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Squeezing in a nonlocal photon fluid
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Quantum fluids of light are an emerging tool employed in quantum many-body physics. Their amazing
properties and versatility allow using them in a wide variety of fields including gravitation, quantum information,
and simulation. However the implications of the quantum nature of light in nonlinear optical propagation are still
missing many features. We theoretically predict classical spontaneous squeezing of a photon fluid in a nonlocal
nonlinear medium. By using the so called Gamow vectors, we show that the quadratures of a coherent state get
squeezed and that a maximal squeezing power exists. Our analysis holds true for temporal and spatial optical
propagation in a highly nonlocal regime. These results lead to advances in the quantum photon fluids research
and may inspire applications in fields like metrology and analogs of quantum gravity.
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I. INTRODUCTION

A recent forefront topic of research is the study of quantum
fluids, which arise in a wide variety of fields ranging from
condensed matter to particle physics (see [1–4] and references
therein). Quantum fluids are many particle systems in which
the average particle distance becomes comparable or smaller
than the thermal de Broglie wavelength. In these cases the
statistical properties of the system become fundamental in
describing the properties of the fluid. One of the most popular
quantum fluids is the Bose-Einstein condensate where a great
number of particles share the same energy state [5,6]. Lately
emerged the possibility of studying propagating classical light
as a quantum fluid of photons where the photon-photon
interactions are mediated by a nonlinear optical medium. A
particularly intriguing scenario is the study of the nonlocal
mechanism both in the temporal and spatial domains [7–10].
Nonlocality allows interesting phenomena such as analog
boson stars described by the Newton-Schrödinger equation
[11,12], large scale coherence and condensation processes
[6,13–16]. In this scenario, there are numerous unexplored
directions and missing features mostly in linking quantum
mechanics and fluids of light. These features might be relevant
for application in quantum information and simulation.

In this paper, we predict the presence of squeezing in
nonlocal photon fluids. Squeezed states are pure quantum
states, which proved to play an important role in modern
quantum optics [17,18]. These quantum states were first dis-
covered in 1927 by Kennard [19]; however their mathematical
properties were investigated in 70s and 80s [20–23]. The
use of squeezed states in cryptography, quantum computation
and gravitational wave detection has attracted great attention
[24–28]. Nowadays the challenge is reaching maximal squeez-
ing that can be implemented in gravitational waves detectors
[29].

Here, we show that the squeezing operator Ŝ(ζ ) naturally
occurs in the evolution of a photon fluid with nonlocal and/or
noninstantaneous nonlinearity. We hence theoretically predict
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that photon fluids are squeezed states. A leading ingredient in
our theory is the link between the reversed harmonic oscillator
and the discrete eigenstates of Ŝ(ζ ), given by the so called
Gamow vectors (Gvs) [30–34] which have recently proved to
provide a complete description of the action of the squeezing
operator [31], with the nonlinear waves propagation that we
illustrated in the following [35,36]. Our theoretical approach
extends the analysis in Refs. [31,36] to the case of nonlinear
nonlocal optical propagation, and in particular accounts for a
power-dependent degree of squeezing, not previously reported.

II. THEORY

We start analyzing the spatially nonlocal nonlinear optical
propagation in the one-dimensional paraxial case. Below we
take into account also a pulse evolution in a noninstantaneous
medium. We consider a linearly polarized Gaussian beam
with wavelength λ and amplitude A in a defocusing nonlinear
medium along the Z direction:

2ik∂ZA + ∂2
XA + 2k2 �n[|A|2](X)

n0
A = 0, (1)

where n0 is the linear refractive index of the medium and k =
2π/λ is the wave number. A is normalized such that |A|2 = I

is the intensity. In Eq. (1) the perturbation to the refractive
index �n[I ](X) can be written as

�n[I ](X) = n2

∫
G2(X − X′)I (X′)dX′, (2)

where n2 is the nonlinear coefficient and G2 is the
kernel function for an exponential nonlocality G2(X) =
exp(−|X|/Lnloc)/2Lnloc. We write Eq. (1) in terms of the
adimensional variables z = Z/Zd with Zd = kW 2

