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Resonance fluorescence in the resolvent-operator formalism
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The Mollow spectrum for the light scattered by a driven two-level atom is derived in the resolvent operator
formalism. The derivation is based on the construction of a master equation from the resolvent operator of the
atom-field system. We show that the natural linewidth of the excited atomic level remains essentially unmodified,
to a very good level of approximation, even in the strong-field regime, where Rabi flopping becomes relevant
inside the self-energy loop that yields the linewidth. This ensures that the obtained master equation and the
spectrum derived matches that of Mollow.
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I. INTRODUCTION

It is well known that the spectrum of the light scattered by a
two-level system—usually an atom—exhibits very different
profiles in different intensity regimes [1–5]. This is best
seen by looking at the incoherently scattered fraction of
the incoming light, which is subdominant at low intensities
and dominant at high intensities. Mollow has shown [1] that
the incoherent part takes over when the modulus |�| of the
Rabi frequency of the light-atom interaction becomes larger
than the natural linewidth � of the excited atomic state. For
|�| � �, the (subdominant) incoherent spectrum features a
single Lorentzian peak around the resonance frequency ω0

of the atom (or, when some detuning � ≡ ωL − ω0 �= 0 is
introduced between the atomic transition and the incoming
light, two peaks at frequencies ω0 and 2ωL − ω0, with ωL

the frequency of the laser). For |�| � �, the (dominant)
incoherent spectrum features the three notorious Mollow
peaks, at frequencies ωL and ωL ± |�| (or, in the presence
of detuning, ωL and ωL ±

√
|�|2 + �2). The usual derivation

of the spectrum of the scattered light is based on a master
equation that describes the evolution of the atomic density
matrix under the influence of a classical driving field [1,2]. A
quantum electrodynamical (QED) derivation of the spectrum
is possible in the low-intensity case, for example, along the
lines of the treatment given in Chapter 3 of Ref. [6]. In this
case, it can be assumed that a single photon is absorbed and
re-emitted by the atom. However, in the high-intensity (strong
field) case, this is no longer valid. Our aim is to extend the
QED treatment to the strong field case.

Given the large variety of existing spectroscopic applica-
tions of QED, it is surprising that the description of the inter-
action of bound systems with light are, except for the simplest
cases such as single-photon processes, almost exclusively for-
mulated in the framework of master or Bloch equations [6,7],
or by semiclassical methods such as the Weisskopf-Wigner
model [2,6], and is not based on the foundations of QED.
Multiphoton processes in particular are usually described by
effective models such as master equations, for instance, in
the so-called dressed atom approach, or by optical Bloch
equations. Quantum-electrodynamic perturbation theory has
been first applied by Low [8] to explain the natural line shape
of an atom resonantly excited by a weak light field. He showed
that the Lorentzian spectral line can be originated from an
infinite series expansion of the photon scattering matrix in

terms of Feynman diagrams with self-energy loop corrections
to the intermediate state of the process. The case of overlapping
resonances was later considered in a Green’s function approach
[9] and in an S-matrix approach [10]. In our efforts to rederive
the Mollow spectrum, we lay the foundations of a framework
that allows one to go beyond the approximation of a weak
external field, and extend perturbation theory to the case when
several real photons may be absorbed and re-emitted during the
process. These elementary multiphoton processes provide the
QED interpretation of the Rabi oscillation phenomenon, which
is a cornerstone of many laser spectroscopic and quantum
optical applications [2,6].

A formalism based on QED is anticipated to be particularly
important in the case of heavy systems. The laser spectroscopic
study of atoms and ions with higher nuclear charges has
recently been enabled by the construction of x-ray free
electron laser facilities (see, e.g., [11]), allowing one to
address important questions of astrophysics, such as, e.g.,
the strength of certain resonance lines in highly charged
iron ions used for temperature determination of distant stars
from spectra recorded by x-ray space observatories [12]. It
has been put forward [13] that strong-field processes, such
as can be investigated with the formalism developed in the
current work, provide a possible resolution of discrepancies in
laboratory astrophysics measurements with x-ray free-electron
lasers [12].

