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Landau levels for an electromagnetic wave
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In this paper we show that the frequencies of propagating electromagnetic waves (photons) in a rotating
dielectric medium obey Landau quantization. We show that the degeneracy of right and left helicities of photons
is broken on the lowest Landau level. In homogeneous space this level is shown to be helical; i.e., left and right
helical photons counterpropagate. This leads to a helical vortical effect for photons, which can be understood as
an inverse of the optical torque.
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I. INTRODUCTION

Photons are spin-1 massless particles and are described by
helicity, a scalar product of spin and propagation direction,
which can only take +1 or −1 values. It is a natural spin-
momentum locking of a photon. Therefore, when a photon’s
momentum direction is adiabatically changed and returned to
the original direction, the spin acquires a phase—the Berry
phase [1]. This phase was experimentally observed in a
system of coiled optical fiber [2,3]. Berry-curvature-modified
semiclassical equations of photons’ wave-packet motion were
also developed to predict and measure qualitatively similar
effects due to the topology of light [4,5].

Due to the natural Berry phase of an electromagnetic wave,
there are a number of edge modes that share a resemblance
with the fermionic Hall phases. Chiral electromagnetic edge
modes occurring at the boundaries and domain walls of
gyrotropic systems such as magnetized plasma [6], optical
isomers [7], metals with anomalous Hall effect [8], and
others are analogous to the quantum Hall effect [9,10] for
photons [11] and were recently observed [12,13] in photonic
crystals. Surface electromagnetic waves occurring at the
dielectric media interface at which the dielectric constant
changes sign (see Refs. [14,15]) were recently shown to be
a topological insulator analog [16–18] for electromagnetic
waves [19].

In this paper we describe another topological property of
electromagnetic waves revealed under medium rotation. The
polarization rotation of an electromagnetic wave propagating
in a rotating medium was studied in many papers, both
theoretically [20–23] and experimentally [24]. Moreover, it
is understood that the motion of the medium is an effective
vector potential seen by photons propagating in the medium
(for example, see Refs. [14,25]). In Refs. [26,27] the Landau
level quantization of photons inside the rotating medium was
shown. Further on, the Aharonov-Bohm effect for photons
was theoretically proposed in Ref. [28]. In this paper we
study the propagation of photons inside a uniformly rotating
dielectric medium and show, in accord with Ref. [26], there are
solutions similar to the solution of the Schrödinger equation
for an electron in a magnetic field, namely, the Landau wave
functions and corresponding Landau levels [29]. Importantly,
compared to Refs. [26,27] we find an additional solution,
namely, a gapless helical zeroth Landau level. In this case,

photons with opposite helicities counterpropagate along the
axis of rotation and do not mix with each other. Because
of this, there is a finite-temperature nonzero helicity current
in a gas of photons, the so-called helical vortical effect (or
chiral vortical effect). The helical Landau level is analogous
to the chiral zeroth Landau level of three-dimensional Dirac
fermions in a magnetic field (for example, see Ref. [30]). So
the helical vortical effect for photons is analogous to the chiral
magnetic effect for Dirac fermions (see Ref. [31] for a review).
We note that the helical Landau level found in this paper is
called the zero mode, whose existence is due to the nontrivial
topology (Berry phase) of electromagnetic waves described by
Maxwell equations [1,2]. Note, a solution physically similar
to the helical mode solution was shown [4,32] to occur in a
whispering-gallery setup. Finally, the helical vortical effect can
be understood as an inverse to the optical torque that circularly
polarized light exerts on the dielectric medium it propagates
through [33].

In a recent experimental work creation of synthetic Landau
levels for photons in optical resonators was reported [34]. It is
possible that the Landau level for photons and the helical vorti-
cal effect can be observed in experiments with slow light [35].

II. LANDAU LEVELS FOR ELECTROMAGNETIC WAVES

Maxwell equations describing the propagation of an elec-
tromagnetic wave in the dielectric medium described by
constant ε and μ in the absence of currents and charges are

∇ · B = 0, ∇ × H = 1

c

∂D
∂t

, (1)

∇ · D = 0, ∇ × E = −1

c

∂B
∂t

. (2)

Assume that the dielectric medium is moving with a speed
v. Relations between the components of the electromagnetic
field in the moving dielectric are (see Sec. 76 of Ref. [14])

D + 1

c
[v × H] = ε

(
E + 1

c
[v × B]

)
, (3)

B + 1

c
[E × v] = μ

(
H + 1

c
[D × v]

)
. (4)
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In the limit |v|/c � 1, to the lowest order in |v|/c, we write

D = εE + εμ − 1

c
[v × H], (5)

B = μH − εμ − 1

c
[v × E]. (6)

For the sake of generality we assume an infinite system with
homogeneous ε > 0 and μ > 0. We then introduce Riemann-
Silberstein fields,

F(±) = √
εE ± i

√
μH, (7)

where the ± sign corresponds to photon helicity. For time-
independent velocity v, we rewrite the Maxwell equations,(

∇ − εμ − 1

c2
v∂t

)
× F(±) = ±i

√
εμ

c
∂tF(±), (8)

