
PHYSICAL REVIEW A 96, 043828 (2017)

Eigenmodes of spin vertical-cavity surface-emitting lasers
with local linear birefringence and gain dichroism
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We present a general method for the modeling of semiconductor lasers such as a vertical-cavity surface-emitting
laser and a vertical-external-cavity surface-emitting laser containing multiple quantum wells and involving
anisotropies that may reveal (i) a local linear birefringence due to the strain field at the surface or (ii) a
birefringence in quantum wells due to phase amplitude coupling originating from the reduction of the biaxial
D2d symmetry group to the C2v symmetry group at the III-V ternary semiconductor interfaces. From a numerical
point of view, a scattering S-matrix recursive method is implemented using a gain or amplification tensor derived
analytically from the Maxwell-Bloch equations. It enables one to model the properties of the emission (threshold,
polarization, and mode splitting) from the laser with multiple quantum well active zones by searching for the
resonant eigenmodes of the cavity. The method is demonstrated on real laser structures and is presently used for
the extraction of optical permittivity tensors of surface strain and quantum wells in agreement with experiments.
The method can be generalized to find the laser eigenmodes in the most general case of circular polarized pumps
(unbalance between the spin-up and spin-down channels) and/or dichroism allowing an elliptically polarized
light emission as recently demonstrated experimentally when the linear birefringence is almost compensated
[Joly et al., Opt. Lett. 42, 651 (2017)].
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I. INTRODUCTION

In the past decade, continuous research efforts have been
devoted to the physics and to the development of spin lasers
as a source of coherent light with enhanced performances (for
a recent review, refer, e.g., to Ref. [1]). Spin lasers introduce
strong nonlinearities at the laser threshold enabling a kind
of amplification of the spin information with a spin-controlled
carrier injection. Spin lasers would provide a number of advan-
tages over conventional vertical-cavity surface-emitting lasers
(VCSELs) for future optical communication systems such
as spin driven reconfigurable optical interconnects [2], fast
modulation dynamics [3,4], and polarization control [5,6] as
well as higher performances such as laser threshold reduction
[7,8], improved laser intensity, and polarization stability. Laser
threshold reduction was observed in these devices [7,9,10] and
explained theoretically [8,11,12]. Additionally, they have been
shown to exhibit a polarization emission that is much more
directional than conventional side-emitting laser diodes.

Currently, there exist two kinds of surface-emitting semi-
conductor lasers: highly integrated monolithic microcavity-
type VCSELs that allow low current threshold devices and
vertical-external-cavity surface-emitting lasers (VECSELs).
Moreover, optical [5,13–15] and electrical [6,16] spin injection
were already achieved in monolithic VCSEL structures. A
clear control of the laser polarization via optical spin injection
was also demonstrated [5,13,17]. In particular, experimental
investigations showed that the output circular polarization
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degree can exceed the input one via nonlinear gain effects
[13]. Even more recently, a clear controllable elliptically
polarized laser emission was demonstrated in VECSELs via
circular optical pumps once the intrinsic linear birefringence
of the device is compensated [18]. Quantum well VECSELs
are very promising solutions for spin lasers along with a
class-A dynamics low noise regime [19,20]. For spin-laser
functionality, optically pumped III-V semiconductor VECSEL
technology is a candidate of choice due to its inherent easier
control of in-plane isotropy of material optical properties.
Typically, resonant optical cavities of VECSELs are made
of a semiconductor chip, an external output coupler, a Bragg
reflector, and a multiple quantum well (MQW) [21] or quantum
dot gain medium.

Additional anisotropies in the cavity, e.g., linear birefrin-
gence or linear gain anisotropy, generally result, however, in
preferential linearly polarized laser emission (see, e.g., the
results presented in Ref. [18]) and also lead to an additional
coupling between modes. These impact on the polarization
dynamics of the electrically pumped VCSEL [22–24] by
pinning the polarization mode to a certain linearly polarized
state [10,25–30]. The dynamics of the circular polarization
degree experiences very fast oscillation in the gigahertz range,
much faster than the relaxation oscillation [31]. This results in
mode beating [4] involving two main frequencies the splitting
of which is tuned by the birefringence.

From the pure quantum-mechanical point of view, the
optical gain involves an electron-hole recombination process
governed by the optical selection rules for dipolar transitions.
This is associated with the conservation of the angular momen-
tum in active media or QWs. From the material engineering
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point of view, binary (GaAs, InP, GaN) and ternary (InGaAs,
GaAsP) III-V compounds enable radiative recombination
of the out-of-equilibrium spin-polarized carriers pumped or
electrically injected. The Maxwell-Bloch equations, refined in
terms of the so-called spin-flip model (SFM) in the mid-1990s
[25,32], describe their dynamics. The evaluation of the gain
properties in multilevel systems possibly involving multiple
lasing optical transitions has recently been proposed using
the steady ab initio laser theory (SALT) [31,33,34]. However,
what is missing in the latter approach is an evaluation of the
optical gain properties involving the spin degree of freedom
together with and its possible anisotropy due to the symmetry
breaking between the respective in-plane [110] and [110] crys-
tallographic axes as demonstrated recently [35]. In practical
situations, a possible way of considering a gain anisotropy is
to include differential optical losses [25,32], without, however,
being able to correctly describe additional mode coupling. An
alternative method, proposed here, is to determine the exact
properties of the dipolar interband transitions from the relevant
ab initio orbital bonding at interfaces. Gain anisotropy may
also lead to a generation of mode splitting as observed recently
[36–38]. The need for a full microscopic understandings and
fundamentals of (spin) VCSELs sets the necessity to consider
the particular role of linear and circular anisotropies (circular
pumps) on the properties of the polarization emission [22,39]
competing with any local host birefringences (surface strain
and interfaces).

In this paper we propose to develop a detailed theoretical
and computational description of the emission properties of
optically active multiple quantum well semiconductor spin
lasers (spin VCSELs) in finding the properties of eigenmodes
vs selected layer birefringence and optical gain anisotropy in
single mode or dual frequency operations. This is performed by
considering a quantum-mechanical model for the calculation
of the optical gain involving native linear anisotropy and
possible elliptically polarized carrier injection together with
layer-by-layer electromagnetic wave propagation within the
optically anisotropic multilayered semiconductor cavities. We
will only consider dual coupling between two transverse
modes in dual frequency operation as recently investigated
in a series of experiments [40–44]. We do not consider
multifrequency laser operations involving several sets of
longitudinal modes (Refs. [45,46]) together with their pos-
sible coupling because they are characterized by the same
polarization properties. By this way, the coupling between
longitudinal modes in multifrequency operation should not
lead to polarization beating in the time domain like we will
consider here.

The paper is organized as follows. In Sec. II, we demon-
strate the generalization of the Maxwell-Bloch equations
including linear gain dichroism and analytically derive the
laser eigenmodes and the gain matrix which affects the electric-
field amplitude crossing the active zone. Then, in Sec. III, we
introduce matrix formalism with recursive calculation which
enables us to model the emission and the electromagnetic wave
propagation between multiple QWs and find the eigenmodes
and resonance conditions. A clear demonstration of the method
is presented in Sec. IV on two real 1/2-VCSEL structures
(a laser with a half-integrated resonator and half-external one
with a ternary alloyed QW) with linear birefringence and linear

gain dichroism. The anisotropic permittivity tensors of surface
and QWs are extracted from the experimental results by using
fitting analysis. The formalism can be applied in the future to
the emission of circularly polarized emission under electrical
or optical spin pumps.