We recall the definition of the spectral density of the
scattered field in Sec. II, and Mollow’s master-equation
analysis of the problem in Sec. III. We derive rigorously the
master equation from a resolvent operator formalism in Sec. IV
and conclude in Sec. V.

II. THE SCATTERED FIELD

The spectrum of the electromagnetic field scattered by a
two-level atom is given by [2,14]

Gjk(ω,xd ) ∝
∫ +∞

0
dt eiωt 〈Ê−

j (xd ,0)Ê+
k (xd ,0)〉

∝ Fjk(xd )
∫ +∞

0
dt eiωt 〈σ̂+(0)σ̂−(t)〉

≡ Fjk(xd )S(ω), (1)

2469-9926/2017/96(4)/043835(8) 043835-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.043835


V. DEBIERRE AND Z. HARMAN PHYSICAL REVIEW A 96, 043835 (2017)

where σ̂+ (σ̂−)(t) is the raising (lowering) operator for the
two-level atom at time t , in the Heisenberg picture, and xd

is the position of the light detector on which the scattered
field impinges. Here the indices j, k ∈ {1,2,3} correspond to
arbitrary components of the electric field. It is assumed that
the detector sits in the far-field region of emission, where
the emitted electric field varies as 〈xd〉−1. The prefactor Fjk ,
as such, is a trivial spatial factor that varies as 〈xd〉−2. The
focus is to be put on the time-integral S(ω), implicitly defined
through Eq. (1), which is the difficult part to compute. The
angle brackets in Eq. (1) refer to the expectation value taken
over the state of the atom, which is described by a density
matrix. As such, we see that it is the dynamics of the two-level
atom, under the influence of the driving field, that determines
the spectrum of the scattered electromagnetic field.

III. QUANTUM OPTICAL TREATMENT: THE
MOLLOW SPECTRUM

Mollow’s solution [1] to the problem of deriving the
spectrum of the light scattered by a driven two-level atom
is based on a master equation treatment on the atom-field
interaction. Labeling |a〉 the ground state and |b〉 the excited
state, one constructs the atomic density matrix,

ρ̂A(t) = α(t) |a〉 〈a| + β(t) |b〉 〈b| + γ (t) |a〉 〈b|
+ γ ∗(t) |b〉 〈a| , (2)

from which a vector is constructed,

ρA(t) = [β(t),γ (t),γ ∗(t)], (3)

out of three of the four coefficients [α(t) is determined through
α(t) = 1 − β(t)]. One then writes [1] the master equation,

dρA

dt
=

⎡
⎢⎣

−� i
2�∗ − i

2�

i� −i� − 1
2� 0

−i�∗ 0 i� − 1
2�−

⎤
⎥⎦ρA(t)

+

⎡
⎢⎣

0

− i
2�

i
2�∗

⎤
⎥⎦, (4)

where we recall that � = ωL − ω0 is the laser-atom detuning,
� is the natural linewidth of the excited atomic level |b〉, and
� is the Rabi frequency. Mollow’s result was based on finding
the steady-state solution to this equation, which is given by

αSS = 4�2 + �2 + |�|2
4�2 + �2 + 2|�|2 , (5a)

βSS = |�|2
4�2 + �2 + 2|�|2 , (5b)

γSS = |�|(2� − i�)

4�2 + �2 + 2|�|2 , (5c)

and γ ∗
SS trivially obtained from Eq. (5). In this steady state,

the coefficients of the atomic density matrix are constant but
higher-order correlation functions are still dynamical quan-
tities (sometimes referred to as quantum fluctuations around
that steady state). It is the case of the correlation functions
from which the scattered spectrum can be computed. Once

the steady state has been established, one uses the quantum
regression theorem [15] to deduce the two-time expectation
values 〈σ̂+(0)σ̂−(t)〉, the Fourier-Laplace transform of which
yields the scattered spectrum. By making use of the quantum
regression theorem, and after computing the Fourier-Laplace
transform, Mollow found [1,4]

