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Light diffraction by a slit and grooves with a point source model based on wave dynamics
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A point source model based on wave dynamics is proposed to study the fundamental light diffraction physics
by a subwavelength slit and grooves in a metallic film. In this model, two opposite traveling waves are considered
in each indentation; the resultant outgoing wave can propagate along the film surface to couple each other or
radiate into free space as a point source. With small-system simulations, the tangential electric field at each
opening determines its source temporal phase; then the energy conservation of each point source radiation and of
the total radiant wave determine the source amplitudes. Besides these, this model reveals more physics regarding
the wave interactions. In the strong-wave-coupling case studied, the surface waves created by the grooves flow
into the slit and delay the Fabry-Pérot-like resonance. When adding the grooves concentrates the light field into
a directional beam, the total transmitted energy through the slit significantly decreases. However, the energy in
the original nearby grooves increases so that the groove radiation increasingly shares the transmitted energy. As
the total transmitted energy decreases, the slit radiation energy decreases further due to the energy conservation.
In the weak-wave-coupling cases, the groove radiation still interferes with that from the slit; as a result, the
diffracted light is split into two beams. It is interesting to find that, due to the groove radiation, the slit radiation
energy is enhanced to become larger than that transmitted through it. Detailed physical interpretations will be
given.
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I. INTRODUCTION

The interaction between electromagnetic (EM) waves and
subwavelength metallic structures has been an active research
area in the past two decades since the discovery of the
extraordinary optical transmission through metallic holes due
to the excitation of surface plasmons (SPs) [1]. The EM wave
can be either guided or localized in a predefined structure
[2] and can also be scattered into space or coupled to
another structure [3]. Hence, besides academic importance,
controlling light via the excitation of SPs and radiations with
subwavelength metallic structures opens up many potential
optical applications, such as plasmonic circuit [4], biosensing
[5], plasmonic solar cell [6], optical antennas [7], optical data
storage [8], and plasmonic lithography [9].

The diffracted light shape can be manipulated; besides
focusing [10–16], structured subwavelength metallic films
have been shown to be capable of collimating a light beam
[17–21] or bending it at a specific angle [22–26]. An
analytical theory [27] studied the wave coupling mechanism
in a structured perfect electric conducting (PEC) film, which
contains a subwavelength slit and a number of grooves at both
sides of the slit exit; the diffracted field at an observation
location in free space is then yielded from the superposition
of the radiations from each of the indentation openings. A
similar theory was applied to study the transmission properties
of such a structured film [28]. Both the fundamental mode and
high-order modes in the indentations were considered by a
mode expansion theory [29]. An analytical modal solution [30]
was obtained with a two-layer model and the transfer-matrix
method. A finite-difference time-domain (FDTD) simulation
method was employed to study the phase and amplitude of the
field at the openings and their scattering interactions [31];
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the horizontal Fabry-Pérot resonance effect between the
indentations was investigated theoretically while the slit modes
interfere with the groove-generated surface plasmons [32]. The
phases of the fields at the grooves were calculated so that the
structure can be designed to focus the diffracted light at a
designed location or to generate a light beam at a designed
angle by the constructive interference [33–35].

The wave-matter interaction mechanism in the light ma-
nipulation area so far has been extensively understood by
solving and analyzing the wave-coupling equations, but more
underlying physics still awaits to be uncovered beyond the
conventional scope. In this paper, we put emphasis on revealing
the physics from a straightforward perspective by our point
source model. Without loss of generality, a subwavelength
structure composed of a slit and a number of identical grooves
is employed as our example, where each of the indentations
is separated equally [27]. The FDTD simulation shows that,
when the incident wavelength is close to the indentation
separation distance, the diffracted field converges to a light
beam with the increase of the grooves; the result is consistent
with that in Ref. [27]. To understand the diffraction physics,
we begin with the fundamental wave interaction dynamics.
Two opposite traveling waves are assumed in all indentations
as inspired by the Fabry-Pérot-like resonance [36–39] and the
surface wave coupling mechanism [31]. The resultant outgoing
waves can propagate along the film surface to couple with
each other or radiate into free space so as to be considered
as a point source for developing the point source model.
With the help of small-system simulations, the tangential
electric field at the openings determines the source temporal
phases; then the energy-conservation conditions of each point
source radiation and of the total radiant wave determine the
source amplitudes. This model is verified by the results of
large-system simulations. The cases of longer incident wave-
lengths that split the diffracted light into two beams are also
studied.
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In the thorough investigation of this diffraction problem,
we will reveal the underlying physics that has not been fully
uncovered yet. The previous study [28] indicates that the
transmitted energy flux through a similar structured film is
changed less than 1% when the groove number is varied from
1 to 10. In contradiction, there is about a 10% decrease in
our main case. This discrepancy is fundamental and will be
shown to be related to the phase change of the Fabry-Pérot-
like resonance in the slit. As indicated by our analysis, the
surface waves induced by the added grooves flow backward
into the slit and then effectively delay the round-trip traveling
waves within the slit. The phase difference between the
incident and the round-trip waves thus increases, as happens
by increasing the film thickness in the case of a single slit,
in which the transmitted energy varies periodically with the
film thickness. As will be shown, the energy change due to
this phase difference in the previous study is negligible, while
that in our case becomes significant. These surface waves
also flow back into the nearby grooves closer to the slit to
increase their energy fluxes; as a result, the groove radiation
increasingly shares the transmitted energy. As the transmitted
energy decreases, the radiated energy from the slit into free
space decreases further due to the energy conservation.