II. PHYSICAL AND MATERIAL PROPERTIES
OF THE VECSEL AND 1/2 VECSEL

A. Generalized Maxwell-Bloch equations
with linear anisotropies

The carrier-photon dynamics of spin lasers may then
be modeled, from the basis of the Maxwell-Bloch equa-
tions [31,33,34,45–51], using a spin-dependent rate equation
analysis. The rate equations can provide a direct relation
between material properties and device parameters [3,12,52].
Generally, a common dynamic SFM originally developed by
San Miguel and coworkers two decades ago is used to describe
the left- or right-handed polarization switching and bistability
[25,32,50]. The polarization properties of the light generated
by VCSELs depend on the quantum numbers of the angular
momentum in the electronic states between which the optical
transitions take place generally under local strain fields. One
possibility of considering anisotropy is a generalization of the
equations with the considerable simplification of neglecting
the longitudinal variations within the system, by taking the
z average (where z is the direction of propagation of light)
of the optical constant in order to develop the equivalent of
the mean-field model in the 2 × 2 Jones vector analysis [39].
Such an approach, although first satisfactory, prevents a full
multiscale description treating the exact effect of the local
strain field on the optical birefringence and of the gain. The
full scattering matrix method [53,54] developed in this paper
fulfills all these requirements.

The Maxwell-Bloch dynamical equations link the electric
field E and the medium polarization P in a vectorial form vs
the spin-dependent carrier density, which may be different,
using electrical or optical elliptically polarized pumps. The
Maxwell-Bloch equations derive from the evolution of the
density matrix [33,34,47–50] under the action of the electrical
dipolar Hamiltonian Hd = −E · d, where d = 1

V

∑
(m)e · r(m)

is the host vector dipole moment of the electrons with the
charge e and the position vectors r(m) in the volume V and
space coordinate m (m = x = [100],y = [010],z = [001]).
In the case of the i-polarized electric field Ei it takes the
form Hd = −∑

i Ei d̂i with the off-diagonal matrix elements
between two levels |1〉 and |2〉, with μ ≡ d21,i = 〈1|d̂i |2〉 as the
dipolar coupling coefficient. In the slowly varying amplitude
approximation limit, rate equations for the dynamics of
the electric field E and carrier density can be determined
once one admits that the medium polarization P adiabatically
follows the electric-field dynamics according to P = χ̂E (χ̂ is
the susceptibility tensor). One admits here that the transverse
relaxation time of the optical polarizability is very short
corresponding to the main class-A and class-B lasers [55]. In
the semiconductor host constituting the optical cavity E and P
are linked by the dielectric constant (or optical refractive index)
that we will consider locally via a layer-by-layer approach.
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FIG. 1. Scheme of the quantum well and barrier system with
crystal axes.

However, crystallographic and electro-optical anisotropies
can cause the directions of the vectors E and P to slightly
differ in the active regions where carrier recombination takes
place. Even if the resulting optical gain only represents a
small fraction of the electromagnetic wave intensity in the
cavity, the noncollinearity property between E and P in QWs
is of first importance to understand polarizations and mode
coupling. Although beyond the scope of the present paper,
the noncollinearity between E and P also impacts on the
competition between circular pumps and native linear gain
anisotropy as observed in recent experiments [18,56].

We propose to tackle the problem of noncollinearity
between E and P by deriving a certain optical amplification
matrix describing the electric field entering the active zone
and its emission from the laser. We refer now to the sketch and
notations given in Fig. 1. Let us define the electromagnetic
field of the two-mode laser E(1,2) as a sum of two orthogonal
coupled lasing eigenmodes A(1,2)η(1,2) in the following way:

E =
∑
i=1,2

E(i)exp[i(ω(i)t − k(i)r)] + c.c.

=
∑
i=1,2

A(i)η(i)exp[i(ω(i)t − k(i)r)] + c.c., (1)

P =
∑
i=1,2

P(i)exp[i(ω(i)t − k(i)r)] + c.c., (2)

where the η(1,2) are the two polarized eigenmodes we are
searching for, either (1) or (2); A(i)(r,t) and P(i) are, respec-
tively, the slowly time-varying envelope amplitude and the
polarization P(i) = χ̂E(i) of the mode i (i = 1,2); and k(i) is the
wave vector. In the following, we consider wave propagation
parallel to the z direction. The derivation is made by projecting
the ongoing electric-field vector of the propagating wave
crossing the active region over the two optically active circular
reference basis [(+) for spin ↑ and (−) for spin ↓ defined along
the direction normal to the layers].

For that purpose, the dipolar amplitude responsible for
the optical gain and corresponding to each of the two
spin populations has to be derived. We define Ad

± as those
amplitudes in the Jones vector form largely emphasized in
the remaining part of the paper. For a two-level model,
we denote N± the respective spin-up (+) and spin-down
(−) carrier densities in QWs above transparency (tr) where
N± = N↑↓ − Ntr follows the respective pumping rates N0±.
Recent theoretical investigations based on the SALT theory
allow an extension from a two-level model to more complex
media involving multilevel transitions [33,34]. The dynamical

behavior of each of the physical constituents E and P follows
[47,49]

∂P(1,2)

∂t
= −(� + iδ′)P(1,2) − i

μ2

h̄
[(E(1,2)Ad∗

+ )Ad
+N+

+ (E(1,2)Ad∗
− )Ad

−N−], (3)

∂N±
∂t

= −γ (N± − N0±) ∓ γs(N+ − N−)

− i

h̄

∑
i=1,2

{(E∗
(i)A

d
±)(P(i)Ad∗

± ) − c.c.}, (4)

∂2

∂t2
P(1,2)exp[i(ωt − k(1,2)z)]

=
[
c2 
2 −ε

∂2

∂t2
− κ

∂

∂t

]
E(1,2)exp[i(ωt − k(1,2)z)], (5)

where � is the off-diagonal damping factor for the off-
diagonal density-matrix elements (media polarization), γ is the
damping rate of the carrier densities, γs is the corresponding
spin-flip rate, and δ′ is the spectral detuning.

Those three equations represent a generalization of the
Maxwell-Bloch equations and of the spin-flip model we
were searching for to the case of anisotropic active regions.
The difference with previous approaches is now that we
have projected the E and P fields within a nonorthogonal
basis imposed by the anisotropy. Indeed, from the first
equation, one can be convinced that the vectorial optical
gain is not necessarily collinear to the incoming E field for
〈η(2)|Ad

+〉 �= 0 and 〈η(1)|Ad
−〉 �= 0. This feature is reinforced

if birefringences within the semiconductor host, e.g., are
considered. Our modeling method satisfies the Eqs. (3)–(5) in
each of the layers, active regions, barriers, and semiconductor
host by using selected optical constants. In particular, the last
equation describes the propagation of the electromagnetic field
throughout the structure including a certain optical loss. This
can be modeled by a certain imaginary part into the dielectric
constant tensor (or the optical refractive index) describing a
possible temporal damping parameter κ ∼ 1/τlayer where τlayer

denotes the photon lifetime. In the following, we will derive
the optical gain properties by considering QWs free of losses.

B. Derivation of the optical gain including linear anisotropy

1. Derivation of the optical gain tensor

We are now searching for a general numerical scheme for
the determination of the resonant eigenmodes in cavities. The
assumption of the slowly variable amplitude approximation
and of a fast polarization damping leads, in a steady-state
operation regime, to

∂E(i)

∂t
= −1

2
κE(i) + i

ω

2ε
P(i) (6)

and

〈P(i)〉 = −i
μ2

h̄

[(E(i)Ad∗
+ )Ad

+N+ + (E(i)Ad∗
− )Ad

−N−]

� + iδ′ , (7)
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which yields

∂E(i)

∂t
= −1

2
κE(i) + ωμ2

2ε(� + iδ′)
[(E(i)Ad∗

+ )Ad
+N+

+ (E(i)Ad∗
− )Ad

−N−]. (8)

This is the general dynamical equation controlling the
change of the E-field envelope amplitude in a nonzero
polarization medium. It gives then the expression for the field
amplification in an active layer (QWs) once the spin-polarized
carrier densities N± are given. A slow dynamics of N± may
come into play when one considers two or several coupled
modes [45,46] or oscillation emission, which we will not
consider henceforth. Although we will discuss the impact of
anisotropies on a possible two transverse mode coupling, we
only address here the issue of a single mode laser and we are
searching for such modes.