S(ω) = 2π |γSS|2δ(ω − ωL) + 16 βSS � |�|2

×
[

(ω − ωL)2 + ( |�|2
2 + �2

)
a0(ω) + a2(ω)�2 + a4(ω)�4 + a6(ω)�6

]
,

(6)

with the functions ai given by

a0(ω) = 16 [�2 + |�|2 − (ω − ωL)2]2(ω − ωL)2, (7a)

a2(ω) = 4 [6(ω − ωL)4 − 2(3�2 − |�|2)(ω − ωL)2

+ (2�2 + |�|2)2], (7b)

a4(ω) = 8�2 + 4|�|2 + 9(ω − ωL)2, (7c)

a6(ω) = 1. (7d)

We can see in the light of Eq. (6) why the term proportional
to the Dirac δ centered at the laser frequency is called the
coherent spectrum: it is proportional to the square modulus of
the coherence of the atomic density matrix (in the steady-state
regime). The incoherent spectrum, on the other hand, is
proportional to the population of the excited level: in the
strong-field (high-intensity) regime, where the incoherent
scattered spectrum splits into the three Mollow peaks, the
atom has a nonnegligible probability to be found in its excited
state. A thorough analysis of the limiting cases of the Mollow
spectrum Eq. (6) can be found in Refs. [1,4], and we need
not repeat it here. Rather, we turn to our main point: the QED
derivation of the master equation.

IV. MASTER EQUATION IN THE RESOLVENT
FORMALISM

A. General formalism

We will now show how to confirm the results yielded by
a quantum-optical treatment of the problem; by using the
framework of the resolvent operator. For a system described
by Hamiltonian Ĥ , the resolvent operator is given by Ĝ(z) =
(z − Ĥ )

−1
and is thus a function of a complex argument. It

is well known, and easily understood, that Ĝ has singularities
when z is equal to an eigenvalue of the Hamiltonian Ĥ . The
Hamiltonian Ĥ might be chosen, in the case of QED, to be
nonrelativistic (as in our case) or relativistic. It is split into its
free part Ĥ0 and its interacting part V̂ . The analytical structure
of Ĝ in terms of the spectrum of the Hamiltonian provides one
with all the information that is needed, in principle, to solve
exactly for the dynamics of a given quantum system [6,16].

We will work in the two-dimensional Hilbert subspace
consisting of |a; (γL)N 〉 and |b; (γL)N−1〉. We remind the reader
that |a〉 is the atomic ground state and |b〉 the excited state;
while γL refers to a laser photon, constructed as a usual [17]
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wave packet,

|γL〉 =
∑
λ=±

∫
d̃k f(λ)(k)â†

(λ)(k) |0〉 , (8)

where it is understood that f(λ) is heavily peaked around the
laser frequency ωL/c. The vacuum state of the electromagnetic
field is |0〉, and â

†
(λ)(k) is the creation operator for a photon of

helicity λ and wave vector k. The invariant differential volume
element on the light cone is

d̃k ≡ dk
2(2π )3|k| . (9)

Let us define EaN = Ea + Nh̄ωL and Eb(N−1) = Eb +
(N − 1)h̄ωL. The atomic resonance frequency is h̄ω0 = Eb −
Ea . Computing the matrix elements of the resolvent operator
in this two-dimensional subspace will allow us to reconstruct
the master Eq. (4) rigorously. In the subspace of interest, these
matrix elements are given by [6]

[
GaN (z) GaNb(N−1)(z)

Gb(N−1)aN (z) Gb(N−1)(z)

]

= 1

DN (z)

[
z−Eb(N−1)−Rb(N−1)(z) RaNb(N−1)(z)

Rb(N−1)aN (z) z−EaN−RaN (z)

]
,

(10)

where the denominator is given by the determinant

DN (z) ≡ [z − Eb(N−1) − Rb(N−1)(z)]

× [z − EaN − RaN (z)]

−RaNb(N−1)(z)Rb(N−1)aN (z), (11)

and R refers to the level-shift operator, which is given by the
Rayleigh-Schrödinger expansion

R̂(z) = V̂ + V̂
Q̂

z − Ĥ0
V̂ + V̂

Q̂

z − Ĥ0
V̂

Q̂

z − Ĥ0
V̂ + . . .