0 and x =
X/W0, being W0 the Gaussian beam waist:

i∂zψ + 1
2∂2

xψ − PK(x) ∗ |ψ |2ψ = 0, (3)

where ψ = A
√

PMKS/W0 and P = PMKS/Pref with Pref =
λ2/(4π2n0|n2|). K(x) = W0G2(xW0) = exp(−|x|/σ )/(2σ ) is
the nonlocal function with σ = Lnloc/W0 the degree of
nonlocality. In the highly nonlocal approximation, i.e., when
the nonlocality length is much wider than the beam waist
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(Lnloc > W0) or σ > 1, one can write the convolution as
κ(x) � K(x) ∗ |ψ |2. Equation (3) becomes i∂zψ = Ĥψ , with
Ĥ = 1

2 p̂2 + V (x), p̂ = −i∂x and V (x) = Pκ(x). A series ex-
pansion of V (x) at x = 0 gives κ(x) � κ2

0 − 1
2κ2

2 x2 with κ0 =
1/

√
2σ and κ2 = (σ 4

√
π )−1. We have Ĥ = Pκ2

0 + ĤRHO ,
where

ĤRHO = p̂2

2
− γ 2x̂2

2
(4)

is the Hamiltonian of a reversed harmonic oscillator (RHO),
with γ 2 = Pκ2

2 = P/σ 2√π . Equation (4) is typically studied
in scaled coordinates with γ = 1 in which the squeezed
quadratures are immediately identified. A key difference in
our case is the fact that the γ parameter depends on the beam
power P because of the nonlinear dynamics. As a result the
squeezing quadratures, defined below, rotates when varying
the input flux. In the following, we will report a theory for
such a nonlinear squeezing.

First, we let ψ = exp(−iP κ2
0 z)� and obtain i∂z� =

ĤRHO�. This shows that a nonlocal photon fluid is actually
described by the reversed harmonic oscillator Hamiltonian.
One can realize that the evolution is hence given by the squeez-
ing operator as follows. The evolved wave function �(z) can
be written in terms of the propagator of quantum mechanics
Û (z) = exp(−iĤRHOz) as �(z) = Û (z)�(0). The key point
is that Û (z) can be expressed as the squeezing operator Ŝ(ζ )
with ζ = reiθ , where r is the squeezing parameter, as follows:
the operator Ŝ(ζ ) is

Ŝ(ζ ) = exp
[

1
2 (ζ ∗â2 − ζ â†2

)
]
, (5)

and we consider

Ĥζ = i

2z
(ζ ∗â2 − ζ â†2

). (6)

The operator ĤRHO = R̂†(ϕ)Ĥζ R̂(ϕ), with R̂(ϕ) a single mode
rotation, is unitedly equivalent to Ĥζ [31]. Introducing the
creation and annihilation operators:

â = û + iv̂√
2

, â† = û − iv̂√
2

, (7)

we find that

Ĥζ = −γ

2
(ûv̂ + v̂û), (8)

which is the RHO Hamiltonian in Eq. (4) by the following
canonical transformations

û = γ x̂ − p̂√
2γ

, v̂ = γ x̂ + p̂√
2γ

. (9)

The quadratures û and v̂ are squeezed during evolution, i.e.,
one decreases exponentially below the coherent Gaussian
limit, while the other increases: the squeezing parameter is
r = γ z and the angle is θ = 0.

To quantify the squeezing occurring during the evolution
of a Gaussian wave packet, we adopt Gvs, which are the
generalized eigensolutions of the RHO: ĤRHO f±n = ±Enf

±
n ,

with imaginary eigenvalues En = iγ (n + 1/2). Gvs are also
the eigenstates of the squeezing operator Ŝ(r) with real
eigenvalues s±

n = exp[±r(n + 1
2 )] [31]:

Ŝ(r)f±n = e∓iEnzf±n = s±
n f±n . (10)

One has f+n = un√
n!

