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Topological Aharonov-Bohm suppression of optical tunneling in twisted nonlinear multicore fibers
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We show that the Aharonov-Bohm-like suppression of optical tunneling in twisted multicore fibers can persist
even under highly nonlinear conditions. Our analysis indicates that the topological phase is robust and remains
intact in the presence of nonlinearity. The energy exchange dynamics are analyzed theoretically via closed-form
solutions in four-core ring systems. Effects arising from asymmetry are also investigated. A possible arrangement
to experimentally observe this effect is suggested.
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I. INTRODUCTION

Electrons interacting with a magnetic field can display an
array of interesting and counterintuitive effects. These include,
for example, the emergence of Landau levels [1], quantum
Hall [2] and topological insulator effects [3], and quantization
of magnetic flux through a superconductor [4], to mention a
few. In recent years, the possibility of observing processes
akin to those expected from magnetic fields has also been
intensely explored in bosonic settings. These include, for
example, photon and cold-atom dynamics under the influence
of synthetic magnetic fields [5–12], photonic topological
insulators [13–16], and nonreciprocal optical elements [17].
In such arrangements, an artificial magnetic field can be
effectively introduced by exploiting the intimate connection
between Berry’s phase in parameter space and the Aharonov-
Bohm phase [18–21]. An intriguing phenomenon arising from
the presence of a magnetic field is a possible inhibition of
electron tunneling in degenerate quantum channels, a process
never observed in any physical system [22]. This latter effect is
a direct by-product of an Aharonov-Bohm (AB) phase [23,24]
that in turn leads to a complete elimination of tunneling,
a process resulting from the destructive interference of the
eigenfunctions involved. A possible optical realization of this
effect has also been suggested in a twisted annular or multicore
fiber configuration in [6]. In addition, similar systems have also
been studied in parity-time-symmetric configurations, where
it was found that the exact parity-time phase can be broken in
a quantized fashion [25,26]. Apart from being fundamental in
nature, this effect can be potentially utilized for applications,
such as torsion sensors [27], mode management [28], and
dispersion and polarization control [29]. At this point we
emphasize that this topological phenomenon has so far been
considered only in the linear regime. In this respect, one may
ask whether this Aharonov-Bohm tunneling suppression will
still persist even under nonlinear conditions. In other words, is
this process robust enough to withstand nonlinear effects?

In this work, we show that the topological suppression
of light tunneling in a twisted ring waveguide array can be
maintained completely intact in spite of the presence of optical
nonlinearity. This holds true in any ring multicore system
irrespective of dimensionality. Analytical results pertaining
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to four-core twisted nonlinear fiber structures indicate that the
Aharonov-Bohm phase remains invariant and has no depen-
dence whatsoever on the power levels. At higher intensities,
a discrete spatial soliton is formed that further suppresses the
energy exchange or tunneling process. The effect of the twist
rate on the onset of these mechanisms is also investigated.
Moreover, the aforementioned effect can manifest itself even
when the waveguide channels are asymmetrically detuned.
Beam propagation simulations further corroborate our results,
as obtained from nonlinear coupled mode theory.

II. LIGHT PROPAGATION IN TWISTED MULTICORE
RING-FIBER SYSTEMS

A. Linear regime

In order to elucidate the mechanism behind the Aharonov-
Bohm suppression of optical tunneling, perhaps it is best to
explore this effect under linear conditions. In this respect,
consider a circular 2N -core waveguide arrangement as shown
in Fig. 1(a). Each waveguide channel is supposed to be single
moded, while it is evanescently coupled to its nearest neigh-
bors. In addition, the structure is twisted along the propagation
axis with a spatial period �. Under these conditions, one can
show that in the rotating frame, the evolution of the modal
field amplitudes En obey the following set of differential
equations [11]:

i
dEn

dz
+ βnEn + κ(En+1e

−iφ + En−1e
iφ) = 0, (1)

where the index n = 0,1, . . . ,2N − 1 indicates the site number
(modulo 2N ), βn represents the propagation constant of
each core, and κ is the coupling coefficient among nearest
neighbors. In Eq. (1), φ = k0n0εR