(12)

Here, Q̂ is the projector over all possible quantum states of the
system, except the two states of our subspace of reference:

Q̂ = 1̂l − |a; (γL)N 〉 〈a; (γL)N | − |b; (γL)N−1〉 〈b; (γL)N−1| .
(13)

The operator V̂ , finally, is the interaction Hamiltonian of
the system, and describes the interaction between the atomic
electrons and the electromagnetic field (see below for more
details). The quantities

RaN (z) ≡ 〈a; (γL)N | R̂(z) |a; (γL)N 〉 , (14a)

Rb(N−1)(z) ≡ 〈b; (γL)N−1| R̂(z) |b; (γL)N−1〉 (14b)

give the radiative shifts of the levels a and b, both due
to their interaction with the photon vacuum and with
the laser photons. The off-diagonal matrix elements of
the level-shift operator also include, in principle, radiative
shifts, but, in what follows, we will make the usual [6]

approximation

RaNb(N−1)(z) ≡ 〈a; (γL)N | R̂(z) |b; (γL)N−1〉
� 〈a; (γL)N | V̂ |b; (γL)N−1〉 , (15a)

Rb(N−1)aN (z) ≡ 〈b; (γL)N−1| R̂(z) |a; (γL)N 〉
� 〈b; (γL)N−1| V̂ |a; (γL)N 〉 . (15b)

This approximation is, as a matter of fact, a strict consequence
of the rotating wave approximation: if we consider that there
can be no transitions whereby the atom absorbs a laser photon
while going from the excited state |b〉 to the ground state
|a〉, and, reciprocally, no transitions whereby the atom emits
a photon while going from the ground to the excited state,
then Eq. (15) is strictly correct. As such, in the rotating wave
approximation, the off-diagonal elements of the level shift
operator Eq. (12) are fully encapsulated by the lowest-order
approximation in the interaction Hamiltonian. We write

RaN b(N−1) = R∗
b(N−1) aN =

√
N 〈a; γL| V̂ |b; 0〉 ≡

√
NV,

(16)

where we introduced V ≡ 〈a; γL| V̂ |b; 0〉. Here we recognize
an expression that is the (complex) Rabi frequency � ≡
2
√

NV/h̄.
In the small level-shift approximation, where the matrix

elements of R̂ are much smaller than the eigenstates of the
free Hamiltonian Ĥ0, the poles of the resolvent operator (that
is, the zeros of the determinant Eq. (11)) are given [6] by

z± = 1

2
[Ea + Eb + (2N − 1)h̄ωL + RaN (z0) + Rb(N−1)(z0)]

± 1

2

√
[� + RaN (z0) − Rb(N−1)(z0)]2 + |�|2. (17)

Here the reference energy z0 is the average energy of the states
|a; (γL)N 〉 and |b; (γL)N−1〉:

z0 = 1
2 (Ea + Eb + (2N − 1)h̄ωL). (18)

Beyond the small level-shift approximation, the equation that
determines the poles is a self-consistent one, and cannot be
solved a priori. In the present small level-shift case, we can
go on to determine the level shifts of Ea and Eb for the values
Eq. (17) of the complex argument of the resolvent operator.

B. Derivation of the master equation from the resolvent matrix

Before we go on to computing the diagonal elements of the
level-shift operator, we show how to derive a master equation
from the current resolvent formalism. We make use of the
relation between the time-evolution operator and the Green’s
operator (resolvent) for the atom-field system, namely [6]

Û (t) = 1

2πi

∫
C++C−

dz e− i
h̄
zt Ĝ(z). (19)

Here, the integration contour in the complex plane is given
by the junction of two lines, C+ and C−, two horizontal lines
situated, respectively, just above and just below the real axis,
and followed from right to left for C+, and from left to right for
C−. From the matrix elements Eq. (10), we can thence deduce
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the matrix elements of the evolution operator between the two
states of the subspace of interest. From Eqs. (10) to (19), we

derive (keeping in mind that the detuning is defined through
� ≡ ωL − ω0)

Ua(t) ≡ 〈a; (γL)N | Û (t) |a; (γL)N 〉 = e− i
h̄
z+t

(
z+ − Eb(N−1) − Rb(N−1)(z+)

z+ − z−

)
+ e− i

h̄
z−t

(
z− − Eb(N−1) − Rb(N−1)(z−)

z− − z+

)