In the cases of the longer incident wavelengths, the groove
coupling is weak, so the surface waves from the grooves are
not influential; however, their radiation still interferes with
that coming from the slit to cause the angularly distributed
diffraction patterns. Our study will show that the beam
angles can be determined by the point source location and
the temporal phase difference, while those in the previous
studies [22–26,33–35] were determined according to the
conventional grating diffraction theory. Interestingly, in these
weak-wave-coupling cases, we find that the slit radiation
energy is enhanced and becomes larger than that transmitted
through it; the energy-conservation condition indicates that the
contribution from the groove radiation is responsible for the
enhancement.

Section II introduces the structure of interest and shows the
resultant diffraction patterns in the large simulation system.
The wave interaction dynamics and the point source model
are proposed in Sec. III, with the simulation results in a small
system. Section IV presents the modeling results for the case
studied in Sec. III and those for the cases of longer incident
wavelengths. The physics of the wave interaction dynamics is
investigated and interpreted in Sec. V. Section VI is a summary.

II. SIMULATION FOR THE LIGHT DIFFRACTION
BY A SLIT AND GROOVES

Consider a subwavelength slit and grooves in a metallic
film, as shown in Fig. 1. Without loss of generality, the film is
a PEC, both the slit and groove widths, 2s and 2g, are 40 nm,
the groove depth d is 100 nm, the separation distance between
each indentation p is 500 nm, and the groove number N at each
side of the slit considered here will vary from 0 to 10. These
structural parameters are identical to those used in Ref. [27],
which considered only the exit side of the film and ignored
the entrance side; for this study, we set the film thickness h to
250 nm. For convenience, the indentations including the slit
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FIG. 1. Schematic of a slit and a number of grooves in a PEC
film. The structural parameters are 2s = 2g = 40 nm, d = 100 nm,
p = 500 nm, and h = 250 nm. The groove number at each side of
the slit is N , where N will vary from 0 to 10; each groove and the
slit are numbered in sequence from the left to the right side with
an integer j from −N to N . A monochromatic p-polarized plane
wave of wavelength λ = 560 nm is normally incident. The Cartesian
coordinate (x,y) of the system originates at the center of the slit exit
and a polar coordinate (r,θ ) is additionally defined. The red dashed
curve R(r,θ ) denotes the path of a wave front of the diffracted light
at the peak phase that is sought near a semicircle of radius r (black
dashed curve) at the angle θ from 180◦ to 360◦.

are numbered in sequence from the left to the right side with
an integer j from −N to N . A monochromatic p-polarized
plane wave of wavelength λ = 560 nm is normally incident.
The origin of the Cartesian coordinate (x,y) is at the center of
the slit exit. In addition, we define the polar coordinate (r,θ ),
where r = (x2 + y2)1/2 and θ = tan−1(y/x).

In the FDTD simulation, the cell size of both directions is
5 nm and the time step is 0.005T , where T is the period of
the incident wave. The PEC film is simulated with the Drude
model with the plasma frequency ωp = 1.0×1030 Hz and zero
damping coefficient. Perfectly matched layers are employed
as the boundary conditions. The wave source plane is fixed
at y = 500 nm; the incident electric field amplitude is set to
1 V/m and the impedance of vacuum η0 is normalized to unity,
i.e., the incident-magnetic-field amplitude is also normalized
to unity. The system is set to be large enough in order to obtain
the diffraction pattern in an area of 40×20 μm2.