2 sin(π/N ) is the tunneling
phase introduced by the twist, k0 = 2π/λ0, R is the radius of
the circle around which the waveguide elements are located,
and ε = 2π/� is the angular twist rate. Equation (1) clearly
shows that in such a setting, the coupling coefficients are in
fact complex, having equal and opposite phases depending on
whether the tunneling direction is clockwise or counterclock-
wise. In what follows we show that for specific twist rates
satisfying the phase condition

Nφ = π/2 + pπ, (2)

where p is any integer number, the energy exchange between
sites 0 and N is totally eliminated; in other words, these two
channels become effectively decoupled. To analytically prove

2469-9926/2017/96(4)/043816(5) 043816-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.043816


MIDYA PARTO et al. PHYSICAL REVIEW A 96, 043816 (2017)

0

1

2

2N-1

2N-2

N

N-1

N-2

N+1

N+2

0

1

2

2N-1

2N-2

N

N-1

N-2

N+1

N+2

0

1

2

2N-1

2N-2

N

N-1

N-2

N+1

N+2

0

1

2

2N-1

2N-2

N

N-1

N-2

N+1

N+2

0

1

2

2N-1

2N-2

N

N-1

N-2

N+1

N+2

φ-φ

0 1-1 2-2-2N-4N 4N2N

(a) (b)

(c)

echoes

excited
-φ φ

echoes

twist

FIG. 1. (a) Schematic of a 2N -core twisted optical fiber and (b)
its equivalent one-dimensional lattice. (c) Light coupling dynamics
in the twisted structure, illustrating the formation of periodic echoes
circulating inside the array.

this assertion, let us consider an infinite version (unfolded)
of this same lattice, as shown in Fig. 1(b). In this system the
field dynamics are governed by the same equation, only this
time n ∈ (−∞,+∞). If the central site is the only one initially
excited, the field distribution in this infinite array is given
by [30,31]

En(z) = inJn(2κz)einφ. (3)

In the 2N circular array, the field amplitude at site n can then
be obtained by summing up all the echoes resulting from the
periodicity of the circular array [Fig. 1(c)] and hence one now
finds that

En(z) =
∞∑

m=−∞
in+2mNJn+2mN (2κz)ei(n+2mN)φ, (4)

where n = 0,1, . . . ,2N − 1. From here, it is straightforward
to see that the optical field in waveguide N is always zero:

EN (z) =
∞∑

m=0

[i(2m+1)NJ(2m+1)N (2κz)ei(2m+1)Nφ

+ i−(2m+1)NJ−(2m+1)N (2κz)e−i(2m+1)Nφ] = 0. (5)

This completes the proof.
To demonstrate these dynamics, let us consider linear light

evolution in an eight-core twisted fiber as depicted in Fig. 2(a).
In order to achieve topological Aharonov-Bohm suppression,
we set 4φ = π/2. Hence, in this case the twist pitch is given
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FIG. 2. (a) Eight-core twisted optical fiber where destructive
interference between the two possible tunneling paths is manifested.
(b) Linear light intensity evolution within the individual cores of the
structure.

by � = 8
√

2k0n0R
2. The results obtained after solving the

coupled-mode equation (1) for this structure are shown in
Fig. 2(b). It is clear that core 5 remains dark, confirming the
results predicted by the above general linear analysis. Because
of this topological effect, any crosstalk between sites 1 and 5
is totally prohibited. This effect can be intuitively explained
by noticing the fact that the two phase paths from core 1 to 5
(upper and lower) in Fig. 2(a) differ from each other by a
phase factor of ±π . Subsequently, light transport along these
two paths results in destructive interference, thus leaving core
5 completely dark.

B. Nonlinear regime

From the previous discussion it is clear that the topological
phenomenon under consideration is by nature linear. In this
respect, one may ask whether this AB suppression can still
persist under nonlinear conditions. In this section we address
this question by numerically and analytically solving the
underlying equations of motion. In the case of a four-core
structure, the dynamical system is fully integrable in terms of
Jacobi-elliptic functions. Beam propagation methods are also
employed to corroborate these results.