. Our initial condition is a Gaussian beam

ψ0(x) = (π )−1/4exp[−x2/2] in the x space. ψ0(x) in the u

space reads [37]

ψ0(u) = (−1)1/8 4

√
2γ

π

e
−u2(1−iγ )

2(γ−i)

√
1 + iγ

. (11)

Equation (11) can be expanded in series of Gvs f+n :

ψ0(u) = c

∞∑
n=0

[
(−1)(1 − iγ )

(γ − i)

]n
√

(2n − 1)!!

(2n)!!
f
+
2n(u), (12)

with c = (−1)1/8 4

√
2γ

π(1+iγ )2 . The squeezing operator S(r),

hence, acts as

S(r)ψ0(u) = cer/2
∞∑

n=0

[
(−1)(1−iγ )

(γ−i)

]n
√

(2n−1)!!

(2n)!!
e2rnf

+
2n(u)

= er/2ψ0(uer ). (13)

From Eq. (13), we calculate the quadrature uncertainties �u2

and �v2 for the evolved state (13)

�u2 = 〈S(r)ψ0(u)|û2|S(r)ψ0(u)〉 = e−2r

4

(
1 + γ 2

γ

)
,

�v2 = e2r

4

(
1 + γ 2

γ

)
, (14)

The û uncertainty decreases at the cost of the corresponding
increase in �v. The uncertainty principle reads as

�u2�v2 = (1 + γ 2)2

16γ 2
. (15)

This is one of the major results of the present paper.
Remarkably, this generalized uncertainty principle �u2�v2

predicts both that the squeezing degree depends on γ and
hence on the beam power and that, at fixed initial waist, �u�v

changes with the degree of nonlocality and the beam power.
Figure 1(a) reports �u�v as function of γ , showing that a
maximal degree of squeezing exists and corresponds to γ = 1.
For �x and �p, one has

�x2 = γ 2 − 1

4γ 2
+ 1 + γ 2

4γ 2
cosh(2r),

�p2 = 1 − γ 2

4
+ 1 + γ 2

4
cosh(2r),

�x2�p2 = (1 + γ 2)2

16γ 2
cosh2(2r) − (γ 2 − 1)2

16γ 2
. (16)

We remark that the squeezing in Eqs. (14), (15) and (16) is
obtained by the exact solution of the highly nonlocal nonlinear
Schrödinger equation.

Notably, we now show that no squeezing is predicted in the
hydrodynamical approximation commonly adopted in solving
the nonlinear Schrödinger equation (see, e.g., [8]). In order
to compute the hydrodynamical limit of the two quadratures
û and v̂, we define ε = √

Lnl/Zd , where Lnl and Zd are the
adimensional nonlinear and diffractive lengths, respectively.
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FIG. 1. (a) Uncertainty principle �u2�v2 behavior as function
of γ . The inset shows that the phase space distribution area changes
with γ and hence with P and σ , while the phase space distribution
form varies from circular to elliptical during the propagation.
(b) Normalized quadratures u (blue line) and v (red line) uncertainties
and uncertainty principle �u2�v2 (magenta line). Squares represent
the theoretical behavior for the two normalized quadratures u (blue
squares) and v (red squares) in a semilogarithmic scale after Eq. (14)
with P = 100 and σ = 15. Green dot-dashed curve provides the
expected result in the hydrodynamical regime after Eq. (19). Dashed
lines evidence the three region limits. (c) Same as (b) for the temporal
case with P = 100 and T = 10. The inset is the convolution integral
R(t) behavior as function of time (blue line). The green dashed curve
is the series expansion trend around the convolution maximum at t̄ .

ε is a small parameter which accounts for the competition
between diffraction and nonlinearity. In the adimensional
coordinates χ = xε and ρ = zε, Eq. (3) reads as

iε∂ρψ + 1
2ε2∂2

χψ − PK(χ/ε) ∗ |ψ |2ψ = 0, (17)

and the quadratures û and v̂ become

û = γ x − p̂√
2γ

−→
γχ

ε
+ iε∂χ√

2γ

v̂ = γ x + p̂√
2γ

−→
γχ

ε
− iε∂χ√

2γ
. (18)

For ε � 1, with ψ = Aeiφ/ε, the Wentzel-Kramers-Brillouin
(WKB) approach is applicable and we obtain, as ε → 0, the

uncertainties of the two quadratures

�u2 → γ

2
�x2,

�v2 → γ

2
�x2. (19)

This result implies that in the hydrodynamical regime the
quadratures û and v̂ have the same evolution.