When N = 0 as the case of a single slit, the diffracted
wave is semicylindrical in the diffraction region y < 0 since
the slit width 2s is much smaller than the wavelength [27].
The snapshots of the magnetic field H̃(x,y,t) = ẑH̃z(x,y,t) in
the diffraction region taken at t = 60T of the simulation are
shown for the cases of N = 1, 4, 7, and 10 in Figs. 2(a)–2(d),
respectively. In Figs. 2(a)–2(c) the diffracted light is concen-
trated in the central region |x| < 5 μm as a directional beam
when the groove number increases. In Fig. 2(d) the beam
remains almost the same when there are more grooves. The
simulation results are consistent with the previous theoretical
prediction in Ref. [27]. The grooves play a crucial role in
determining the shape of the diffracted light.
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FIG. 2. Snapshot of the magnetic field from the simulation when
(a) N = 1, (b) N = 4, (c) N = 7, and (d) N = 10.

III. POINT SOURCE MODELING BASED ON WAVE
INTERACTION DYNAMICS

The incident light is transmitted through the slit and the
induced surface wave propagates to and is then diffracted by
the grooves. The resultant wave pattern after the transmission
can be considered as the combined contribution from all the
openings including both the slit and the grooves [27]. In our
model, we assume that the contribution of each opening can
be described by a point source, as shown in Fig. 3(a). The
resultant magnetic field of the diffracted wave is summed from
the radiation of each point source H̃j(x,y,t) according to the

N ··· 2 1 1 2 Nj··· ···
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(a)

(b)

FIG. 3. (a) Schematic of the wave flow for the slit and the j th
groove for j �= 0. The openings of the slit and the groove radiate
waves into free space as point source radiations (red arrows). Point
sources (red dots) are then considered at each opening center as the
radiations from the openings. A downward traveling wave (black
arrow) and an upward traveling wave (blue arrow) wave are assumed
to be in both the slit and the groove to obtain the point source
radiations. The magnitude of the downward traveling wave is larger
than that of the upward traveling wave in the slit, while the magnitudes
of the two opposite waves in the groove are equal. (b) Polar coordinate
(rj ,θj ) originated at the location of the j th opening center (jp,0) for
all j . The j = 0 coordinate (r0,θ0) for the slit opening is included,
which coincides with the system coordinate (r,θ ).

superposition principle as

H̃(x,y,t) =
N∑

j=−N

H̃j(x,y,t), (1)

while the electric field can be obtained by Ampère’s law with
no currents, i.e., ∇×H̃ = ∂(ε0Ẽ)/∂t .

Because the slit width 2s and groove width 2g are
much smaller than the wavelength, we further assume that
each radiant wave originated at each opening center is
semicylindrical, as shown in Fig. 3. Thus, for the radiant
wave from the j th opening (including the slit j = 0), a
polar coordinate (rj ,θj ) is defined to describe the magnetic
field radiant from a point source as H̃j(x,y,t) = H̃j(rj ,θj ,t),
where rj = [(x − jp)2 + y2]1/2 is the distance between an
observation location (x,y) and the coordinate origin located
at the opening center (jp,0), and θj = tan−1[y/(x − jp)] is
the angle. Since the metal considered is PEC and the wave
is propagating in free space, no wave energy is absorbed,
so the semicylindrical wave conserves its energy during the
propagation. Therefore, the magnetic field of the radiant wave
in the far zone can be expressed as

H̃j(rj ,θj ,t) = ẑHzj (rj ) exp[i(krj − ωtj )]

= ẑaj

√
1

πrj

exp[i(krj − ωtj )], (2)

where Hzj (rj ) = aj (πrj )−1/2 is the amplitude of the magnetic
field, aj is the amplitude of the point source, k = 2π/λ is the
wave number, ω is the angular frequency, and tj = t − τj is
the time delay related to the temporal phase τj of the radiant
wave.