If one neglects any optical losses in QWs (κQW → 0), one
can implement a fast integration in time [Eq. (6)] leading
thus to the required jump in δE(i) according to δE(i) =

nWωμ2

2cε(�+iδ)h̄ [(E(i) · Ad∗
+ )Ad

+N+ + (E(i) · Ad∗
− )Ad

−N−] with the re-
sult

δE(i),m = g0TmnE(i),n, (9)

where

Tmn =
[

Ad∗
+,mAd

+,n

N+
N+ + N−

+ Ad∗
−,mAd

−,n

N−
N+ + N−

]
. (10)

W represents the QW thickness and T is the optical gain
tensor for the electromagnetic field E(i) with a corresponding
gain amplitude equaling

g0 = nWωμ2N

2cε(� + iδ)h̄
, (11)

where N = N+ + N− is the total pumped carrier density
above transparency and the NW product represents the carrier
sheet density in QWs. We recall that the subscripts (m,n)
are the space coordinates. As discussed in the following,
this particular form of the gain we derived should include
the phase-amplitude coupling known as the Henry factor α =
Real(∂χ/∂N)
Im(∂χ/∂N)

[≡ δ
�

and where χ (ω) is the matter susceptibility].

In that sense, g0 may be written as g0 = g00(1 − iα). The
relevance of the so-called Henry’s factor also manifests on
the steady-state SALT equations described in Refs. [33,34].
Equation (9) simply reflects an amplification of the m compo-
nent (m = x,y) of the E field for an incoming n component
(n = x,y) when N± are controlled parameters at present
(Fig. 1). Off-diagonal components of the T matrix reflect
the noncollinearity between dipole sources and eigenmodes,
originating from the linear gain dichroism. The particular
expression for the prefactor gain g0 is the one given at low
out-of equilibrium carrier densities from which it should be
generalized into

g0 = nωμ2

2cε(� + iδ)h̄
(NthW ) ln

(
N + Ns

Nth + Ns

)
, (12)

giving g0(N ) � ∂g0

∂N
N with the differential gain ∂g0

∂N
. Here Nth

is the carrier density at threshold (or slightly smaller) and Ns is

an adjustable parameter controlling the correct gain variation
with N [57].

In order to derive the expression of the 2 × 2 optical gain
tensor Tij , one needs to consider the two different E-field
polarization sources, Ad

± within the active regions (QWs).
These are described in a Jones vector form and correspond
separately to the two different spin eigenchannels, respectively,
+ and −. Due to the quantization axis of the wave functions,
along the z direction normal to the layers, the correct basis is
the ± spin basis along z even in the case of a linearly polarized
pump (the particular case with N+ = N−). Ad

± are complex
conjugate from each other Ad

− = (Ad
+)

∗
but not necessarily

orthogonal.

2. Effect of the linear gain anisotropy

We consider now the possible case of a linear gain
anisotropy in the active layers (QWs), imposed by a certain
bonding anisotropy at the interface with the barriers due
to the symmetry reduction from D2d to C2v . The overall
gain anisotropies may be characterized by (i) a � parameter
departing from 1 (we will see in the following that � = 1 will
correspond to a perfect isotropy) and (ii) the effective spin
polarization in QWs of carriers pumped, Ps = N+−N−

N++N−
. The

evaluation of Ad
± is performed in the X′ = [110],Y ′ = [110]

crystallographic basis for the two reference optical directions.
Associated to a possible anisotropy of the optical oscillator
strengths along X′ and Y ′, two different dipolar transition
matrix elements can be ascribed for an E emission along
X′ or Y ′ according to x ′ = 〈S|px ′ |X′〉 = −ih̄〈S|∇x ′ |X′〉 and
y ′ = 〈S|py ′ |Y ′〉 = −ih̄〈S|∇y ′ |Y ′〉 with y ′ = �x ′ ; � �= 1
then refers to a certain linear gain anisotropy. p̂m is the
impulsion operator and m is the corresponding optical
transition element. We refer, e.g., to the notation of Faria,
Jr. et al. [58] for the description of the respective S (conduction
band) and X, Y, and Z (P-type orbitals of the valence band)
quantum states describing the optical interband dipolar terms.
We find that

Ad
+ = 1√

1 + �2

[
(1 + �)/2 − i(1 − �)/2

−i(1 + �)/2 + (1 − �)/2

]
(13)

and Ad
− = (Ad

+)∗ for the respective spin ↑ (+) and spin ↓
(−) channels. Ad

± are complex conjugate from each other.
Nonetheless, they are generally not orthogonal in the presence
of certain linear gain anisotropy. The two measurable optical
laser polarization eigenmodes derived from the diagonaliza-
tion of the optical T matrix, η±, are then orthogonals. It may
result in a nonorthogonality between Ad

± and η± as depicted in
Fig. 2. This is the source of a strong mode coupling between
the two transverse modes.

The resulting dipolar amplification matrix T in Eq. (10) is
given by

T = g00(1 − iα)

[
1+�2

2
1−�2

2 − iPs�
1−�2

2 + iPs�
1+�2

2

]
, (14)

where g00(1 − iα) is the optical gain parameter. The E field in
the QW obeys E(out) − E(in) = g00(1 − iα)T E(in) or E(out) =
TE(in) where T = I2×2 + T admits an Hermitian form. As
discussed before, we have also introduced the phase-amplitude
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FIG. 2. Scheme of the two orthogonal laser eigenmodes η1,2

and dipolar source vectors Ad
±. The dipolar source vectors are not

necessarily orthogonal to each other depending on the dichroism in
play. The nonorthogonality between Ad

± is at the origin of a strong
mode coupling as discussed in the text.

Henry’s coefficient α [59,60] describing the local change in
the optical constant from free carriers. Via a diagonalization
procedure of T (or T), one finds the two different polarized
eigenmodes we are searching for, η(1,2), together with the
optical gain g(1,2) as the corresponding eigenvalues. Those are
given vs the spin-polarization of carriers Ps and the oscillator
strength anisotropy �:

η(1,2) = 1√
2

⎡⎢⎣ 1

± 1−�2

2 −iPS�√(
1−�2

2

)2
+(Ps�)2

⎤⎥⎦
〈100〉

, (15)

where the [100] subscript means that the present expression
for the modes is expressed in the cubic 〈100〉 reference
crystallographic axis. g(1,2) are expressed as

g(1,2) = g0(N+ + N−)

×
⎡⎣1 + �2

2
±

√(
1 − �2

2

)2

+ P2
s �2

⎤⎦ (16)

or

g(1,2) = g0(N+ + N−)ḡ(1,2). (17)

In the above formula giving g(1,2) the (+) sign refers
to the mode (1) whereas the (−) sign refers to the mode

(2). ḡ(1,2) = 1+�2

2 ±
√

( 1−�2

2 )
2 + P2

s �2 are the reduced gains.
One recovers g(1,2) = g± = 1 ± Ps for � = 1 (no linear
anisotropy) whereas g(1) = 1 and g(2) = �2 for Ps = 0 for the
linear polarized pump, as expected. In the more general case,
eigenmodes and corresponding gain display a more complex
form. However, one can be convinced that the two sets of
vectors η1,2 and Ad

± are generally not collinear to each other,
leading to a strong mode coupling between the two transverse
modes η1 and η2 as discussed below.