The formalism just developed shed light on the presence of
three different regimes in the nonlinear nonlocal photon fluids
propagation. In the first part of the propagation, squeezing
takes place. Then, there is an intermediate region in which the
squeezing stops and both the quadratures start increasing. In
the third region the propagation becomes highly nonlinear.

The presence of an intermediate region, strictly connected
with the highly nonlocal approximation (HNA), can be also
proved analytically. When the HNA does not hold true any-
more, the nonlinearity starts having a dominant role in the wave
propagation, which enters the nonlinear regime. This happens
when the beam waist W (z) = �x becomes comparable to the
degree of nonlocality σ : �x2 = γ 2−1

4γ 2 + 1+γ 2

4γ 2 cosh(2r) � σ 2.
The value of z at which the transition between the squeezing
and the highly nonlinear regimes happens is around

z̄ =
log

[
γ 2(4σ 2−1)+1

1+γ 2 +
√(

γ 2(4σ 2−1)+1
1+γ 2

)2 − 1
]

2γ
. (20)

Equation (20) is successfully compared with numerical simu-
lation below.

III. SPATIAL AND TEMPORAL SIMULATIONS

In order to test our theory, we simulate a Gaussian
beam ψ(x,0) = ψ0(x) propagating according to Eq. (3) in a
nonlocal nonlinear medium. Figure 1(b) shows the normalized
uncertainty of the quadratures û and v̂ trend. We observe the
presence of the three predicted regions. In the initial stage of
propagation, the quadrature û is squeezed, i.e., its uncertainty
value decreases with respect to 1, which is the normalized
uncertainty for the coherent state, while �v diverges expo-
nentially. Figure 1(b) shows that the RHO-approximation of
Eq. (3) holds true, and �u and �v show exponential trends.
During evolution, the system reaches a maximum squeezing.
After that, the two quadratures follow the same dynamics.
Note that the product �u�v stays constant in the squeezing
region, as expected from Eq. (15). These numerical results
show that the hydrodynamical approximation fails to catch
the squeezing dynamics. Only after the maximal squeezing
has been reached, the two quadratures tend to have the same
trend as predicted by Eq. (19): for large propagation distances
the two quadratures tend to the same limit given by the green
dot-dashed line in Fig. 1(b). The transition point z̄, calculated
after Eq. (20), corresponds with the limit of the intermediate
region where the highly nonlocal approximation stops holding
true. The Gamow approach is more accurate for what concerns
the two quadratures; the hydrodynamical approach fails at
the lowest order because it neglects the derivative of the
density |ψ |2 and only accounts for the dynamics of the
phase.
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The scenario also holds true for temporal photon flu-
ids. We consider the defocusing noninstantaneous nonlinear
Schrödinger equation in the dimensionless form

i∂zψ + ∂2
t ψ − ψ

∫ +∞

−∞
R(t − t ′)|ψ(t ′)|2dt ′ = 0, (21)

where R(t) = (1/T ) exp(−t/T )�(t) is the medium response
function and T is the medium response time. �(t) is the
Heaviside function which guarantees time causality. The
response function R(t) is normalized such that

∫
R(t)dt = 1

[38,39]. In the highly noninstantaneous limit, i.e., medium
response time longer than the pulse duration (T � t0), Eq. (21)
becomes effectively linear:

i∂zψ + ∂2
t ψ − ER(t)ψ = 0, (22)

where E = ∫ |ψ(t)|2dt is the pulse energy. Equation (21)
holds true in fibers with focusing nonlinearity in the nor-
mal dispersion regime. The highly noninstantaneous regime
describes liquid filled hollow core fibers as those studied
in Ref. [38]. In analogy with the spatial case, the temporal
dynamics of a nonlocal photon fluid can be described both
by the hydrodynamical [8] and the Gamow vectors approach.
In particular, Eq. (21) admits eigenfunctions of the form ψ =
φEeiEz, as in Ref. [38]. These solutions lead to Gamow vectors
with imaginary eigenvalues by their analytical prolongation
with E → −i