The electric field can be obtained by Maxwell’s equations as
Ẽj(rj ,θj ,t) = θ̂j [i/(2ωε0rj ) + η0]Hzj (rj ) exp[i(krj − ωtj )],
where θ̂j is the unit vector in the azimuthal direction
and η0 = (μ0/ε0)1/2 is the impedance of vacuum. The
first (second) term of the electric field is out of phase (in
phase) with the magnetic field. In the far zone rj � λ, the
out-of-phase term is negligible. The wave energy is in the
in-phase term. The time-averaged Poynting vector becomes
〈Sj(rj ,θj )〉 = 1

2 Re{Ẽj×H̃
∗
j} = r̂j (η0/2)H 2

zj (rj ), where r̂j is
the unit vector in the radial direction. In other words, the wave
energy propagates only in the radial direction. The energy
flux of the radiant wave is

P
f

j =
∫ 2π

π

〈Sj(rj ,θj )〉 · �rjdθj

= η0

2

∫ 2π

π

H 2
zj (rj )rjdθj = η0

2
a2

j . (3)

Since aj is considered a constant, the energy is con-
served during the wave propagation. In the theoretical cal-
culation, the radiant field is proportional to the first-kind
Hankel function H

(1)
0 (kr) [27]. When kr → ∞, H

(1)
0 (kr) ∼

[2/πkr]1/2 exp(ikr − iπ/4) [40].
The FDTD simulation of a small system can be utilized to

help study the point source radiation: The system is only 1 μm
high, thus putting the wave source and the structure so that we
can observe the wave in the structure. The simulation time is
tf = 25T ; it is long enough to let the wave be at the steady
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TABLE I. Floating part of the obtained peak time tj,peak of the
simulated electric field, i.e., tj,peak − ts , at the location (jp,0) for j

from 0 to N and N = 0,1, . . . ,10.

�
��N

j
0 1 2 3 4 5 6 7 8 9 10

0 0.30
1 0.29 0.49
2 0.29 0.51 0.45
3 0.30 0.50 0.47 0.40
4 0.30 0.49 0.47 0.42 0.33
5 0.30 0.49 0.46 0.42 0.36 0.27
6 0.30 0.49 0.46 0.41 0.36 0.30 0.21
7 0.30 0.49 0.45 0.41 0.36 0.30 0.24 0.14
8 0.30 0.49 0.45 0.40 0.35 0.29 0.23 0.16 0.07
9 0.30 0.49 0.45 0.40 0.34 0.28 0.22 0.16 0.09 0.01
10 0.30 0.49 0.46 0.41 0.35 0.28 0.21 0.15 0.09 0.01 0.91

state. The diagnostic time is in the time interval [ts ,tf ], the last
wave period of the simulation, where ts = tf − T .

The EM fields in the structure only exist in the slit and the
grooves since we use PEC. Therefore, we can define the fields
in the slit and in each groove as

H̃s
j(x,y,t) = ẑH̃ s

zj (x,y,t), (4a)

Ẽs
j(x,y,t) = x̂Ẽs

xj (x,y,t) + ŷẼs
yj (x,y,t), (4b)

where |x| � s and 0 � y � h for j = 0, and |x − jp| � g and
0 � y � d for j �= 0.

The tangential electric field at the openings is in theory
responsible for the radiations [27]. We use the peak time tj,peak

of the simulated field Ẽs
xj (jp,0,t) for the temporal phase of

the point source j . Table I lists the floating part of the obtained
tj,peak, i.e., tj,peak − ts , for j from 0 to N and N = 0,1, . . . ,10.
It shows that tj,peak varies with the groove number N . For
instance, t0,peak − ts = 0.30T when N = 0 and 0.29T when
N = 1 and 2; then, it changes back to 0.30T when N � 3. In
addition, t1,peak − ts = 0.49T , 0.51T , 0.50T , and 0.49T when
N = 1, 2, 3, and 4, respectively, and then it remains the same
when N increases. For j � 2, tj,peak − ts increases and then
decreases; in these cases, tj,peak continues to vary with N when
N is larger.

It is also noticed that the difference between tj+1,peak +
T and tj,peak for j � 1 is roughly close to pT/λ = 0.89T ,
a time period for the surface wave to propagate from one
groove to the next. Thus, we set the temporal phase of the
point source j to be τj = tj,peak + lT , where l = �(t0,peak +
jpT/λ − tj,peak)/T  and �t is the ceiling function that takes
the smallest integer greater than or equal to t . By setting τ0

as the reference, Fig. 4 shows the temporal phase difference
τ ′
j = τj − τ0 for N = 10 as an example. The result fits well

with a linear function τ ′(j ) = 0.95j + 0.20; the slope of 0.95
indicates the average traveling time between two neighboring
grooves. The slightly larger slope should be from the coupling
of the wave in the grooves.

