequency. The flat-band
frequencies are equal to the frequencies of the Mie resonance
in the isolated pillar. However, at high-symmetry points in the
Brillouin zone, some bands tend to degenerate. Thus, such
bands stick together at the points, and the frequency of the
degeneracy lies in between the flat-band frequencies. In this
way, frequency-isolated degeneracy can take place. In this
case, we can easily make a complete band gap (the band gap
irrespective of k vectors) by the symmetry breaking.

Next, we consider a domain wall formed by two domains
stacked in the z direction. The two domains have the opposite

sign of the parity symmetry breaking (inverted the pillar
axis). Two types of the domain wall is considered as
shown in Fig. 3. Figure 4 shows the band structure of the
domain-wall states, evaluated with the RCWA. In the gap
around ωa/2πc = 0.245, there are gapless domain-wall
dispersion curves forming quadratic band touching at the M̄
point in the surface Brillouin zone. The spatial symmetries
there are different between the two types. In type I, the mode
symmetry at M̄ is Eg , whereas in type II, it is Eu (note that the
composite system has the D4h symmetry as a whole, though
each domain has solely the C4v symmetry).

Similar surface states with quadratic band touching emerge
in the upper surface of the single-domain finite-thick PhC of
Fig. 1(b) capped by the perfect-electric-conductor (PEC) wall.
Figure 5(a) shows such surface states in the finite-thick PhC.
Here, the bottom surface is open, touching the outer medium
of ε = 1, where ε is the permittivity. The surface states at the
bottom are gapless. If the perfect-magnetic-conductor (PMC)
wall is placed at the bottom surface, it produces similar surface
states as the type II domain wall, as shown in Fig. 5(b). In this
case, the top surface, which is open to the outer medium, has
the gapped dispersion of the surface states.

The quadratic band touching and gaplessness of the
domain-wall states are robust against changing the domain-
wall width. However, the surface states of the PEC or PMC
wall can be gapped out by changing the distance to the wall. If
the distance is very large compared to relevant wavelength, the
system can be regarded as an isolated single-domain PhC with
open boundaries. In this case, the surface states at the top are
fully gapped, as shown in Fig. 5(b). In this sense, the system
is not topological, and gaplessness and robustness are limited
in the domain-wall states.

In Fig. 5(c), we plot the field configuration of the gapless
surface states near the degenerate point. We should point out
that the field configurations have a close resemblance to those
of the bulk modes given in Fig. 2(c). Namely, the electric-
(magnetic)-dipole-like behavior of the PEC (PMC) surface
modes is quite similar to those of the first and fourth (second
and third) modes in Fig. 2(c). Note that the bulk modes in
Fig. 2(c) are of the symmetry-unbroken system, while the
surface modes in Fig. 5(c) are of the symmetry-broken system.
A similar property is also found for the domain-wall states. We
will see, in the next section, that this resemblance can be well
understood with the aid of an effective Hamiltonian.

III. UNDERSTANDING VIA EFFECTIVE HAMILTONIAN

To understand the numerical results given in Sec. II,
we consider an effective Hamiltonian around the accidental
degeneracy. It is generally written as [31]

Hpq = 〈
ψ

(0p)
0

∣∣H ′∣∣ψ (0q)
0

〉

+
∑
n�=0

〈
ψ

(0p)
0

∣∣H ′∣∣ψ (n)
0

〉〈
ψ

(n)
0

∣∣H ′∣∣ψ (0q)
0

〉
E

(0)
0 − E

(n)
0

, (1)

H = H0 + H ′, (2)