√
iE and T → √

iT . For finite time T one can
find the RHO by calculating the convolution integral

R(t) =
∫ +∞

−∞
R(t − t ′)|ψ(t ′)|2dt ′

= e
1−4tT

4T 2

2T

[
1 + Erf

(
t − 1

2T

)]
. (23)

This function has a maximum at t = t̄(T ) as shown in the
inset in Fig. 1(c). Hence, for t � t̄ , one can write R(t) �
R(t̄) + 1

2R(2)(t̄)(t − t̄)2. The model can be approximated by
an RHO as in the spatial case. The temporal decay coefficient
is γt = |R(2)(t̄)|. As a result, one has squeezing also in the
temporal case as shown in the quadratures in Fig. 1(c) that
strongly resemble the spatial dynamics in Fig. 1(b).

In order to further verify the squeezing, we study the
evolution of the phase-space distribution for both the spatial
and temporal cases. For squeezed light, the phase-space
distribution is elliptical, i.e., it is compressed in the direction
of the squeezed variable [40,41]. The Wigner function W (x,k)

W (x,k) = 1

π

∫
ψ∗(x + y)ψ(x − y)e2ikydy (24)

furnishes the phase-space distribution, where x is either the
spatial or temporal coordinate, while k is the corresponding
conjugated canonical variable. Figures 2(a) and 2(c) report the
simulation of the beam evolution for input power P = 100
after Eqs. (3) and (21), respectively. Figures 2(b) and 2(d)
show the corresponding Wigner distribution W (x,k) at z = 2
and z = 0 in the inset. After a few steps of propagation, W (x,k)
becomes elongated and compressed at a slanted direction. We
point out that the spectral content is centered around k = 0.
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FIG. 2. (a) Numerical solution of Eq. (3) with P = 100 and σ =
15. (b) Wigner function calculated after Eq. (3) of the evolved beam
in panel (a) at z = 2, with k̄x = 257; the inset shows the Wigner
function of the initial condition of panel (a). (c) Numerical solution
of Eq. (21) with P = 100 and T = 10. (d) The same as (b) for the
evolved beam in panel (c) with k̄t = 128.

The elongation is symmetric in the spatial case, while it is
asymmetrical in the temporal domain. This asymmetry is due
to the causality in the time-response function. The degree
of squeezing reaches a maximum value and stops increasing
when the HNA does not hold true anymore.

These findings can be experimentally tested, by letting
a Gaussian laser beam with fixed waist propagate in a
nonlinear nonlocal medium, as, for example, in a thermal
medium [35,36]. Arranging the setup in order to measure the
quadratures û and v̂, a specific value of the beam power exists
at which the degree of squeezing is maximum. This happens
because the squeezed quadratures rotate in the phase-space
with the beam power. A recent paper [42] demonstrate highly
noninstantaneous Raman response and the excitation related
temporal solitons in liquid-filled hollow-core fibers. These
results addresses the effective possibility of exciting squeezing
in nonlinear nonlocal media.

IV. CONCLUSIONS

In conclusion, squeezing emerges during the propagation of
a photon fluid both in temporally and spatially nonlocal media.
The spectral theory of the squeeze operator based on Gamow
eigenvectors of a reversed harmonic oscillator in a rigged
Hilbert space explains the process. During the evolution,
a maximal squeezing is reached until the highly nonlinear
approximation is valid. Numerical simulations and the study
of the Wigner transform confirm the theory. Despite that the
analysis is limited to the classical regime, we have evidence
that nonlinear propagation fosters the generation of highly
non-Gaussian states that might be employed for quantum-
inspired technologies. The implications at a fully quantum
level are unknown and will be deepened in future work. Our
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work establishes a link between the classical photon fluid
description and quantum optics that may potentially surpass
limits of squeezing generation for various applications, such
as quantum information and gravitational waves detection.