Our point source model is based on the energy conservation.
The study of the energy flux Pj of the EM fields in the slit
(j = 0) and those in the grooves (j �= 0) helps determine the
amplitudes of the point sources. For the slit, there are two
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FIG. 4. Temporal phase difference τ ′
j = τj − τ0 (red circles) for

N = 10 and the linear fitting function τ ′(j ) = 0.95j + 0.20 (red
dashed line).

methods to determine P0. In the first method, we obtain the
time-averaged Poynting vector in the y direction 〈Ss

y0(x,y)〉 =
〈−Ẽs

x0(x,y,t)H̃ s
z0(x,y,t)〉 and integrate it over the slit area

x = [−s,s]. Suppose that P0 is positive in the −y direction.
We set

P0 = 1

T

∫ s

−s

∫ tf

ts

Ẽs
x0(x,h/2,t)H̃ s

z0(x,h/2,t)dt dx. (5)

The location y = h/2 is chosen since only the fundamental
mode exists [36] at the location, i.e., Ẽs

x0(x,h/2,t) and
H̃ s

z0(x,h/2,t) are independent of x, and Ẽs
y0(x,h/2,t) = 0.

Therefore, Eq. (5) is equal to

P0 = 2s

T

∫ tf

ts

Ẽs
x0(0,h/2,t)H̃ s

z0(0,h/2,t)dt. (6)

Figure 5(a) shows the yielded P0 for N from 0 to 10 (the red
closed circles). We find that P0 is dependent on the groove
number: P0 slightly rises from 51.56 to 53.19 when N is from
0 to 1; then it drops to 47.47 (about a 1 − 47.47/53.19 =
11% decrease) when N increases to 5 and it oscillates mildly
afterward.

In the second method, we consider the Fabry-Pérot-like
resonance in the slit [36–39]. Due to the resonance, the slit is
assumed to contain two opposite traveling waves, as indicated
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FIG. 5. (a) Energy flux P0 obtained from Eq. (6) inside the slit
at the location (0,h/2) (red solid circles) and from the assumption of
Eq. (7) for the analytical solution of the two opposite traveling waves
inside the slit (green open diamonds) and the energy flux P in the
far zone from Eq. (17) (black open squares). (b) Traveling downward
P d

0 (black solid circles) and upward P u
0 (dark blue solid diamonds)

energy fluxes inside the slit.
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in Fig. 3(a). Suppose that the simulated magnetic field in the
slit is the superposition of those of the two waves and can be
written as

H̃ s
z0(x,y,t) = Hs

z0(y) cos
[
ωt − φs

0(y)
]

= Hd
z0 cos

(
ky + ωt + φd

0

)
−Hu

z0 cos
(
ky − ωt + φu

0

)
(7)

for |x| � s and 0 � y � h, where Hs
z0(y) and φs

0(y) are the
amplitude and phase of the simulated field, respectively, and
the constants Hd

z0 (Hu
z0) and φd

0 (φu
0 ) are the amplitude and

phase of the field that travels downward (upward) in the slit.
The assumption considers only the fundamental mode, so both
Hs

z0(y) and φs
0(y) are independent of x. As the slit Fabry-Pérot-

like resonance, the propagating downward wave is reflected at
the slit exit, where its direction switches so that there is a
sign change of the magnetic field for the upward traveling
wave [41]. The functions Hs

z0(y) and φs
0(y) can be observed

from the simulation, while Hd
z0, Hu

z0, φd
0 , and φu

0 are the four
unknowns to be solved. The field amplitude Hs

z0(y) for the
cases of N = 1, 4, 7, and 10 is shown in Figs. 6(a)–6(d),
respectively, as examples.