3. Coupling between transverse modes

Although not in the scope of the present paper, we discuss
here the impact of noncollinearity between η1,2 and Ad

± on the
transverse mode coupling, as sketched in Fig. 2, and leading
to possible polarization beating. The possible mode coupling
between longitudinal modes [45] of the same polarization is

not considered here because of the absence of any polarization
beating. One gets the effective optical gain β+

1 and β−
2

from the squared projection of the natural optical eigenmode
polarization along the dipole source direction according to

β+
1 = |〈η(1)|Ad

+〉|2 = 1 + sin(2φ1 + φ2)

2
, (18)

β−
2 = |〈η(2)|Ad

−〉|2 = 1 − sin(2φ1 − φ2)

2
(19)

as depicted in Fig. 2. In the same spirit, the coupling between
modes or the cross-coupling terms θ−

1 and θ+
2 [40,42,44],

involving linear gain anisotropy now, are calculated from the
squared projection of the optical eigenmode polarization along
the cross-dipole source direction:

θ−
1 = |〈η(1)|Ad

−〉|2 = 1 + sin(2φ1 − φ2)

2
, (20)

θ+
2 = |〈η(2)|Ad

+〉|2 = 1 − sin(2φ1 + φ2)

2
(21)

where φ1 and φ2 are given by

φ1 = arctan

(
1 − �

1 + �

)
, (22)

φ2 = arctan

(
2Ps�

1 − �2

)
. (23)

It results that θ−
1 and θ+

2 couple the two mode amplitudes
and that this coupling is strongly correlated to the linear gain
dichroism � and the carrier spin polarization PS . A zero
linear gain dichroism � = 1 leads to no-coupling θ

−,+
1,2 = 0

whatever the spin polarization PS . The increase of the linear
gain dichroism (� < 1) increases the coupling between modes
(θ−,+

1,2 > 0) even in the case of a nonzero spin polarization
Ps . The dynamics of carriers pumped are given by the
generalization of Eq. (4):

∂N+
∂t

= −γ (N+ − N0+) − γs(N+ − N−)

− γ

(
ḡ(1)(N )β+

1

I(1)

Isat
+ ḡ(2)(N )θ−

1

I(2)

Isat

)
, (24)

∂N−
∂t

= −γ (N− − N0−) + γs(N+ − N−)

− γ

(
ḡ(1)(N )θ+

2

I(1)

Isat
+ ḡ(2)(N )β−

2

I(2)

Isat

)
(25)

with the field intensity at saturation Isat = εch̄2(�2+δ2)γ
nμ2�

. We
recover the expression for the dynamics of coupling modes vs
the coupling coefficient θ [56,61] from the Lamb model, that
we have expressed vs the linear gain dichroism parameter �

appearing in ḡ(1,2), β(1,2), and θ(1,2). In that picture, the overall
coupling coefficient C [40,42,44] between the two transverse
intensity modes I(1) and I(2) is written

C = θ−
1 θ+

2

β+
1 β−

2

= [1 − cos(2φ1) sin(φ2)]2 − sin2(2φ1) cos2(φ2)

[1 + cos(2φ1) sin(φ2)]2 − sin2(2φ1) cos2(φ2)
. (26)
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The simultaneous oscillation of two orthogonally polarized
states is ruled by the strength of the nonlinear coupling between
the two eigenstates in the active medium. Whether the coupling
constant C is higher or lower than 1 leads, respectively, to two
distinct regimes, namely, bistability and simultaneity [40]. We
now restrict ourselves to laser modes with linearly polarized
optical gain along the [110] and [110] directions and no spin-
polarized pump (Ps = 0). In this case, the respective gains
are g(1) = 1 and g(2) = �2 as expected. These experimental
conditions are often fulfilled in real situations with no spin-
polarized carrier pump, corresponding to two possible linear
modes along [110] and [110] directions.

C. Source of linear birefringence in optical cavities

Vector dipolar sources in active regions of VECSELs do
not necessarily force the polarization to be emitted in the same
direction because of the residual linear birefringences within
the semiconductor multilayers. These anisotropic properties
of the dielectric function strongly impact the performance and
properties of laser operation leading to the complex polar-
ization dynamics and polarization switching [57]. Previous
theoretical and experimental investigations allowed separation
between two different contributions. The first anisotropy to
consider is the unavoidable linear phase anisotropy induced
by a possible local strain field in the material host via
electro-optical effects [62,63] and originating, e.g., from the
lattice mismatch [22] or from the crystal relaxation at the
surface [35,64–66]. As a result, the directional degeneracy
between the two in-plane [110] and [110] directions will be
removed and the frequencies for the corresponding two linear
polarizations will be split. The second source of anisotropy is
the linear birefringence originating from the interface between
ternary quantum wells and barriers (GaAsP/InGaAs/GaAsP).
An in-plane optical anisotropy in III-V QWs was found due to
the breakdown of the rotoinversion symmetry at interfaces
when the host materials do not share any common atoms
(symmetry breaking from D2d to C2v) [65] or due to an
In chemical segregation [35]. This optical anisotropy has
been evaluated by the pseudopotential microscopic model as
well as by k·p models including relevant electronic boundary
conditions [65,67–69]. Such an effect of linear birefringence
in the QWs is generally measured by optical reflectance [70],
by optical transmission [71], or by optical absorption [72].
In Sec. III, we will introduce the necessary 4 × 4 matrix
formalism enabling us to describe the wave propagation inside
the anisotropic multilayer laser cavity as described by Eq. (5)
of the Maxwell-Bloch equations.

III. MODEL FOR EMISSION FROM MULTILAYER LASER
STRUCTURE WITH A MULTIPLE QW SOURCE:

METHODOLOGY

A. Description of the optical gain in multilayers:
The Jones vector formalism

In this section, we describe the main properties of the
optical gain tensor derived above and the propagation of the
electromagnetic field inside the multilayer laser. One defines
the amplitude of the source Jones vector in a Cartesian s-p
basis according to Ad

down = [Ad
1 ; Ad

3 ]T and Ad
up = [Ad

2 ; Ad
4 ]T

FIG. 3. Schematic description of the structure with a single active
layer showing wave propagation inside the cavity.

(with T transpose vectors) as illustrated in Fig. 3. Those
describe the E waves, respectively, propagating downward
and upward. We call, respectively, A′

up,down and A
′′
up,down the

amplitudes of the E field traveling towards the respective up
and down directions in the region of space below (“) and
above (′) a given active QW region, as depicted in Fig. 3.
Amplification effects by the dipole sources in the active layers
can be expressed in the following matrix form:[

A′
up

A′′
down

]
=

[
Tuu 0
0 Tdd

][
A′′

up

A′
down

]
+ γsp

[
Ad

up

Ad
down

]
, (27)

where the first term describes the stimulated emission involv-
ing the amplification tensor Tuu and Tdd (uu for up-ingoing and
up-outgoing and dd for down-ingoing and down-outgoing),
the precise form of which will be given later. The second term
in the right-hand side of the equation describes the spontaneous
emission (stochastic process) weighted by the coefficient γsp.

After reflections on mirrors and back and forth traveling,
the wave polarization A′

down may be different from the source
Ad

down because of residual birefringences (linear or circular) in
the host. Note also that, for elliptical modes, polarization and
Jones vectors are changed after reflection on Bragg mirrors
and output mirror (coupler) leading to the definition of two
different optical-gain tensors for up- and down-propagation.
The result [54] is that one has to consider the gain tensor, T αβ

mn ,
in a supermatrix form with double index, one m,n = x,y,z for
the coordinates and the other α,β = uu,dd for the propagation
direction (up, down). In that sense, (up,up) means amplification
from an up-incoming wave into an up-outgoing wave, and
similarly for (down,down) combination.