∇ ·
[

F(±) ± εμ − 1

i
√

εμc
[v × F±]

]
= 0, (9)

which bear a similarity with the Dirac equation (for a review
of such an approach see Ref. [36]). Here velocity v plays
the role of a vector potential of an effective magnetic field.
We assume velocity to have a cylindrical symmetry, described
by

v = v(−yex + xey), (10)

where v is the angular velocity. Compare vector field (10)
describing rotation with the symmetric gauge of the magnetic
field. As an example, one can keep in mind a dielectric medium
of cylindric form, which is rotating about its axis. However,
as mentioned above, we are going to study a rotating system
infinite in all directions. Even though it is not experimentally
possible, we wish to study this case in order to understand
the nature of solutions. For finite systems it is straightforward
to set boundary conditions by integrating Eqs. (8) and (9).
We search for solutions in the form ∝e−iωt eipzz. For the sake
of simplicity, we introduce � =

√
εμ

c
ω and V = εμ−1

c2 vω. In
the following we choose V > 0, and as mentioned above we
assume the system to be infinite in all directions. Components
of Eq. (8) are written as

�yF
(±)
z − ipzF

(±)
y = ±�F (±)

x , (11)

ipzF
(±)
x − �xF

(±)
z = ±�F (±)

y , (12)

�xF
(±)
y − �yF

(±)
x = ±�F (±)

z , (13)

where �y ≡ (−i∇y + V x) and �x ≡ (−i∇x − Vy) are the
updated momentum operators. After straightforward transfor-
mations, assuming all components of F(±) are nonzero, we
obtain for the F (±)

z component an equation

(
�2

y + �2
x

)
F (±)

z = (
�2 − p2

z

)
F (±)

z . (14)

The equation has exactly the form of the Schrödinger equation
describing an electron in a uniform magnetic field, chosen to
be described in a symmetric gauge [29]. Hence we obtain the
Landau solutions to the equation. We label the eigenvalues and

energies by index n, and write

F (±)
z,n = e−V |ζ |2/2

(
∂ζ̄ − V

2
ζ

)n

f (ζ̄ ), (15)

�2
n = 4V

(
n + 1

2

)
+ p2

z , (16)

where ζ = x + iy, ζ̄ = x − iy, and f (ζ̄ ) is an arbitrary
function of ζ̄ . The function can be presented through basis
states as

f (ζ̄ ) =
∑
m

fm(ζ̄ ) =
∑
m

√
Nmζ̄m, (17)

where Nm is a renormalization constant. Each fm corresponds
to the mth orbit of the state on the nth level. For example, for
n = 0 each fm corresponds to an orbit with a radius |ζ |m =√

m/V .
The other two components of F± are expressed through

F (±)
z as

F (±)
x = ±�

�2 − p2
z

(
i�y ± pz

�
�x

)
F (±)

z , (18)

F (±)
y = ±�

i
(
�2 − p2

z

)(
�x ± i

pz

�
�y

)
F (±)

z . (19)

The solutions found from Eq. (8) are consistent with Eq. (9).
This can be seen by taking the divergence operation of
expression (8).

The obtained spectrum, keeping in mind that ω > 0 and
εμ − 1 > 0, is rewritten in a more transparent form:

ωn = 2
εμ − 1

εμ
v

(
n + 1

2

)

+
√(

2
εμ − 1

εμ
v

)2(
n + 1

2

)2

+ c2p2
z

εμ
. (20)
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FIG. 1. The spectrum of the Landau levels for electromagnetic
waves. Levels ωn described by Eq. (20) are plotted as a dashed green
line for n = 0 and a dashed orange line for n = 1. Two branches
of the lowest Landau level described by Eq. (24) are plotted in red
and blue. This level is gapless and helical; i.e., red corresponds to
+ helicity while blue corresponds to − velocity for a v > 0 choice
of angular velocity of rotation. We have introduced a characteristic
energy scale w = 2 εμ−1

εμ
v.
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Note that the spectrum does not depend on the helicity index
(±). Hence the obtained solutions are degenerate in helicity.
See Fig. 1 for a description of the n = 0 and n = 1 Landau
levels.

III. HELICAL MODE

In the previous section we assumed that all components of
F(±) are nonzero. We observe that there is an ambiguity of
expressions (18) and (19) if one sets F (±)

z = 0 and �2 = p2
z

in them. Hence, in the following we examine the F (±)
z = 0

case. In the following we again consider infinite geometry and
assume propagation in z direction, such that F(±) ∝ e−iωt eipzz.
In this case we obtain, for Eq. (8),

ipzF
(±)
y = ∓�F (±)

x , (21)

ipzF
(±)
x = ±�F (±)

y , (22)

�xF
(±)
y − �yF

(±)
x = 0, (23)

from which one gets F (±)
x = isF (±)

y , with solution index
s = ±. For s = + we get (�x − i�y)F (±)

y = −i(2∂ζ +
V ζ̄ )F (±)

y = 0, which can be met by F (+)
y = f (ζ̄ ) exp(−V

2 |ζ |2)
solution, with arbitrary function f (ζ̄ ), given a requirement
for the solution to decay as |ζ | → ∞. For s = − we get
(�x + i�y)F (±)

y = −i(2∂ζ̄ − V ζ )F (±)
y = 0, which cannot be

met by solutions decaying at large |ζ |. Hence, only the s = +
solution exists for the v > 0 choice of the angular velocity of
dielectric media rotation. The spectrum of the s = + solution
for ± helicity is