ACKNOWLEDGMENTS

This publication was made possible through the support
of a grant from the John Templeton Foundation (Grant No.
58277).

[1] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
[2] D. Vocke, T. Roger, F. Marino, E. M. Wright, I. Carusotto, M.

Clerici, and D. Faccio, Optica 2, 484 (2015).
[3] I. Carusotto, Proc. R. Soc. A 470, 20140320 (2014).
[4] P.-E. Larré and I. Carusotto, Phys. Rev. A 92, 043802 (2015).
[5] J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Nature 468,

545 (2010).
[6] J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and M. Weitz,

Phys. Rev. Lett. 108, 160403 (2012).
[7] M. C. Strinati and C. Conti, Phys. Rev. A 90, 043853 (2014).
[8] C. Conti, S. Stark, P. S. J. Russell, and F. Biancalana, Phys. Rev.

A 82, 013838 (2010).
[9] N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, Phys. Rev.

Lett. 99, 043903 (2007).
[10] A. Mecozzi, M. Midrio, and M. Romagnoli, Opt. Lett. 21, 402

(1996).
[11] S. Liebling and C. Palenzuela, Living Rev. Relativ. 15, 6 (2012).
[12] T. Roger, C. Maitland, K. Wilson, N. Westerberg, D. Vocke, E.

Wright, and D. Faccio, Nat. Commun. 7, 13492 (2016).
[13] C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer,

Nat. Phys. 8, 471 (2012).
[14] A. Picozzi, M. Haelterman, S. Pitois, and G. Millot, J. Phys. IV

135, 33 (2006).
[15] J. Klaers, F. Vewinger, and M. Weitz, Nat. Phys. 6, 512 (2010).
[16] C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S.

Rica, Phys. Rev. Lett. 95, 263901 (2005).
[17] D. Walls, Nature 306, 141 (1983).
[18] D. Walls and G. Milburn, Quantum Optics (Spinger-Verlag,

Berlin, 1999).
[19] E. H. Kennard, Z. Physik 44, 326 (1927).
[20] D. Stoler, Phys. Rev. D 1, 3217 (1970).
[21] D. Stoler, Phys. Rev. D 4, 1925 (1971).
[22] R. A. Fisher, M. M. Nieto, and V. D. Sandberg, Phys. Rev. D

29, 1107 (1984).

[23] X. Ma and W. Rhodes, Phys. Rev. A 41, 4625 (1990).
[24] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.

Phys. 74, 145 (2002).
[25] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,

and J. L. O’Brien, Nature 464, 45 (2010).
[26] L. S. Collaborationa, Nat. Phys. 7, 962 (2011).
[27] S. S. Y. Chua, B. J. J. Slagmolen, D. A. Shaddock, and D. E.

McClelland, Classical Quantum Gravity 31, 183001 (2014).
[28] R. Schnabel, N. Mavalvala, D. McClelland, and P. Lam,

Nat. Commun. 1, 121 (2010).
[29] H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel,

Phys. Rev. Lett. 117, 110801 (2016).
[30] G. Gamow, Z. Phys. 51, 204 (1928).
[31] D. Chruscinski, Phys. Lett. A 327, 290 (2004).
[32] I. Prigogine, F. Mayné, C. George, and M. D. Haan, Proc. Natl.

Acad. Sci. USA 74, 4152 (1977).
[33] A. R. Bohm, R. Scurek, and S. Wikramasekara, arXiv:nucl-

th/9902076.
[34] K. W. Ford and J. A. Wheeler, Ann. Phys. 7, 259 (1959).
[35] S. Gentilini, M. C. Braidotti, G. Marcucci, E. DelRe, and C.

Conti, Sci. Rep. 5, 15816 (2015).
[36] S. Gentilini, M. C. Braidotti, G. Marcucci, E. DelRe, and C.