= 1

2

[(
1 + � + RaN (z0) + Rb(N−1)(z0) − 2Rb(N−1)(z+)√

[� + RaN (z0) + Rb(N−1)(z0)]2 + |�|2
)

e− i
h̄
z+t

+
(

1 − � + RaN (z0) + Rb(N−1)(z0) − 2Rb(N−1)(z−)√
[� + RaN (z0) + Rb(N−1)(z0)]2 + |�|2

)
e− i

h̄
z−t

]
, (20a)

Ub(t) ≡ 〈b; (γL)N−1| Û (t) |b; (γL)N−1〉 = e− i
h̄
z+t

(
z+ − EaN − RaN (z+)

z+ − z−

)
+ e− i

h̄
z−t

(
z− − EaN − RaN (z−)

z− − z+

)

= 1

2

[(
1 − � − RaN (z0) − Rb(N−1)(z0) + 2RaN (z+)√

[� + RaN (z0) + Rb(N−1)(z0)]2 + |�|2
)

e− i
h̄
z+t

+
(

1 + � − RaN (z0) − Rb(N−1)(z0) + 2RaN (z−)√
[� + RaN (z0) + Rb(N−1)(z0)]2 + |�|2

)
e− i

h̄
z−t

]
, (20b)

Uab(t) ≡ 〈a; (γL)N | Û (t) |b; (γL)N−1〉 = e− i
h̄
z+t

( 1
2�

z+ − z−

)
+ e− i

h̄
z−t

( 1
2�

z− − z+

)

= 1

2
�

[
e− i

h̄
z+t − e− i

h̄
z−t√

[� + RaN (z0) + Rb(N−1)(z0)]2 + |�|2
]

(20c)

We can then construct the master equation, this time for the atom-field density matrix

ρ̂(t) = A(t) |a; (γL)N 〉 〈a; (γL)N | + B(t) |b; (γL)N−1〉 〈b; (γL)N−1| + C(t) |a; (γL)N 〉 〈b; (γL)N−1|
+C∗(t) |b; (γL)N−1〉 〈a; (γL)N | . (21)

To do this, once again we construct a vector

ρ(t) = [B(t),C(t),C∗(t)] (22)

out of three of the four coefficients [with A(t) = 1 − B(t)], and for these coefficients we write the equation

ρ(t + t0) = U (t)ρ(t0) + U(t), (23a)

with

U (t) =
⎡
⎣ −U ∗

ab(t)Uab + U ∗
b (t)Ub(t) U ∗

ab(t)Ub(t) U ∗
b (t)Uab(t)

−U ∗
a (t)Uab(t) + U ∗

ba(t)Ub(t) U ∗
a (t)Ub(t) U ∗

ba(t)Uab(t)
−U ∗

ab(t)Ua(t) + U ∗
b (t)Uba(t) U ∗

ab(t)Uba(t) U ∗
b (t)Ua(t)

⎤
⎦ (23b)

and

U(t) =
⎡
⎣U ∗

ab(t)Uab(t)
U ∗

a (t)Uab(t)
U ∗

ab(t)Ua(t)

⎤
⎦. (23c)

We can then Taylor-expand the evolution equation at the first order in t , yielding

dρ

dt
= lim

ε→0

1

ε
[(U (ε) − 1l)ρ(t) + U(ε)]. (24)

This is the abstract, general form of the master equation. It
remains to be verified that it matches the quantum optical
Eq. (4) of Mollow. Substituting Eq. (20) into Eq. (23) yields
cumbersome expressions, which we will not reproduce here as
they are of limited relevance. It is better, at this stage, to turn
to an explicit determination of the level shifts.