Considering normalized vector sources, (Ad
down)

+
Ad

down =
1, Tuu and Tdd admit the form

Tuu = I + g00[1 − iαTuu]Tuu (28)

with

Tuu =
[
Ad

2A
d∗
2 Ad

2A
d∗
4

Ad
4A

d∗
2 Ad

4A
d∗
4

]
(29)

and

Tdd = I + g00[1 − iαTdd]Tdd (30)
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with

Tdd =
[
Ad

1A
d∗
1 Ad

1A
d∗
3

Ad
3A

d∗
1 Ad

3A
d∗
3

]
, (31)

returning to previous form for the amplification matrix T. I
is the 2 × 2 identity matrix. We recall that g00 is the scalar
gain to find at threshold and α = ∂nr/∂N

∂ni/∂N
is Henry’s coefficient

accounting for the relative change of the real part of the optical
index (nr ) [59]. In the present form, the expression for α

dealing with a satellite mode does not take into account the
gain saturation by the central mode. The previous expression
of α should then be changed into αTuu and αTdd in order
to consider gain self-saturation without much computational
effort.

B. Transfer and scattering matrix formalism
for the anisotropic optical cavity

We are now going to tackle the issue of propagation end
eigenmodes in optical cavities including active regions (QWs),
barriers, host, and Bragg mirrors. One considers first a single
QW as an optical source. Figure 3 displays a simple laser
structure consisting of a single active dipole layer embedded in
a multilayer system and described by its optical transfer-matrix
components, M(1) and M(2). Those transfer matrices connect
the amplitudes of the outgoing and ingoing waves from both
external parts of the active layer to the top (1) and bottom
(2), respectively. In that sense, the M matrix contains all the
optical properties of the host (birefringence, strain, and optical
anisotropies) from the permittivity tensor. Moreover, the T
matrix includes information on the optical gain. More details
are given in Appendix A. From (A1), (A2), and (27) we obtain
a compact form of the basic equation for the calculation of the
field amplitudes emitted from the structure A(0)

up and A(N+1)
down

according to

ÃM

[
A(0)

up

A(N+1)
down

]
= −γ

[
Ad

up

Ad
down

]
, (32)

where

ÃM =
[

−M̃(1)
uu TuuM(2)

ud

TddM̃(1)
du −M(2)

dd

]
. (33)

The condition for a resonant eigenmode (no spontaneous
emission γsp = 0) is the zero determinant of the constituent
matrix ÃM. In the simplest case of a laser cavity of thickness
d, wave vector k0 = 2π/λ, and complex refractive index n =
nr − ini , one obtains in this way the well-known condition for
the resonance wavelength k0dnr = mπ by finding the zero of
the imaginary part of the determinant. From the zero of its
real part, one obtains g = ek0dni/2 − 1, giving the condition
for the optical gain g at the laser threshold. From Eq. (32), the
conditions for resonance and eigenmodes for a single active
layer are then generally given by

Det[ÃM] = 0 (34)

or equivalently[
TddM̃(1)

du

(
M̃(1)

uu

)−1]−1 = TuuM(2)
ud

(
M(2)

dd

)−1
. (35)

However, the transfer matrix M described by (A1) and
(A2) connecting the upper and lower field amplitudes is
only suitable to describe a single active region. One can
easily be convinced that it cannot be extended to the case
of multiple QWs. The scattering matrix (S-matrix) formalism
is much more appropriate to treat this general case. It describes
the amplification and optical propagation or diffusion of the
in-going wave-amplitudes into outgoing wave amplitude. For
more details see Appendix B. From (B1), (B2), and (27), one
derives

ÃS =
[

S(1)
uu 0

0 S(2)
dd

]−1[
TudS(1)

du − I TuuS(2)
ud

TddS(1)
du TduS(2)

ud − I

]
, (36)

where I is the 2 × 2 unit matrix. The ÃS matrix in Eq. (36)
consists in a more general expression suitable for recursive
calculations. T defined in (27) is generalized into a more
general form including possible off-diagonal submatrices Tud

and Tdu required to describe coherent multiple reflections and
interference effects between two active regions (discussed
in detail in the next subsection). These cannot be included
in the M-matrix formulation and they are derived from
a general recursive formula detailed hereafter. In the case
where Tud = Tdu = 0 (a single active region is considered),
finding the zero determinant of the ÃM and ÃS matrices in
Eqs. (33) and (36) gives naturally equivalent results for optical
modes (polarization and wavelength) and gain (threshold). The
conditions for resonance and eigenmodes for multiple-QW
structures are

Det[ÃS] = 0 (37)

or equivalently

Det

[
TudS(1)

du − I TuuS(2)
ud

TddS(1)
du TduS(2)

ud − I

]
= 0 (38)

that we will consider now by implementing a general recursion
method for deriving S and T tensors in the most general cases.
The resonant condition can be written as[

TddS(1)
du

(
TudS(1)

du − I
)−1]−1 = TuuS(2)

ud

(
TduS(2)

ud − I
)−1

(39)

or equivalently

TddS(1)
du

(
TudS(1)

du − I
)−1

TuuS(2)
ud

(
TduS(2)

ud − I
)−1 = I,

(40)
TddS(1)

du

∑
N

(
TudS(1)

du

)N
TuuS(2)

ud

∑
M

(
TduS(2)

ud

)M = I,

giving the general phase-matching conditions for the E
waves after all possible optical pathways (S matrix) and
amplifications (T matrix) in the optical cavity. In that sense, N
and M are the number of the partial back-and-forth travelings
in the respective upper and down part of the cavity (see Fig. 4).

C. Recursive formulas for multiple active regions

The S-matrix scheme adopted here is suitable to describe
multiple optical active zones, their optical amplification, and
the propagation of the E wave inside the cavity. In particular,
the S-matrix scheme enables us to provide a recursive formula
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FIG. 4. Sketch of the phase matching in 1/2-VCSEL structure in-
volving a multiple reflection, propagation, and amplification process
in the optical semiconductor cavity containing one effective active
layer, the properties of which are derived by recursive method. Sdu and
Sud correspond to propagation and reflection effects with respective
N (top) and M (bottom) reflection processes. Tud and Tdu represent
reflection after amplification in the effective active zone whereas Tuu

and Tdd correspond to forward amplification.

for the optical gain involving multiple dipole sources that could
be implemented in numerical procedures for the derivation of
optical eigenmodes of VCSELs and spin VCSELs. The result
is the following. Let us consider that the dipole active layers
are described by the dipole source vectors A(n) d and A(n+1) d

and the optical gain tensors T(n) and T(n+1). The definitions
of vectors and optical gain are similar to (27). The effective
dipole layer is found by using the following relationship:[

A(n)′
up

A(n+1)′′
down

]
= T(n,n+1)

[
A(n+1)′′

up

A(n)′
down

]
+ A(n,n+1) d , (41)

where T(n,n+1) is in the form

T(n,n+1) =
[

T(n,n+1)
uu T(n,n+1)

ud

T(n,n+1)
du T(n,n+1)

dd

]
. (42)

The equivalent dipole source vector, A(n,n+1) d , and optical gain
tensor T(n,n+1) of the total system are written

T(n,n+1) =
[

0 T(n)
ud

T(n+1)
du 0

]
+ B

[
T(n+1)

uu 0

0 T(n)
dd

]
, (43)

A(n,n+1) d = A(n) d + B A(n+1) d (44)

FIG. 5. Sketch and geometry of the 1/2-VCSEL devices investi-
gated in this paper showing 1/2-VCSEL structure as the gain mirror,
the optical pumping system, and the stable plano-concave-type optical
cavity (air gap Lc = 7.5 mm) [20,37,38].

where

B =
[

T(n)
uu S(n)

uu T(n)
uu S(n)

ud

T(n+1)
dd S(n)

du T(n+1)
dd S(n)

dd

]

×
[

I − T(n+1)
ud S(n)

du −T(n+1)
ud S(n)

dd

−T(n)
du S(n)

uu I − T(n)
du S(n)

ud

]−1

. (45)

Note that the effective T matrix consists of nonzero off-
diagonal submatrices Tud and Tdu, describing coherent reflec-
tion processes between consecutive active regions. In Sec. IV,
we will show that Tud and Tdu may largely impact the
resonance conditions on the wavelength and the frequency
splitting in anisotropic VCSELs. More details of the numerical
recursive procedure are shown in Appendix C.