Conti, Phys. Rev. A 92, 023801 (2015).
[37] G. Marcucci and C. Conti, Phys. Rev. A 94, 052136 (2016).
[38] C. Conti, M. A. Schmidt, P. S. J. Russell, and F. Biancalana,

Phys. Rev. Lett. 105, 263902 (2010).
[39] W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight,

P. S. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor,
Nature 424, 511 (2003).

[40] N. L. Balazs and A. Voros, Ann. Phys. 199, 123 (1990).
[41] G. Barton, Ann. Phys. 166, 322 (1986).
[42] M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J.

Limpert, A. Tünnermann, and M. A. Schmidt, Nat. Commun. 8,
42 (2017).

043823-5

https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1364/OPTICA.2.000484
https://doi.org/10.1364/OPTICA.2.000484
https://doi.org/10.1364/OPTICA.2.000484
https://doi.org/10.1364/OPTICA.2.000484
https://doi.org/10.1098/rspa.2014.0320
https://doi.org/10.1098/rspa.2014.0320
https://doi.org/10.1098/rspa.2014.0320
https://doi.org/10.1098/rspa.2014.0320
https://doi.org/10.1103/PhysRevA.92.043802
https://doi.org/10.1103/PhysRevA.92.043802
https://doi.org/10.1103/PhysRevA.92.043802
https://doi.org/10.1103/PhysRevA.92.043802
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature09567
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevLett.108.160403
https://doi.org/10.1103/PhysRevA.90.043853
https://doi.org/10.1103/PhysRevA.90.043853
https://doi.org/10.1103/PhysRevA.90.043853
https://doi.org/10.1103/PhysRevA.90.043853
https://doi.org/10.1103/PhysRevA.82.013838
https://doi.org/10.1103/PhysRevA.82.013838
https://doi.org/10.1103/PhysRevA.82.013838
https://doi.org/10.1103/PhysRevA.82.013838
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1103/PhysRevLett.99.043903
https://doi.org/10.1364/OL.21.000402
https://doi.org/10.1364/OL.21.000402
https://doi.org/10.1364/OL.21.000402
https://doi.org/10.1364/OL.21.000402
https://doi.org/10.12942/lrr-2012-6
https://doi.org/10.12942/lrr-2012-6
https://doi.org/10.12942/lrr-2012-6
https://doi.org/10.12942/lrr-2012-6
https://doi.org/10.1038/ncomms13492
https://doi.org/10.1038/ncomms13492
https://doi.org/10.1038/ncomms13492
https://doi.org/10.1038/ncomms13492
https://doi.org/10.1038/nphys2278
https://doi.org/10.1038/nphys2278
https://doi.org/10.1038/nphys2278
https://doi.org/10.1038/nphys2278
https://doi.org/10.1051/jp4:2006135006
https://doi.org/10.1051/jp4:2006135006
https://doi.org/10.1051/jp4:2006135006
https://doi.org/10.1051/jp4:2006135006
https://doi.org/10.1038/nphys1680
https://doi.org/10.1038/nphys1680
https://doi.org/10.1038/nphys1680
https://doi.org/10.1038/nphys1680
https://doi.org/10.1103/PhysRevLett.95.263901
https://doi.org/10.1103/PhysRevLett.95.263901
https://doi.org/10.1103/PhysRevLett.95.263901
https://doi.org/10.1103/PhysRevLett.95.263901
https://doi.org/10.1038/306141a0
https://doi.org/10.1038/306141a0
https://doi.org/10.1038/306141a0
https://doi.org/10.1038/306141a0
https://doi.org/10.1007/BF01391200
https://doi.org/10.1007/BF01391200
https://doi.org/10.1007/BF01391200
https://doi.org/10.1007/BF01391200
https://doi.org/10.1103/PhysRevD.1.3217
https://doi.org/10.1103/PhysRevD.1.3217
https://doi.org/10.1103/PhysRevD.1.3217
https://doi.org/10.1103/PhysRevD.1.3217
https://doi.org/10.1103/PhysRevD.4.1925