The cosine functions in Eq. (7) can be expanded to the
linear combination of cos(ωt) and sin(ωt) and we assume
that their respective coefficients on both sides of the equation
should be equal. Therefore, one equation can be decomposed
into two equations. Since there are four unknowns, the field
at two locations is needed for the solution. We choose y1 =
20 nm and y2 = h − 20 nm, four cells away from the exit and
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FIG. 6. Field amplitude Hs
z0(y) from the simulation (blue solid

curve) and that yielded from Eq. (10) (red dashed curve) for (a)
N = 1, (b) N = 4, (c) N = 7, and (d) N = 10.

entrance of the slit. With straightforward manipulation, it is
not difficult to obtain that

Hd
z0 = (

A2
ds + A2

dc

)1/2
, φd

0 = tan−1 Ads

Adc

,

Hu
z0 = (

A2
us + A2

uc

)1/2
, φu

0 = tan−1 Aus

Auc

, (8)

where

Ads = Hs
z0(y1) cos

[
ky2 + φs

0(y1)
] − Hs

z0(y2) cos
[
ky1 + φs

0(y2)
]

2 sin(ky2 − ky1)
,

Adc = Hs
z0(y1) sin

[
ky2 + φs

0(y1)
] − Hs

z0(y2) sin
[
ky1 + φs

0(y2)
]

2 sin(ky2 − ky1)
,

Aus = Hs
z0(y1) cos

[
ky2 − φs

0(y1)
] − Hs

z0(y2) cos
[
ky1 − φs

0(y2)
]

−2 sin(ky2 − ky1)
,

Auc = Hs
z0(y1) sin

[
ky2 − φs

0(y1)
] − Hs

z0(y2) sin
[
ky1 − φs

0(y2)
]

−2 sin(ky2 − ky1)
. (9)

The field amplitude Hs
z0(y) from the sum of the two analytical

traveling-wave fields with the yielded analytical solutions Hd
z0,

Hu
z0, φd

0 , and φu
0 is shown in Figs. 6(a)–6(d) for the cases of

N = 1, 4, 7, and 10, respectively, where

Hs
z0(y) = [(

Hd
z0

)2 + (
Hu

z0

)2

− 2Hd
z0H

u
z0 cos

(
2ky + φd

0 + φu
0

)]1/2
. (10)

The analytical results of Hs
z0(y) are in good agreement with

the simulation results and thus confirm our assumption for the
two opposite traveling waves; the mathematical method is also
verified.

With the solutions for the magnetic fields, we can further
obtain the electric field Ẽs

x0(x,y,t) = η0H
d
z0 cos(ky + ωt +

φd
0 ) + η0H

u
z0 cos(ky − ωt + φu

0 ) and Ẽs
y0(x,y,t) = 0. The

time-averaged Poynting vector in the y direction 〈Ss
y0(x,y)〉 =

〈−Ẽs
x0(x,y,t)H̃ s

z0(x,y,t)〉 integrated over the slit area x =
[−s,s] as indicated in Eq. (5) yields the analytical energy
flux in the slit P0 = P d

0 − P u
0 , where

P d
0 = η0

2

(
Hd

z0

)2
(2s), P u

0 = η0

2

(
Hu

z0

)2
(2s) (11)

are defined as the energy fluxes of the downward and upward
traveling waves, respectively. The analytical P0 for N from 0
to 10 is shown in Fig. 5(a) (the green open diamonds). The
results are in good agreement with those from the first method.

The grooves can couple the transmitted waves through the
slit and reradiate it. The coupling suggests that there are also
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FIG. 7. Field amplitude Hs
z1(y) from the simulation (blue solid

curve) and that yielded from Eq. (10) altered for the j = 1 amplitude
and phase (red dashed curve) for (a) N = 1, (b) N = 4, (c) N = 7,
and (d) N = 10.

two opposite waves for each groove, such as those indicated
for the j th groove in Fig. 3(a). We use the second method
to determine the energy fluxes of the opposite waves. In the
j th groove, we have the similar assumption for the magnetic
field: H̃ s

zj (x,y,t) = Hs
zj (y) cos[ωt − φs

j (y)] = Hd
zj cos(ky +

ωt + φd
j ) + Hu

zj cos(ky − ωt + φu
j ) for |x − jp| � g and 0 �

y � d. There is no minus sign for the magnetic fields of the
upward traveling wave; the sign change occurs for the electric
field at the ceiling reflection since the tangential electric field
vanishes at a PEC surface. The field amplitude Hs

z1(y) from
the simulation for the cases of N = 1, 4, 7, and 10 is shown in
Figs. 7(a)–7(d), respectively, as examples.

By setting y1 = 20 nm and y2 = d − 20 nm (still four
cells away from the exit and the groove ceiling), the simple
alteration of Eqs. (8) and (9) for the j �= 0 cases can lead us to
the analytical solutions of the four unknowns Hd

zj , Hu
zj , φd

j , and
φu

j . We yield the analytical field amplitude Hs
z1(y) by altering

Eq. (10) for the j = 1 case and show the results in Fig. 7. The
simulation is perfectly predicted by the analytical solutions.
The assumption and the method for the groove cases are thus
verified.