H0

∣∣ψ (n)
0

〉 = E
(n)
0

∣∣ψ (n)
0

〉
, (3)
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FIG. 2. [(a), (b)] Photonic band structure of a tetragonal photonic crystal composed of circular pillars of a high-index material before (a)
and after (b) introducing the z-parity symmetry breaking. In panel (a), the dielectric constant ε, radius r , and height h of the pillars are taken
to be 100, 0.295a, and 0.259a, respectively, where a is the lattice constant in plane. The lattice constant az in the z direction is 0.5a. The outer
medium is air (ε = 1). In panel (b), the pillar is an coaxial two-step one with inner-core radius of 0.75r and height h. The outer shell has radius
r and height 0.75h. The dielectric constant of the pillar is 100. (c) Electric and magnetic field intensities of the four Bloch modes (ordered in
frequency) near the accidental degeneracy in panel (a) (marked by arrow). The Bloch wave vector is k = (0.45,0.45,0)2π/a, and the intensities
are plotted on a mirror xy plane in between two consecutive layers of the pillars. The maximal field intensity on the plane is normalized to be
1. The white circle represents the in-plane position of the pillar edge.

for a generic Hamiltonian H with a degeneracy in the zeroth-
order approximation. The states |ψ (0p)

0 〉 (p = 1,2, . . . ,N )
are the N -fold degenerate eigenstates of the zeroth-order
Hamiltonian H0 with eigenvalue E

(0)
0 . The other eigenstates

are denoted as |ψ (n)
0 〉 with eigenvalue E

(n)
0 (n �= 0). The lifting

of the degeneracy is described by the effective Hamiltonian.
Besides, the Maxwell equation casts into a Hamiltonian

(diagonalization) form as

H |ψ〉 = E|ψ〉, (4)

〈G|H |G′〉 = −ηG−G′(k + G) × (k + G′) × , (5)

〈G|ψ〉 = hG, E = ω2

c2
, (6)

1

ε(x)
=

∑
G

ηGeiG·x, (7)

where ε(x) is the periodic permittivity in the PhC and G
is a reciprocal lattice vector. The vector hG is the Fourier

type I type II

FIG. 3. Schematic illustration of domain walls used in the
numerical calculation. Two types of the domain walls are considered.
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FIG. 4. Dispersion relation of the domain-wall states in the
composite structure with the two domains of the symmetry-broken
tetragonal photonic crystal. The pillar axis of one domain is inverted
from that in the other domain. The parameters are the same as in the
Fig. 2(b). The domain-wall states of type I (II) are indicated by red
filled (blue open) circle. The shaded region is the projection of the
bulk band structure.

coefficient of the magnetic field of Bloch momentum k and
angular frequency ω:

H(x,t) = Re[H(x)e−iωt ], (8)

H(x) =
∑

G

hGei(k+G)·x, (9)

where Re represents the real part.
To derive the effective Hamiltonian, we put k = k0 + δk

and ηG = η0
G + δηG . Here, k0 is taken to be a high-symmetry

point in the Brillouin zone, where the accidental degeneracy
takes place, and η0

G is the Fourier coefficient of the permittivity
of the PhC with the z-parity symmetry. The deviation δηG

is parametrized linearly by ξ and satisfies δησz G = −δηG ,
where σz represents the z-parity operation. The zeroth-order
Hamiltonian is given by Eq. (5) at k = k0 and ηG = η0

G . The
perturbation part is the rest of H , namely, H ′ = H − H0.

Suppose that the system has the D4h symmetry at a
high-symmetry point k = k0 in the Brillouin zone and that
Eg and Eu modes are accidentally degenerate. The effective
Hamiltonian H consists of two parts, namely, the k · p part
Hδk and symmetry-breaking part Hξ . The k · p part satisfies

Hδk = D†(A)HAδkD(A), (10)

D(A) = Bdiag(DEg
(A),DEu

(A)), (11)

where A is an element of D4h, and DEg(u) (A) is its representa-
tion matrix for irreducible representation Eg(u). Namely,

AE(p)
Eg(u)

(A−1x) =
∑
q=1,2

E(q)
Eg(u)

(x)[DEg(u) (A)]qp, (12)

where E(p)
Eg(u)

(x) (p = 1,2) is the electric field eigenstate of
the doubly degenerate representation Eg(u). The symmetry-

breaking part satisfies

Hξ = D†(A)HξD(A) (A ∈ C4v), (13)

Hξ = −D†(σz)HξD(σz). (14)

Using this relation, we can show that the effective Hamil-
tonian up to the second order in δk and first order in ξ has the
following form:

H =
(
H++ H+−
H−+ H−−

)
, (15)

H++ = (
a0xδk2

‖ + a0zδk
2
z

)
1̂ + a3x

(
δk2

x − δk2
y

)
σ3

+ a1xyδkxδkyσ1, (16)

H+− = (a3zδkz + ib3ξ )σ3, (17)

H−+ = (a3zδkz − ib3ξ )σ3, (18)

H−− = (
a′

0xδk2
‖ + a′

0zδk
2
z

)
1̂ + a′

3x

(
δk2

x − δk2
y

)
σ3

+ a′
1xyδkxδkyσ1, (19)

where 1̂ is the 2×2 unit matrix, and σi (i = 1,2,3)
is the Pauli matrix. The coefficients a0x, a0z, a1xy, a3x,

a3z, a′
0x, a′

0z, a′
1xy, a′

3x , and b3 are all real and are determined
from the unperturbed eigenstates.

By diagonalizing the effective Hamiltonian, four eigenval-
ues are obtained. At δk‖ = 0, we have two doubly degenerate
eigenvalues of a massive Dirac type:

ε = ±
√

(a3zδkz)2 + (b3ξ )2. (20)

At δkz = ξ = 0, the four eigenvalues become

ε = a0xδk2
‖ ±

√
a2

3x

(
δk2

x − δk2
y

)2 + a2
1xyδk

2
xδk

2
y, (21)

a′
0xδk2

‖ ±
√

a′2
3x

(
δk2

x − δk2
y

)2 + a′2
1xyδk

2
xδk

2
y, (22)

which are stuck together at δk‖ = 0. These properties are fully
consistent with the band diagram in Fig. 2. We should point out
that there is the linear term of δkz in the effective Hamiltonian,
whereas linear terms of δk‖ are absent. Since the linear term
is dominating in the vicinity of δkz = 0, the quadratic term in
δkz is fairly neglected there.

We consider a composite structure with two domains
characterized by opposite sign of parameter ξ . The other
parameters are common in the two domains. The effective
Hamiltonian in the composite structure is obtained by replac-
ing δkz by −i∂/∂z and ξ by ξ (z). Typically, ξ (z) is given
by ξ0 tanh(z/w), where z = 0 is the center coordinate of the
domain wall and w is its width. The eigenvalue equation for
the domain-wall states is thus given by

H
(

δkz → −i
∂

∂z
,ξ → ξ (z)

)
ψ(x) = εψ(x). (23)

043842-4



GAPLESS SURFACE STATES ORIGINATING FROM . . . PHYSICAL REVIEW A 96, 043842 (2017)

FIG. 5. [(a), (b)] Dispersion curves of the surface states in the 16-layer-thick tetragonal photonic crystal without the z-parity symmetry.
Projection of the bulk band structure is also plotted. The parameters are the same as in the Fig. 2(b). In panel (a), the PhC is capped by the
perfect-electric-conductor (PEC) wall placed with distance (az − h)/2 from the top of the PhC. The bottom surface is open. In panel (b), the
PhC is capped by the perfect-magnetic-conductor (PMC) wall with distance (az − h)/2 from the bottom of the PhC. The top surface is open.
The surface states at the top (bottom) are indicated by red filled (blue open) circle. (c) Electric and magnetic field intensities of the surface
modes near the M̄ point in the surface Brillouin zone [marked by arrows in panels (a) and (b)]. The Bloch wave vector is k = (0.45,0.45)2π/a,
and the intensities are plotted on a PEC-PMC wall. The maximal field intensity on the wall is normalized to be 1. The white circle represents
the in-plane position of the two-step pillar edge.