https://doi.org/10.1103/PhysRevD.4.1925
https://doi.org/10.1103/PhysRevD.4.1925
https://doi.org/10.1103/PhysRevD.4.1925
https://doi.org/10.1103/PhysRevD.29.1107
https://doi.org/10.1103/PhysRevD.29.1107
https://doi.org/10.1103/PhysRevD.29.1107
https://doi.org/10.1103/PhysRevD.29.1107
https://doi.org/10.1103/PhysRevA.41.4625
https://doi.org/10.1103/PhysRevA.41.4625
https://doi.org/10.1103/PhysRevA.41.4625
https://doi.org/10.1103/PhysRevA.41.4625
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nphys2083
https://doi.org/10.1038/nphys2083
https://doi.org/10.1038/nphys2083
https://doi.org/10.1038/nphys2083
https://doi.org/10.1088/0264-9381/31/18/183001
https://doi.org/10.1088/0264-9381/31/18/183001
https://doi.org/10.1088/0264-9381/31/18/183001
https://doi.org/10.1088/0264-9381/31/18/183001
https://doi.org/10.1038/ncomms1122
https://doi.org/10.1038/ncomms1122
https://doi.org/10.1038/ncomms1122
https://doi.org/10.1038/ncomms1122
https://doi.org/10.1103/PhysRevLett.117.110801
https://doi.org/10.1103/PhysRevLett.117.110801
https://doi.org/10.1103/PhysRevLett.117.110801
https://doi.org/10.1103/PhysRevLett.117.110801
https://doi.org/10.1007/BF01343196
https://doi.org/10.1007/BF01343196
https://doi.org/10.1007/BF01343196
https://doi.org/10.1007/BF01343196
https://doi.org/10.1016/j.physleta.2004.05.046
https://doi.org/10.1016/j.physleta.2004.05.046
https://doi.org/10.1016/j.physleta.2004.05.046
https://doi.org/10.1016/j.physleta.2004.05.046
https://doi.org/10.1073/pnas.74.10.4152
https://doi.org/10.1073/pnas.74.10.4152
https://doi.org/10.1073/pnas.74.10.4152
https://doi.org/10.1073/pnas.74.10.4152
http://arxiv.org/abs/arXiv:nucl-th/9902076
https://doi.org/10.1016/0003-4916(59)90026-0
https://doi.org/10.1016/0003-4916(59)90026-0
https://doi.org/10.1016/0003-4916(59)90026-0
https://doi.org/10.1016/0003-4916(59)90026-0
https://doi.org/10.1038/srep15816
https://doi.org/10.1038/srep15816
https://doi.org/10.1038/srep15816
https://doi.org/10.1038/srep15816
https://doi.org/10.1103/PhysRevA.92.023801
https://doi.org/10.1103/PhysRevA.92.023801
https://doi.org/10.1103/PhysRevA.92.023801
https://doi.org/10.1103/PhysRevA.92.023801
https://doi.org/10.1103/PhysRevA.94.052136
https://doi.org/10.1103/PhysRevA.94.052136
https://doi.org/10.1103/PhysRevA.94.052136
https://doi.org/10.1103/PhysRevA.94.052136
https://doi.org/10.1103/PhysRevLett.105.263902
https://doi.org/10.1103/PhysRevLett.105.263902
https://doi.org/10.1103/PhysRevLett.105.263902
https://doi.org/10.1103/PhysRevLett.105.263902
https://doi.org/10.1038/nature01798
https://doi.org/10.1038/nature01798
https://doi.org/10.1038/nature01798
https://doi.org/10.1038/nature01798
https://doi.org/10.1016/0003-4916(90)90370-4
https://doi.org/10.1016/0003-4916(90)90370-4
https://doi.org/10.1016/0003-4916(90)90370-4
https://doi.org/10.1016/0003-4916(90)90370-4
https://doi.org/10.1016/0003-4916(86)90142-9
https://doi.org/10.1016/0003-4916(86)90142-9
https://doi.org/10.1016/0003-4916(86)90142-9
https://doi.org/10.1016/0003-4916(86)90142-9
https://doi.org/10.1038/s41467-017-00033-5
https://doi.org/10.1038/s41467-017-00033-5
https://doi.org/10.1038/s41467-017-00033-5
https://doi.org/10.1038/s41467-017-00033-5