IV. EMISSION FROM 1/2-VCSEL STRUCTURES
WITH LINEAR BIREFRINGENCE AND GAIN:

MODEL VS EXPERIMENTS

We turn now to experiments and connect our calculation
method to some real experimental 1/2-VECSEL structures
for two different cavity geometries involving linear birefrin-
gences. The typical setup is displayed in Fig. 5. This section
includes robust numerical predictions for eigenmodes with
strong local linear birefringence and linear gain anisotropy
effects. The results are compared to experimental measure-
ments with the goal to disentangle both surface and interface
anisotropies. We will consider two different sources of linear
birefringence at the interface and/or in the QWs.

A. Main physical issues: From a single source
to multiple recursion

It is well known that the birefringence in the laser optical
cavity may induce a degeneracy lift of the optical frequencies
of polarization eigenvectors, leading to a frequency splitting
in the rf domain due to difference of their optical path. A
simple model for the derivation of the corresponding phase or
frequency splitting between two consecutive modes after one
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FIG. 6. Description of the 1/2-VECSEL structures under study
(a) with (S1, left) and (b) without (S2, right) the moderately reflective
Bragg mirror. S1 is composed of an antireflection coating at the
surface.

round trip in the optical cavity of length Lc is given by [55]

�ϕl = 2k0Lc�n, (46)

where �n = ny − nx is the modal optical index difference
between the eigenvector axis (integrated over the cavity
length), and k0 is the free-space wave vector of light. The
frequency splitting is given by 2π�f = −�ϕl × c/2nLc

where n is the average modal index.
In the nonintentionally doped GaAs-based nanostructures

considered here, emitting vertically along the [001] crystal axis
under optical pumping (no vertical static electric field applied),
the typical sources of linear optical anisotropy, and thus
birefringence, might find their origin in three characteristic
regions [37]: at the Bragg interfaces, in the QW layers, and at
the top air-semiconductor surface.

We will consider the latter two contributions, as the
strongest. An important remark is that the effective phase-
amplitude birefringence in QWs depends on the optical gain
and then on the losses unlike purely electro-optic birefringence
arising from the surface.

The power of the present method is to correctly include
the gain properties in a self-consistent manner. For instance,
we will show that restricting ourselves to the use of a simple
round-trip model suppressing main interferences and inter-QW
amplification [switching off Tud and Tdu in Eq. (36)] may lead
to inaccuracy in the determination of the birefringence from
the value of the average refractive index, �n.

B. Modeling a real VECSEL involving linear anisotropies

1. Description of the 1/2-VCSEL structures

We consider two different structures (S1 and S2 for samples
1 and 2) [37] represented in Fig. 6, the anisotropic optical
properties of which have been investigated by high-resolution
microwave rf techniques [37]. In detail, the nonintentionally
doped 1/2-VCSEL structure was grown by metalorganic
chemical vapor deposition on a [001] GaAs substrate [19].
S1 and S2 are composed of a high reflectivity (99.9%)
bottom AlAs/GaAs Bragg mirror (31.5 pairs) and a GaAs
active layer of 13λ/2 thickness containing six strain-balanced
InGaAs/GaAsP QWs emitting at λ � 1 μm for S1 and λ �
1.06 μm for S2. Each QW is placed at an antinode of the
optical standing wave, following a nonuniform longitudinal
distribution ensuring uniform QW carrier excitation. This
ensures a low threshold carrier density and homogeneous gain
broadening as needed for single longitudinal mode operation

FIG. 7. Experimental birefringence measurement, via orthogonal
E-field polarization mode beating on a low noise photodiode with a
laser beam passing through a polarizer rotated at 45 deg° from the
[110] axis: an example of the measured rf spectrum, obtained with
sample 1 in a 7.5-mm-long cavity and a concave output coupler with
T = 0.7%. The absence of the peak in the red dashed curve confirms
that the observed beat note is due the orthogonal polarization mode
[37].

[19,20,37]. S1 is ended by a dielectric antireflection coating.
S2 is ended by a moderately reflective top epitaxial AlGaAs
Bragg mirror, that may affect the sensitivity of the surface
and QW anisotropy. This leads to an optical confinement of
the E wave which is strongly enhanced on the QWs. The
VECSEL devices are depicted in Fig. 5. The gain structures
were optically pumped in the GaAs barriers close to Brewster
incidence angle θB , by using a linearly polarized single mode
800-nm diode, focused with a pair of aspheric lenses with
the focal lengths f1 and f2 on a � 35-μm spot radius with a
circular in-plane geometry. The passive optical cavity is a high
finesse stable planoconcave resonator of Lc � 7.5 mm, closed
by a concave output coupler (T = 0.7% for S1 and 13% for
S2) of radius of curvature Rc = 10 mm. The minimum waist
of the Gaussian beam occurs at the plan mirror. The typical
fundamental TEM00 beam waist is w0 ∼ 37 μm here, and
exhibits a circular geometry. From an experimental point of
view, in contrast to the case of monolithic microcavity-VCSEL
devices [24,32,38], for conventional VECSELs both the
frequency splitting and the power beating between polarization
eigenmodes are too small to be able to be measured using
optical spectrometers. Those experiments are thus based on
the mixing of the two orthogonal cavity eigenvectors (see
Siegman’s book for reference [55]), and on the observation of
the beat note in the rf domain, by measuring on a photodiode
the power spectral density of the laser total power fluctuations
[37,55], as shown in Fig. 7.

2. Optical constants

The permittivity constants ε used in the calcula-
tion are the following: εGaAs(λ = 1000 nm) = 12.3, εGaAs

(λ = 1060 nm) = 12.09, εAlAs(λ = 1000 nm) = 8.7, εAlAs

(λ = 1060 nm) = 8.63 [73], εInGaAs(λ = 1000 nm) = 13.1,
εInGaAs(λ = 1060 nm) = 12.9 [74], εGaAsP(λ = 1000 nm) =
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FIG. 8. Calculation of the resonance conditions of sample 2 for
two linearly polarized eigenmodes oriented along the [110] and [110]
direction and �εs = 0.02. � was taken equal to 0.95.

12.15, and εGaAsP(λ = 1060 nm) = 11.9 [75]. These optical
constants are also in agreement with ellipsometry measure-
ments and modeling that we have recently performed [76].
Concerning the InGaAs quantum well, we switched off the
imaginary part of the optical constant being replaced by the
optical gain as a controlled input parameter.

3. Detailed birefringence analysis on 1/2-VCSELs

We are going now to apply our numerical method to three
different physical situations of (a) a linear birefringence at the
surface only, (b) an intrinsic linear birefringence in QWs, and
(c) a linear birefringence at the surface and phase-amplitude
coupling in QWs.