We can show that this equation supports the domain wall
states with

ψ(x) =
(

ψ+
0

)
e
− b3

a3z

∫ z
dz′ξ (z′)

eiδk‖·x‖ , (24)

H++ψ+ = εψ+, (25)

ε = a0xδk2
‖ ±

√
a2

3x

(
δk2

x − δk2
y

)2 + a2
1xyδk

2
xδk

2
y, (26)

provided (b3/a3z)ξ0 > 0. On the other hand, if (b3/a3z)ξ0 < 0,
we have

ψ(x) =
(

0
ψ−

)
e

b3
a3z

∫ z
dz′ξ (z′)

eiδk‖·x‖ , (27)

H−−ψ− = εψ−, (28)

ε = a′
0xδk2

‖ ±
√

a′2
3x

(
δk2

x − δk2
y

)2 + a′2
1xyδk

2
xδk

2
y. (29)

Here, we neglect the δk2
z term.
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These eigenvalues of the domain-wall states are the same
as those of the bulk modes without the symmetry breaking
(ξ = 0) at δkz = 0 [Eqs. (21) and (22)], within the effective
theory. In fact, in the numerical calculation given in Sec. II, the
dispersion curves of the domain-wall states around ωa/2πc =
0.245 in Fig. 4 are quite similar in shape to the dispersion
curves of the bulk modes around ωa/2πc = 0.24 in Fig. 2(a),
after reducing the relative splitting of the domain-wall disper-
sion curves at M̄. First of all, they both exhibit the gapless
band structures. Second, the band curvatures around M̄ of the
domain-wall states have the same trend as the curvature around
M of the bulk modes. Third, the spatial symmetries have the
same set (Eg and Eu). The relative splitting can be explained by
fully taking account of the δk2

z → −∂2/∂z2 term. In this way,
a good agreement between the effective theory and numerical
calculation is obtained.

We also note that the surface states of Fig. 5 can be also
explained within the effective Hamiltonian. There, the PEC or
PMC boundary condition is imposed. In terms of the effective
theory, the radiation field F(= E,B,D,H) is written as the
superposition of the Eg and Eu modes (at δk = 0) of the
unperturbed Hamiltonian:

F(x) =
∑

p=1,2

[
ψ

(p)
+ (x)F(p)

Eg
(x) + ψ

(p)
− (x)F(p)

Eu
(x)

]
. (30)

If we put the PEC (PMC) wall at a mirror plane (z = z0)
of the unperturbed tetragonal PhC as assumed in Fig. 5,
we must have ψ−(+)(z0) = 0. This is because, by symmetry,
the Eg mode has Ex = Ey = Hz = 0 at z = z0, and the Eu

mode has Hx = Hy = Ez = 0 at z = z0. The PEC (PMC)
boundary condition imposes Ex = Ey = 0 (Hx = Hy = 0) for
the superposed radiation field at the wall, so that ψ−(+)(z0) = 0
is derived.

If (b3/a3z)ξ > 0, the effective Hamiltonian has the eigen-
states

ψ(x) =
(

ψ+
0

)
e
− b3

a3z
ξz

eiδk‖·x‖ , (31)

ε = a0xδk2
‖ ±

√
a2

3x

(
δk2

x − δk2
y

)2 + a2
1xyδk

2
xδk

2
y (32)

for the PEC wall at the bottom and

ψ(x) =
(

0
ψ−

)
e

b3
a3z

ξz
eiδk‖·x‖ , (33)

ε = a′
0xδk2

‖ ±
√

a′2
3x

(
δk2

x − δk2
y

)2 + a′2
1xyδk

2
xδk

2
y (34)

for the PMC wall at the top.
Otherwise, if (b3/a3z)ξ < 0, the eigenstates become

Eq. (33) for the PMC wall at the bottom, and Eq. (31) for
the PEC wall at the top. Actually, we found the latter case
in Sec. II. These equations explain very well why the field
configurations of the PEC and PMC surface states in Fig. 5(c)
have a close resemblance to those of the Eg and Eu bulk modes
in Fig. 2(c).

If the PEC or PMC wall is not put on the mirror plane, the
dispersion relation of the surface states change from Eqs. (32)
and (34). In such cases, the simple argument given above is
not available because of a symmetry mismatch at the wall.