C. Determination of the level shifts

It then becomes important to obtain the radiative energy
shifts of the quantum states |a; (γL)N 〉 and |b; (γL)N−1〉 under
the effect of the interaction Hamiltonian. It is well known [2,4]
that, under the influence of a strong driving laser field, a two-
level system exhibits the so-called dressed states, with energy
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E± = (Ea + Eb + (2N − 1)h̄ωL)/2 ± (1/2)
√

|�|2 + �2. As
can be seen from Eq. (17), this radiative shift, which we
could call the Rabi dressing shift, has already been taken
into account by our working in the two-dimensional subspace
consisting of |a; (γL)N 〉 and |b; (γL)N−1〉, without any need to
include the diagonal matrix elements of the level-shift operator.
The Rabi dressing shift corresponds to a process whereby
the atom repeatedly undergoes transitions between its ground
state a and excited state b while absorbing and emitting laser
photons γL. In our formalism, this is taken into account at the
outset. Let us now turn to the explicit determination of the
shifts, as prescribed by Eq. (14). We have so far performed
the rotating wave approximation, and for consistency will
continue doing so here. We need to compute the diagonal
matrix elements of the level-shift operator Eq. (12). Starting
with the easier case of the expectation value in state |a; (γL)N 〉,
we note that, at the rotating wave approximation, only photon

absorption can excite the atom. However, from the reference
state |a; (γL)N 〉, only laser photons are available for absorption,
and this absorption process takes the system to |b; (γL)N−1〉,
which cannot contribute because of the projector Q̂ defined
by Eq. (13). Hence, the level shift is zero [18]. Now turn
to the expectation value in state |b; (γL)N−1〉. Identically, the
projector Q̂ roots out the contribution of Rabi flopping to
the shift, consistent with the fact that this contribution has
intrinsically been included in the treatment. However, this
time, a photon of arbitrary characteristics can be emitted
and reabsorbed from and to state |b; (γL)N−1〉. Interestingly,
it needs to be reabsorbed at the last step of the process, as
|b; (γL)N−1〉 cannot be an intermediate state. Explicitly, only
a single series of diagrams contributes, the first three of which
are represented on Fig. 1. The series is given by the sum over
all (integer) numbers of Rabi oscillations inside the self-energy
loop of level b:

〈b; (γL)N−1| R̂(z) |b; (γL)N−1〉

= 〈b; (γL)N−1| V̂ Q̂

z − Ĥ0
V̂ |b; (γL)N−1〉 + 〈b; (γL)N−1| V̂ Q̂

z − Ĥ0
V̂

Q̂

z − Ĥ0
V̂

Q̂

z − Ĥ0
V̂ |b; (γL)N−1〉 + . . .

=
∑
λ=±

∫
d̃q|Gab(λ)(q)|2 1

z − Ea − (N − 1)h̄ωL − h̄c|q|

× [1 + (N − 1)|V |2 1

z − Ea − (N − 1)h̄ωL − h̄c|q|
1

z − Eb − (N − 2)h̄ωL − h̄c|q| + . . .]

=
∑
λ=±

∫
d̃q|Gab(λ)(q)|2 1

z − Ea − (N − 1)h̄ωL − h̄c|q|

× 1

1 − (N − 1)|V |2(z − Ea − (N − 1)h̄ωL − h̄c|q|)−1(z − Eb − (N − 2)h̄ωL − h̄c|q|)−1

=
∑
λ=±

∫
d̃q|Gab(λ)(q)|2 (z − Eb − (N − 2)h̄ωL − h̄c|q|)

(z − Ea − (N − 1)h̄ωL − h̄c|q|)(z − Eb − (N − 2)h̄ωL − h̄c|q|) − (N − 1)|V |2 . (25)

Here, to be able to carry out the resummation, we have
ignored, as is customary [6], nested loop, and overlapping
loop, diagrams. Now, as we learned in Sec. IV A, we will need
to take the value of this shift for z = z0 given by Eq. (18),
as well as for z = z± given by Eq. (17). Notice, first, that, by
definition, the natural shift of the excited level b is given by

Nb =
∑
λ=±

∫
d̃q

|Gab(λ)(q)|2
h̄(ω0 − c|q|) + iε

, (26)

where it is understood that the limit ε → 0 is to be taken,
allowing one to compute the real part (Lamb-type shift) and
imaginary part (natural linewidth) of the shift with the help of
the Sochocki-Plemelj theorem [6]. Here the coupling function

is given by

Gab(λ)(q) = 〈a; (q,λ)| V̂ |b; 0〉 . (27)
We deduce the natural linewidth � = −2 Im Nb:

� = 2π
∑
λ=±

∫
d̃q

|Gab(λ)(q)|2
h̄c

δ

(
|q| − ω0

c

)
. (28)

Now, we investigate how interaction with the laser field
modifies this natural linewidth. For that we need to compute the
shift Eq. (25), as explained just above, for z = z0 and z = z±.
We will focus in what follows on the imaginary part of the
shift, considering that the real part can simply be reabsorbed,
as is common, in the value Eb of the energy of level b. We
have, from Eqs. (18) and (25), the shift

〈b; (γL)N−1| R̂(z0) |b; (γL)N−1〉 =
∑
λ=±

∫
d̃q|Gab(λ)(q)|2

1
2 [� + 2h̄(ωL − c|q|)]

1
2 [−� + 2h̄(ωL − c|q|)] 1

2 [� + 2h̄(ωL − c|q|)] − (N − 1)|V |2
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FIG. 1. Diagrams corresponding to the processes contributing to the energy shift of the state |b; (γL)N−1〉. The series continues by inserting
further Rabi oscillations (absorption and emission of laser photons) between the ground state a and the excited state b, inside the self-energy
loop. The double line represents the bound electron, red wavy lines are laser photons, while the violet wavy line is the intermediate (self-energy
loop) photon.

and the zeros of the denominator can be found for

|q|± = ωL

c
± 1

2h̄c

√
�2 + 4(N − 1)|V |2, (29)

from which we deduce, after a few steps of algebra (and with
the help of the Sochocki-Plemelj theorem), that the decay
width for z = z0 is

�0 = 2π
∑
λ=±

∫
d̃q

|Gab(λ)(q)|2
2h̄c

∑
±

δ

(
|q| − ωL

c

∓ 1

2h̄c

√
�2 + 4(N − 1)|V |2

)

×
(

1 ∓ �√
�2 + 4(N − 1)|V |2

)
. (30)

With a similar method, we can establish, on the basis of
Eqs. (17) and (25), the decay width for z = zε (with ε = + or
−) as

�ε � 2π
∑
λ=±

∫
d̃q

|Gab(λ)(q)|2
2h̄c

∑
±

δ

(
|q| − ωL

c

∓ 1

2h̄c

√
�2 + 4(N − 1)|V |2

− ε

2h̄c

√
�2 + 4N |V |2

)

×
(

1 ∓ �√
�2 + 4(N − 1)|V |2

)
. (31)

Now, we specify that the atom-field interaction Hamiltonian is
given by

V̂ = e

me

Â(x̂,t = 0) · p̂. (32)

The matrix elements of this Hamiltonian have been thoroughly
studied, e.g., by Seke [19]. In our notation, for all (relevant
[20]) transitions of the electric dipole type, the coupling
function as we defined it [see Eq. (27)] varies very slowly
except when the frequency becomes comparable to a cutoff
frequency of the order of (Zα)−1 times the (Z-scaled) Hartree
energy EC = (Zα)2mec

2. No frequency featured in the Dirac
δ distributions of Eqs. (30) and (31) approaches that order of
magnitude. Indeed, we consider that the laser frequency ωL

is broadly of the same magnitude as the transition frequency
ω0. The detuning, hence, is at most, also of the order ω0, but
typically much smaller (as one often tries to achieve resonance
ωL = ω0). The coupling strength(s)

√
N |V | (and

√
N − 1|V |),

in turn, are much smaller than the atomic resonance frequency
(both for experimental reasons, and because the two-level
formalism with the attending rotating wave approximation
would break down if it were not the case [21]). As such,
the couplings in Eqs. (30) and (31) may be approximated
by their value at the atomic transition frequency. Explicitly,
we have

�0 � �, (33)

where the calculation is different for, on the one hand, the
case where � � |�| or � ∼ |�| and, on the other hand, the
case where � � |�|, but the result Eq. (33) is the same. For
� � |�| or � ∼ |�|, we also found that

�± � �. (34a)

However, for large detuning � � |�| compared to the Rabi
frequency, we obtain the somewhat more involved results

�± �
[

1 + θ (±�)

(
ωL

ω0
− 1

)]
�, (34b)

where we see that either one of the �± =
−2Im 〈b; (γL)N−1| R̂(z±) |b; (γL)N−1〉 may be modified
in function of the sign of the detuning �. We will therefore
focus on reasonably small detunings such that � � |�|
or � ∼ |�| in the final steps of our derivation. For such
detunings, the interaction with the driving field keeps the
linewidth of level b intact, to a very good approximation, even
in the strong-field case.