ω± = ∓
√

c2

εμ
pz, (24)

and, together with the ω > 0 condition, we obtain a require-
ment that + helical photons must have pz < 0, and that −
helical photons must have pz > 0. Hence, such a solution is
purely helical; i.e., opposite helicities counterpropagate. See
Fig. 1 for the plot of the helical Landau level. If the rotation is
switched to an opposite, v → −v, the propagation structures
of different helicities switch places. Note that the spectrum
(24) satisfies the �2 = p2

z assumption which we started this
section with. Hence solutions described by F (±)

z 	= 0 obtained
in Eq. (15) and the helical F (±)

z = 0 solution are different.

IV. HELICAL VORTICAL EFFECT FOR PHOTONS

Here we calculate the equilibrium helicity current in the
direction of the rotation axis. For that we assume a gas of
photons propagating inside a hypothetical infinite and rotating
dielectric medium. The current of a given photon helicity is

j [±]
z =

∑
n

∫ +∞

−∞

dpz

4π2

(
εμ − 1

c2
|v|ωn

)
dωn

dpz

g(ωn), (25)

where a ( εμ−1
c2 |v|ωn) > 0 factor is due to the Landau level

degeneracy [29], dωn

dpz
is the photon velocity along the z

direction, and g(ωn) = (eωn/T − 1)
−1

is the Bose-Einstein
distribution function at nonzero temperature T . Summation

is over all Landau levels obtained in previous sections and
given by Eqs. (20) and (24). Only the lowest Landau level
given by Eq. (24) is helical; hence it is the only level that
contributes to the helicity current. Calculations show that the
helicity current is

j [H]
z = j [−]

z − j [+]
z =

(
εμ − 1

c2
v

)
T 2

12
. (26)

This current means that, in a hypothetical infinite and rotating
dielectric medium, opposite helicities of photons will counter-
propagate. The net photon current is zero; i.e., j [−]

z + j [+]
z = 0

as expected in equilibrium. This effect can be understood as
an inverse to the optical torque that circularly polarized light
exerts on the dielectric medium it propagates through [33].

V. DISCUSSION AND CONCLUSIONS

For an inhomogeneous case when ε and μ are functions of
coordinates, Eqs. (8) and (9) will change (see, for a review,
Ref. [36]). For example, imagine a rotating cylinder, for which
ε = 1 and μ = 1 outside of the cylinder, and ε 	= 1 inside.
Helicities will then be mixed due to the inhomogeneous ε and
μ functions. The helicity degeneracy of solutions of Maxwell
equations described by Eqs. (15) and (20) will not change in
finite geometry. However, the helical mode solutions (24) will
change due to helicity mixing. Also, it is important to note
that there is a natural limit on the radius of a rotating cylinder
given by condition |v|/c � 1. Therefore, if it will be possible
to excite such a helical mode in finite geometry, there will be
spatial separation of copropagating opposite-helicity waves.
For example, in a particular direction of cylinder rotation, the
intensity of + helicity of the pz > 0 wave will peak at the
surface of the cylinder, while intensity of − helicity will peak
closer to the axis of the cylinder.

We note a striking similarity of the helical mode obtained
in the present paper to the chiral lowest Landau level of a
three-dimensional Dirac fermion (for example, see Ref. [30]).
The similarity is due to the nontrivial Berry curvature of
photons and Dirac fermions. In a rotating gas of photons
at finite temperature, opposite helicities counterpropagate
along the axis of rotation and result in a finite helicity
current [see Eq. (26)]. It is the helical vortical effect, an
analog of the chiral magnetic effect for Dirac fermions (see
Ref. [31] for a review). The calculation of the helical vortical
effect (chiral vortical effect) for photons appeared in this
paper shortly after Refs. [37,38]. We believe the results of
Refs. [37,38] and of the present paper, all being obtained
by different methods, complement each other. The present
paper utilizes the zero-mode description of the helical vortical
effect.

It is tempting to search for photon Landau levels in
pulsars; however, we note the dielectric function in the pulsar
atmosphere is ε ∼ 1, and the levels are hard to resolve due
to the εμ − 1 � 1 factor. It is possible that Landau levels for
photons proposed in this paper can be observed in experiments
with slow light [35]. It requires further thorough investigation.

To conclude, in this paper we have described the occurrence
of the Landau quantization of the frequency of photons propa-
gating in a rotating dielectric medium. Solutions described in
Sec. II are in accord with previous studies [21,23,26]. In Sec. III
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we have found an additional solution, which we called the
helical mode solution [see Eq. (24)]. This solution describes
photons with counterpropagating helicities. The solution leads
to a helical vortical effect in a gas of photons at finite
temperature. We note that the helical vortical effect can be
understood as an inverse of the optical torque [33].
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