Case a. Via a step-by-step mesh-calculation procedure
on both the wavelength λ and optical gain g00 parameter,
resonances and eigenmodes for the S2 structure are high-
lighted, from Eq. (38), by pointing to the peaked maxima
of 1/det[ÃS]. Under these conditions, one finds a comb of
resonance doublets, as expected, the two representatives of
which are plotted in Fig. 8. The linear gain dichroism has
been fixed at � = 0.95 in the present example and the linear
birefringence at the surface �εs = (εx ′x ′ − εy ′y ′ )/2 = 0.02,
where εx ′x ′ and εy ′y ′ are the permittivity tensor components
of a surface layer along the directions parallel to [110] and
[110], respectively, as depicted in Fig. 1. The thickness of the
birefringent surface layer has been fixed to 50 nm. The analysis
of the eigenmode polarization demonstrates an orientation of
the E wave along respective [110] and [110] directions for the
whole doublets. One can note that the two consecutive peaks
occur at two different frequencies as expected from the linear
birefringence and moreover occur for two different calculated
amplitude gains, respectively, 0.85 and 0.95% per quantum
well for loss compensation and corresponding to external
mirror transmission of about 13% on the electromagnetic
wave intensity (6× QWs ×2 on the intensity gain). The
relative difference of the gain of about 10% is then repre-
sentative differential gain (1 − �2) chosen for this particular
example.

Case b. Figure 9(a) displays the frequency splitting between
two consecutive longitudinal modes with and without linear
birefringence �εQW in the QWs introduced as an adjustable
parameter for a total thickness of 48 nm (for six quantum
wells, 8 nm each). Canceling all the birefringence �ε = 0,

(a)

(b)

FIG. 9. (a) Calculation of multimode emission and mode splitting
for �εQW = 0 (solid blue line) and �εQW = 0.05 (dashed red line
with peak doublets) inside the QW of sample 1. (b) Calculation
of mode splitting inside the QW of sample 1. The solid blue
curve (�f = 359 MHz) and the dashed red curve (�f = 195 MHz)
describe the resonance conditions for models with and without
off-diagonal elements Tdu and Tud, respectively.

the frequency splitting between longitudinal modes �f =
19.2 GHz matches pretty well the value �f = c/2tair =
20 GHz expected from the calculation of the phase matching in
a simple air external cavity of thickness tair. The long extension
of the air cavity compared to the semiconductor part makes it
so that the optical phase develops preferentially in that region.

Figure 9(b) shows the details of the two transverse modes
from the ones calculated in Fig. 9(a). Note that switching
off any inter-QW amplification processes (by switching off
the off-diagonal elements Tdu and Tud) leads to a certain
inaccuracy of the mode splitting �f in the megahertz range
for 1/2-cavity VCSELs. Switching on Tdu and Tud off-
diagonal components appears then mandatory for a correct
determination of the layer-selected anisotropic optical constant
�n (permittivity tensor �ε).

Case c. We now proceed to the investigation of eigenmodes
including linear gain anisotropy as relaxed parameters with
phase-amplitude correlation (Henry’s factor). We do not
consider any other linear birefringence �εQW than the phase-
amplitude coupling. This section refers to the recent work
of Ref. [37] giving opposite sign of the frequency splitting
�f = −16.5 and +69 MHz for S1 and S2 as shown in
Table I. Here, �f is counted positive when f[110] > f[11̄0]
according to our convention. The two-dimensional maps
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TABLE I. Measured polarization mode beat frequency �fb [37],
extracted anisotropic parameters �εs,1,2 for experimentally obtained
� = �1 = �2 = 0.95, and anisotropic parameters �εs = �εs,1 =
�εs,2 together with � = 0.82.

Sample 1 Sample 2

�fb −16.5 MHz +69 MHz
�εs,1,2 (� = 0.95) +0.0152 −0.0245
�εs (� = 0.82) +0.02

presented in Figs. 10(a) (S1 sample) and 10(b) (S2 sample)
display the particular dependence of the frequency splitting,
�f , between the two orthogonal linear polarizations for the
two 1/2-VCSELs vs the gain anisotropy parameter � and an
additional surface linear birefringence (�εs) with an effective
surface thickness of 50 nm. In these examples, we fix the value
of α = 3 [37]. The two linear polarizations are, respectively,
found along [110] and [110] directions with inverted frequency
splitting between samples 1 and 2. One observes separately the
dependence of �f on � for fixed �εs (lines from left to right)
and the dependence of �f on the linear gain anisotropy �

on the horizontal axis. Simple linear parametrization resulting
from our calculation gives a phenomenological dependence of
�f [MHz] on �εs and � for both samples as

�f1[MHz] = −1220�εs,1 + 40(1 − �1), (47)

�f2[MHz] = −1700�εs,2 + 550(1 − �2). (48)

FIG. 10. Dependence of �f between two orthogonal linear
polarizations on anisotropic parameters of QWs �εQW and surface
�εs of (a) S1 and (b) S2.

The sensitivity of �f2 (S2) on the linear gain dichroism
�2 is more than a factor of 13 larger than that of S1. This
finding describes the microresonance effect in the region of
QWs combined with a larger carrier optical pumping due to
the particularly high decay rate of the cavity. On the other
hand, the birefringence at the surface, delocalized from the
optical confinement region, gives about the same equivalent
effect on the frequency mode splitting for the two samples.
If one assumes that the two samples are characterized by
an identical surface strain and birefringence �εs = �εs,1 =
�εs,2, and identical active zones (same linear gain dichroism
� = �1 = �2), the common solution of the above equations
gives �εs = +0.02 and � = 0.82. The change of the sign
of the frequency splitting between S1 and S2 may then be
understood as (1) an opposite effect of the linear birefringence
between surface and active layers together with (2) a main
contribution from the surface for S1 due to small optical losses
and gain, and small optical confinement, and (3) an enhanced
contribution of linear birefringence of QWs for S2 due to
larger optical losses and gain together with a strong optical
confinement.

The matching of the frequency splitting to the experimental
situation under the assumption of the same linear gain
dichroism of � = 0.95 (linear gain dichroism of 10% on
the intensity) for samples S1 and S2 gives a surface strain
birefringence �εs,1 of opposite sign of the order of +0.015 for
S1 and �εs,2 = −0.025 for S2. QW gain dichroism of about
10–30% has been measured in Refs. [19,37]. On the other
hand, a surface birefringence with opposite sign between S1
and S2 would be surprising from a technological and physical
point of view.

V. CONCLUSIONS

The mathematical approach presented in this paper offers
a powerful method for modeling of the laser eigenmodes of
VCSELs and spin VCSELs with local linear birefringence and
linear gain dichroism caused by symmetry reduction on the
III-V semiconductor interfaces, surface reconstruction, and
strain effects. The present paper has revealed the important
role of the different local birefringences in the eigenmodes and
frequency splitting together with the need to correctly describe
optical amplification. Recursive formulas used for calculation
of the effective active region enable us to include the
interference and reflection effects between both active regions
together with amplification of multiple reflected light inside
the MQW region. Together with experimental measurement,
it can be used to disentangle anisotropic optical constants in
the realistic VCSELs and VECSELs from different depths
of the structure as it has been shown for the surface and
the QWs. The present method can be advantageously used
in the future to derive general properties of single and
coupled modes (dynamics) of VCSELs and 1/2-VECSELs
involving linear anisotropies. Moreover, on the grounds of
very recent experiments [18], the approach developed in
this paper can be used to extract the eigenmode properties
(polarization, threshold, and mode splitting) of semiconductor
spin lasers under circular-polarized pumps and local linear
birefringence.
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APPENDIX A: THE 4 × 4 TRANSFER-MATRIX
FORMALISM