D. QED master equation and discussion

Let us restart from the matrix elements Eq. (20) of the
evolution operator. Therein, we plug the results from the
previous Sec. IV C, namely

RaN (z0) = RaN (z±) = 0, (35a)

Rb(N−1)(z0) = Rb(N−1)(z±) = − i

2
�, (35b)
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which yields, from Eqs. (20) and (23), the matrix

lim
ε→0

U (ε) − 1l

ε
=

⎡
⎢⎣

−� i
2�∗ − i

2�

i� −i� − 1
2� 0

−i�∗ 0 i� − 1
2�

⎤
⎥⎦,

(36a)

where we made use of

Im z+ + Im z− = Im[RaN (z0) + Rb(N−1)(z0)]

= −�

2
,

and the vector

lim
ε→0

U(ε)

ε
=

⎡
⎣

0

− i
2�

i
2�∗

⎤
⎦, (36b)

which, on the basis of Eq. (24), establishes that the atom-field
density matrix obeys the Mollow master Eq. (4). As we have
mentioned above, this is sufficient to establish the Mollow
spectrum. We remember that, for large detunings � � |�|
compared to the Rabi frequency, the linewidth of the excited
level b is modified, which complicates the resulting master
equation away from that of Mollow [1]. As such, we might
expect corrections to the Mollow spectrum in that case, but
this is outside the scope of the work presented here.

Our formalism allows for the inclusion of further radiative
corrections to the Mollow spectrum. In our model, that of a
two-level atom at the rotating wave approximation, the only
contribution to the shifts which we have neglected are those of
nested self-energy loops for the excited level. We have opted,
in a sense, for a treatment sufficiently involved to yield the
Mollow spectrum, but no more. It would be very interesting
indeed to extend our treatment to the many-level case, which
allows more naturally for the inclusion of counter-rotating
terms which have been excluded here. Indeed, in our treatment,
the Rabi frequency is determined by the off-diagonal matrix
element of the resolvent operator, and is strictly equal to

the coupling strength between the atom and the laser. In
the presence of further atomic levels, available for virtual
transitions from either one of the two levels a and b

featured in the addressed transition, higher-order corrections
(for instance, of the polarization type) to the off-diagonal
element are to be expected, yielding corrections to the Rabi
frequency. It is anticipated that the standard method (see, e.g.,
Ref. [22] and references therein) to treat divergences in the
radiative energy shift of a bound electron should be modified
nontrivially to take the interaction with the external laser field
into account.

V. CONCLUSION

The generalized description of resonant light-matter inter-
actions which we have developed here allows for a natural
inclusion of radiative corrections, already well understood
in the case of weak-field excitations [8], in the description
of multiphoton processes. Specifically, we anticipate, as ex-
plained just above, that in a complete account of fluorescence
spectra, not only the position of the emission lines and the
radiative decay widths have to be corrected by QED radiative
corrections, as would be the case in the weak-field limit [8],
but so does the Rabi frequency. More broadly, a formulation
of resonant interactions between intense fields and atomic
systems provides novel means of testing the validity of strong-
field QED in a dynamical setting: indeed, while QED has been
benchmarked to ultimate accuracy with respect to the static fea-
tures of atoms and ions, such as transition energies or g-factors
[23], the same may not be said when dynamical phenomena,
e.g. resonant photon scattering, are concerned. Laser spec-
troscopic experiments, for instance, would have the sufficient
precision for observing dynamical QED phenomena, which are
anticipated to play an enhanced role at higher atomic numbers,
and, correspondingly, at higher atomic transition frequencies.
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