In the presence of an optical Kerr nonlinearity, the modal
fields in a twisted 2N circular array are now described by

i
dEn

dz
+ βnEn + κ(En+1e

−iφ + En−1e
iφ) + γ |En|2En = 0,

(6)
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FIG. 3. Modal intensity evolution in a nonlinear twisted eight-
core fiber.

where γ is proportional to the nonlinear Kerr coefficient. As
an example, we numerically investigate the wave dynamics in
a nonlinear eight-core system, similar to that of Fig. 2(a), when
E1(0) = E0 = √

κ/γ . These results, depicted in Fig. 3, clearly
indicate a complete AB suppression of coupling between cores
1 and 5. This suppression still persists even at higher power
levels.

To gain further insight into the nonlinear AB dynamics, we
analytically solve the case of a four-core twisted fiber (N = 2),
as shown in Fig. 4(a). To do so, Eq. (6) is scaled based on the
following normalizations, Z = κz and En = E0an exp(iβ1z):

i
da1

dZ
+ a2e

−iφ + a4e
iφ + |a1|2a1 = 0,

i
da2

dZ
+ a1e

iφ + a3e
−iφ + δa2 + |a2|2a2 = 0,

i
da3

dZ
+ a2e

iφ + a4e
−iφ + |a3|2a3 = 0,

i
da4

dZ
+ a1e

−iφ + a3e
iφ + δa4 + |a4|2a4 = 0, (7)

where δ = �/κ . For purposes of generality, we allow the two
auxiliary cores 2 and 4 to have a wave-number detuning �

with respect to sites 1 and 3. In this scenario Eq. (2) demands
that φ = π/4. Numerical simulations carried out on Eqs. (7)
reveal that site 3 remains completely dark even under highly
nonlinear conditions. In other words, the manifestation of AB
suppression is not affected by the presence of Kerr nonlinearity.
In this particular case a3(Z) = 0 and a2 and a4 are phase related
via a4 = exp(−iπ/2)a2 (because of symmetry). In view of
this, Eqs. (7) can now be effectively described by a reduced
coupled system

i
da1

dZ
+ 2e−iπ/4a2 + |a1|2a1 = 0,

i
da2

dZ
+ eiπ/4a1 + δa2 + |a2|2a2 = 0. (8)

These equations can be further simplified using the new
variables u = a1 exp(iπ/4) and v = √

2a2:

i
du

dZ
+

√
2v + |u|2u = 0,

i
dv

dZ
+

√
2u + δv + 1

2
|v|2v = 0. (9)

1
3

0.5 1 1.5 2 2.50
0

0.2

0.4

0.6

0.8

1

2,4

Normalized Distance Z

|E |n
2

|E |0
2

2

3
4

1

(a)

(b)

FIG. 4. (a) Nonlinear four-core twisted fiber. (b) Intensity evolu-
tion within the four cores as obtained from Eq. (15), when a1(0) = 1.

In turn, Eqs. (9) are equivalent to a system of four real
differential equations

U̇0 = 0, (10a)

U̇1 = 2
√

2U3, (10b)

U̇2 = (− 1
4U0 − 3

4U1 + δ
)
U3, (10c)

U̇3 = −2
√

2U1 + (
1
4U0 + 3

4U1 − δ
)
U2, (10d)

where for convenience we have used the Stokes parameters

U0 = |u|2 + |v|2, (11a)

U1 = |u|2 − |v|2, (11b)

U2 = uv∗ + u∗v, (11c)

U3 = i(u∗v − uv∗). (11d)

From Eqs. (10) one can directly obtain the following two
conservation laws:

U0 = C1, (12a)

U2 = 1

2
√

2

(
−C1

4
U1 − 3

8
U 2

1 + δU1

)
+ C2, (12b)

where C1 and C2 are constants determined by the initial
conditions, given by a1(0) = a0 while ai(0) = 0 for i = 2,3,4.
Hence,

C1 = |a0|2, (13a)

C2 = 1

2
√

2

(
5

8
|a0|4 − δ|a0|2

)
. (13b)
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FIG. 5. Beam propagation analysis of a nonlinear twisted four-
core fiber structure for intensity evolution at (a) low and (b) high input
powers.