IV. SUMMARY AND DISCUSSION

In summary, we have shown that an accidentally degenerate
quadratic band touching of four bands in a tetragonal PhC
composed of circular pillars can yield gapless domain-wall
states after breaking the parity symmetry along the pillar axis.
The dispersion relation of the domain-wall states is nearly
equal to the quadratic dispersion of the bulk modes of the PhC
at kz = 0 before the symmetry breaking. Moreover, the surface
modes of a similar dispersion emerge at the boundary surface
capped by the PEC or PMC wall. We explicitly present these
property by numerical calculations of the Maxwell equation
and by an effective Hamiltonian description.

The anisotropic band structure of the tetragonal PhC makes
the surface band structure highly surface dependent. For
instance, if we cut the system at a plane normal to the x

direction, the translational invariance in the (y,z) plane holds.
In this case, no surface states are predicted around (δky,δkz) =
(0,0) under a rough estimation in the effective Hamiltonian.
However, it is still possible to have nontrivial surface states
that are not described well within the effective theory.

A gap formation by the parity symmetry breaking can occur
also for the accident degeneracy between two nondegenerate
modes of D4h, such as A1g and A2u, that reduce to the same
irreducible representation (A1 in this case) of C4v . The reduced
modes repel each other because of the same irreducible
representation. The effective 2×2 Hamiltonian around the
accidentally degeneracy becomes

H =(
a0xδk2

‖ + a0zδk
2
z

)
1̂ + (a1zδkz + b1ξ )σ1

+ (a2zδkz + b2ξ )σ2 + (
a3xδk2

‖ + a3zδk
2
z

)
σ3. (35)

by a similar symmetry argument as in Sec. III. Here, the
coefficients a0x, a0z, a1z, b1, a2z, b2, a3x , and a3z are all real.

This effective Hamiltonian supports the domain-wall states
with

ε = (a0x + a3x)δk2
‖, (36)

ψ(x) =
(

1
0

)
e
−i

b1+ib2
a1z+ia2z

∫ z
ξ (z′)dz′

eiδk‖·x‖ , (37)

if the two domains are stacked in the z direction and have oppo-
site signs of ξ , satisfying a1zb2ξ (z → ∞) < a2zb1ξ (z → ∞).
Again, the term quadratic in δkz is neglected. If a1zb2ξ (z →
∞) > a2zb1ξ (z → ∞), the domain-wall states become

ε = (a0x − a3x)δk2
‖, (38)

ψ(x) =
(

0
1

)
e
−i

b1−ib2
a1z−ia2z

∫ z
ξ (z′)dz′

eiδk‖·x‖ . (39)

Although these domain-wall states are robust insensitive to
domain-wall profile ξ (z), they are gapped, in contrast to the
case discussed in Secs. II and III. Therefore, the gapless
domain-wall states are limited for the accidentally degeneracy
between the two mutually different doubly degenerate modes,
Eg and Eu.

An important issue is the robustness of our domain-wall
states against structural disorder and absorption loss. Taking
account of disorder and loss in the PhC, the band gap under
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consideration (strictly speaking, a spectral dip of the zero
density of states of photons) generally shrinks its frequency
window. Therefore, domain-wall states whose frequencies lie
near the band edge are strongly affected by disorder and
loss. However, in the midgap region, there are no photonic
eigenstates other than the domain-wall ones, so that the
domain-wall states are less affected and will survive from a
perturbation viewpoint. However, since the gaplessness of the
domain-wall states in our system is “symmetry protected,”
a possible disorder that destroys the C4v symmetry will
cause a gap in the domain-wall states. What happens if the
C4v symmetry holds on ensemble average of disorder is an
important question to be solved. Thus, effects of possible
strong or weak disorder on the photonic domain-wall states are
interesting topics but are beyond the scope of the present paper.

In this paper, we have picked up a photonic system as a
representative example of the quadratic accidental degeneracy.
However, the argument in this paper is simply based on the
group theory. Therefore, the prediction given here is not limited
in the photonic systems but can emerge a wide class of wave
phenomena on a certain crystal structure with the D4h → C4v

point group.
We hope this paper stimulates further investigations of

the gap and surface-state formation via accidental degeneracy
together with symmetry breaking.
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