Figure 3 shows the modeled structure consisting of an active
dipole layer surrounded by a multilayer system described by
the transfer matrices M(1) and M(2). The matrices relate the
amplitudes of the waves propagating from and toward the
system [

A′′
up

A′′
down

]
=

[
M(2)

uu M(2)
ud

M(2)
du M(2)

dd

][
A(N+1)

up

A(N+1)
down

]
, (A1)

[
A(0)

up

A(0)
down

]
=

[
M(1)

uu M(1)
ud

M(1)
du M(1)

dd

][
A′

up

A′
down

]
, (A2)

and from (A2) one can obtain by matrix inversion[
A′

up

A′
down

]
=

[
M̃(1)

uu M̃(1)
ud

M̃(1)
du M̃(1)

dd

][
A(0)

up

A(0)
down

]
, (A3)

where A(0) and A(N+1) describe the amplitudes in the super-
strate and substrate. Similarly, A′ and A′′ are the amplitudes
above and below the active dipole layer. Note that four
waves propagate in each layer of the system. Therefore,
the amplitudes in (A1) and (A2) represent the amplitude
vectors corresponding to two orthogonal polarizations, for
example, A(0)

down = [A(0)
1 ; A

(0)
3 ]T and A(0)

up = [A(0)
2 ; A

(0)
4 ]T .

The submatrices in (A1) and (A2) are 2 × 2 matrices and the
tilde denotes the blocks of the inverse matrix M̃(1) = [M(1)]−1.
Note that in the case of lasers the light is only emitted from
the structure: A(0)

down = A(N+1)
up = 0. Equations (A1) and (A2)

are compactly written as the 4 × 4 matrix equations (1) and
(2) from Ref. [53].

From (A1), (A2), and (27) we obtain a compact form of
the basic equation (32) for the field emitted from the structure,
which is used to calculate the amplitudes of the field emitted
from the structure A(0)

up and A(N+1)
down from the dipole source

vectors Ad
up and Ad

down. Equations (29), (31), and (32) are the
compactly written 4 × 4 matrix equations (8)–(10) in Ref. [53].

APPENDIX B: SCATTERING MATRIX FORMALISM

While the transfer matrix M described by Eqs. (A1) and
(A2) relates the upper and lower field amplitudes, the scattering
matrix (S-matrix) is defined using the amplitudes of the waves

incoming toward and outgoing from the structure. Let us
consider a similar structure as before shown in Fig. 11, in
which the active dipole layer is surrounded by the multilayer
subsystems described using the scattering matrices S(1) and
S(2). The amplitudes of the waves are related using the matrix
formulas[

A(0)
up

A′
down

]
=

[
S(1)

uu S(1)
ud

S(1)
du S(1)

dd

][
A′

up

A(0)
down

]
= S(1)

[
A′

up

A(0)
down

]
(B1)

and[
A′′

up

A(N+1)
down

]
=

[
S(2)

uu S(2)
ud

S(2)
du S(2)

dd

][
A(N+1)

up

A′′
down

]
= S(1)

[
A(N+1)

up

A′′
down

]
. (B2)

If we expect that light is only emitted from the structure, then
A(0)

down = A(N+1)
up = 0. From (B1), (B2), and (27) we obtain

the basic equation (32) for the field emitted from the structure
with the matrix ÃS in Eq. (36) which consists of a more general
expression suitable for the recurrent calculation.

APPENDIX C: RECURSIVE CALCULATION
OF THE EFFECTIVE GAIN TENSOR

The S-matrix approach enables us to describe optical
amplification, propagation, as well as interferences in multiple
QW structure. The recursive S-matrix method we propose
here provides a numerical solution scheme to describe any
type of multilayered structures. Figure 11 schematically shows
the structure including two active dipole layers, respectively,
(n) and (n + 1), the latter being the new one to add by
recursion. The composite of the two can be substituted by
a single effective active dipole layer described on its own by a
single effective matrix T(n,n+1)

uu,ud,du,dd and single effective dipole
vector A(n,n+1) d according to the following description. Let
us consider that the dipole active layers are described by the
dipole source vectors A(n) d and A(n+1) d and the optical gain
tensors T(n) and T(n+1). The definitions of vectors and optical

FIG. 11. Schematic description of the application of the recursive
formula.
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gain are similar to (27). The effective dipole layer is found
by using Eqs. (41) and (42), where the effective dipole source
vector A(n,n+1) d and the effective optical gain tensor T(n,n+1)

appear in the most general case in the following form:

T(n,n+1) =
[

0 T(n)
ud

T(n+1)
du 0

]
+ B

[
T(n+1)

uu 0

0 T(n)
dd

]
, (C1)

A(n,n+1) d = A(n) d + B A(n+1) d , (C2)

where

B =
[

T(n)
uu S(n)

uu T(n)
uu S(n)

ud

T(n+1)
dd S(n)

du T(n+1)
dd S(n)

dd

]

×
[

I − T(n+1)
ud S(n)

du −T(n+1)
ud S(n)

dd

−T(n)
du S(n)

uu I − T(n)
du S(n)

ud

]−1

. (C3)

The effective T matrix consists of nonzero off-diagonal
submatrices Tud and Tdu, originating from the interference and
reflection processes between consecutive active regions. Note
that the single active layer (n + 1) added in the recursion pro-
cedure does not admit any off-diagonal component T(n+1)

ud = 0
and T(n+1)

du = 0 because of no internal multiple reflections. Let
us demonstrate the recursive calculation for the case of three
dipolar layers (ñ = 1,2,3) described by the block-diagonal
matrix

T(ñ) =
[

T(ñ)
uu 0

0 T(ñ)
dd

]
, (C4)

while the optical interactions between first and second, and
second and third, dipole layers are characterized by the
scattering matrices S(1) and S(2), respectively. In the first step

we calculate the effective dipole layer for the first two active
regions, n = 1: T(n,n+1) = T(1,2). According to Eqs. (43)–(45),
the recursion formula gives for the gain tensor components

T(n,n+1)
uu = T(1,2)

uu = T(1)
uu S(1)

uu T(2)
uu , (C5)

T(n,n+1)
ud = T(1,2)

ud = T(1)
uu S(1)

ud T(1)
dd , (C6)

T(n,n+1)
du = T(1,2)

du = T(2)
dd S(1)

dd T(2)
uu + T(2)

dd S(1)
du , (C7)

T(n,n+1)
dd = T(1,2)

dd = T(2)
dd S(1)

dd T(1)
dd , (C8)

where new off-diagonal components T(1,2)
ud,du describe coherent

multiple reflections and interference effects between active
regions (1) and (2). In the second step of the numerical
procedure, we set T(2) ≡ T(1,2) followed by the third step,
when we calculate the complete effective gain tensor for n = 2:
T = T(2,3) according to

T(2,3)
uu = T(2)

uu
1

I − S(2)
ud T(2)

du

S(2)
uu T(3)

uu , (C9)

T(2,3)
ud = T(2)

ud + T(2)
uu S(2)

ud

1

I − T(2)
du S(2)

ud

T(2)
dd , (C10)

T(2,3)
du = T(3)

dd S(2)
dd

1

I − T(2)
du S(2)

ud T(2)
du S(2)

uu

T(3)
uu + T(3)

dd S(2)
du , (C11)

T(2,3)
dd = T(3)

dd S(2)
dd

1

I − T(2)
du S(2)

ud

T(2)
dd . (C12)

The present recursive approach can be applied for an arbitrary
number of active source layers and arbitrary structures. It can
be thus applied for the calculation of the effective gain tensor
of any complex light-emitting multilayer structures such as
VCSELs and spin-VCSELs.
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