Substituting these latter results into Eqs. (10), we then obtain
the following differential equation for U1:

U̇ 2
1 = − 9

64U 4
1 − 2

3B1U
3
1 + B2U

2
1 + 2B3U1 + 2B4, (14)

where the constants Bi are defined as follows: B1 = (9/32)
C1 − (9/8)δ, B2 = −C2

1/16 + (C1/2)δ + (3
√

2/2)C2 − δ2 −
8, B3 = (

√
2/2)C1C2 − (2

√
2)δC2, and B4 = (9/128)C4

1 +
(B1/3)C3

1 − (B2/2)C2
1 − B3C1. From here, one can show that

Eq. (14) can be solved analytically in terms of Jacobi-elliptic
functions [32–34]

U1(Z) = r1B + r2A − (r1B − r2A)cn(x,k)

A + B + (A − B)cn(x,k)
, (15)

where r1 and r2 are the two real roots corresponding to the
fourth-order polynomial on the right-hand side of Eq. (14).
Meanwhile, r3 and r∗

3 are the complex conjugate roots of this
same polynomial. The two constants A and B in Eq. (15) can
be obtained from

A2 =
(

r1 − r3 + r∗
3

2

)2

− (r3 − r∗
3 )2

4
,

B2 =
(

r2 − r3 + r∗
3

2

)2

− (r3 − r∗
3 )2

4
. (16)

The argument x in the Jacobi-elliptic functions is related
to the elliptic integral of the first kind F (ϕ,k) and the
normalized propagation distance Z via x = F (π,k) − 3Z/8g.
Moreover, k2 = [(r1 − r2)2 − (A − B)2]/4AB provides the
elliptic modulus, and g = (AB)−1/2. These analytical results
are corroborated by numerical simulations of Eqs. (7), as
illustrated in Fig. 4(b). The actual intensities in the four cores

0

0.2

0.4

0.6

0.8

1

54

21

0.5 1 1.5 2 2.50

Normalized Distance Z

|E |n
2

|E |0
2

FIG. 6. Robustness of the nonlinear AB effect against asymmetric
detuning perturbations, when core 2 is detuned from the rest of the
structure by δ′ = 0.05.

can then be directly obtained from |u|2 = (C1 + U1)/2 and
|v|2 = (C1 − U1)/2.

A possible silica-based four-core arrangement where one
can observe the aforementioned Aharonov-Bohm tunneling
suppression can be designed based on the following param-
eters. We assume that the core radii are r = 4.5 μm while
their center-to-center distance is D = 24 μm. The operating
wavelength is taken here to be λ0 = 1550 nm and the numerical
aperture of each waveguide element is equal to 0.1. The
structure is twisted around its central axis with a pitch of
� = 1.4 cm, corresponding to φ = π/4. In order to validate
the coupled-mode results obtained before, we use beam propa-
gation methods to monitor the intensity evolution in each core
along the propagation axis when core 1 is excited at different
power levels. The results are summarized in Fig. 5. These
dynamics clearly indicate that the differential phase between
the two light channels is left unchanged even under highly
nonlinear conditions. Consequently, the quenching of the
coupling can be preserved. At considerable higher power levels
(∼10 kW), the nonlinearity starts to dominate the coupling
effects [Fig. 5(b)]. As a result, a discrete soliton is established
on site 1 [35–37], which further reduces energy transfer to the
nearest cores (2 and 4). It is observed that even in this highly
localized regime, the topological phases are left intact. Finally,
we examined the robustness of this AB effect in the presence
of an asymmetric detuning δ′ between cores 2 and 4. Figure 6
shows the intensity dynamics in the four channels when
δ′ = 0.05. Although a deviation from the ideal case of Fig. 5(a)
is observed, it is evident that the nonlinear AB effect can in
principle withstand such a perturbation. This is attributed to
the topological nature of the Aharonov-Bohm phase.

III. CONCLUSION

We have studied the Aharonov-Bohm topological sup-
pression of light tunneling in a nonlinear multicore fiber
structure. Our analytical and numerical results indicate that
the Aharonov-Bohm phase remains invariant and has no
dependence whatsoever on the power levels. Our results
present a promising platform to observe this effect in the
context of photonics, especially considering the topological
robustness of this process against nonuniformities.
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