The electric field yielded is Ẽs
xj (x,y,t) = η0H

d
zj cos(ky +

ωt + φd
j ) − η0H

u
zj cos(ky − ωt + φu

j ) and Ẽs
yj (x,y,t) = 0.

Similar to the slit case in Eq. (11), the time-
averaged Poynting vector in the y direction 〈Ss

yj (x,y)〉 =
〈−Ẽs

xj (x,y,t)H̃ s
zj (x,y,t)〉 integrated over the groove area x =

[jp − g,jp + g] yields the analytical energy flux Pj = P d
j −

P u
j , where

P d
j = η0

2

(
Hd

zj

)2
(2g), P u

j = η0

2

(
Hu

zj

)2
(2g) (12)

are defined as the energy fluxes of the downward and upward
traveling waves, respectively. We notice that the yielded Hd

zj

and Hu
zj are identical. This means that the energy fluxes of the

two opposite traveling waves are P d
j = P u

j . The energy flux

P u
j is collectively determined when the wave flows into the j th

groove and the same amount of energy can only return to the
exit as P d

j after the wave is reflected at the ceiling. Therefore,
the net energy flux Pj in the groove is zero. However, when the
downward traveling wave continues to be transmitted through
the exit, the transmitted wave will have the energy flux Pj =
P d

j due to the energy conservation.
Because each groove is identical and is equidistant from

its neighbors, it is physically reasonable to assume that the
relation between P

f

j and Pj for each j �= 0 is also identical.
Suppose that the relationship is

P
f

j = c2
f Pj for j �= 0, (13)

where cf is a constant factor. As indicated by Eq. (3), the
amplitude of the point source for the j th groove is then
aj = (2P

f

j /η0)1/2 = (2c2
f Pj/η0)1/2. We estimate that cf is

coincidentally about the ratio p/λ = 500/λ in the cases
studied. This estimation is accurate, as will be evidenced by
the numerous accurate modeling results in the next section. A
theoretical explanation for the ratio is beyond the scope of this
article.

The energy-conservation condition is employed for P
f

0 and
a0. Let us consider the point source radiation at an observation
location represented in the system polar coordinate (r,θ ) for
r → ∞. The distance between the location and the j th groove
opening center can be approximated as rj = r − r ′

j cos θ ,
where r ′

j = jp. Therefore, from Eqs. (1) and (2), the diffracted
magnetic field expressed in the polar coordinate is H̃(r,θ,t) =
ẑHz(r,θ ) exp[i(kr − ωt)], where

Hz(r,θ ) =
√

1

πr

⎡
⎣a0e

iφ0 + 2
N∑

j=1

aj e
iφj cos(kr ′

j cos θ )

⎤
⎦,

(14)

φ0 = ωτ0, φj = ωτj , (πrj )−1/2 � (πr)−1/2, the symmetry is
utilized, i.e., a−j = aj , and φ−j = φj . We obtain that the wave
front of the diffracted wave is also semicylindrical. The electric
field yielded is Ẽ(r,θ,t) = [r̂Er (r,θ ) + θ̂Eθ (r,θ )] exp[i(kr −
ωt)], where

Er (r,θ ) = 2i

ωε0r

√
1

πr

N∑
j=1

aj e
iφj kr ′

j sin θ sin(kr ′
j cos θ ),

(15a)

Eθ (r,θ ) =
[

i

2ωε0r
+ η0

]
Hz(r,θ ). (15b)

The out-of-phase terms in both Er (r,θ ) and Eθ (r,θ ) are
negligible when r → ∞. Similar to a single point source
radiation, the energy of the diffracted wave is then composed
of the in-phase term η0Hz(r,θ ). The time-averaged Poynting
vector becomes 〈S(r,θ )〉 = 1

2 Re{Ẽ×H̃
∗} = r̂(η0/2)H 2

z (r,θ ).
That is, the energy propagates only in the radial direction.
Suppose that the energy flux of the diffracted wave is P . Then
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we have

P =
∫ 2π

π

〈S(r,θ )〉 · �r dθ = η0

2

∫ 2π

π

H 2
z (r,θ )r dθ = η0

2

⎧⎨
⎩a2

0 + a0

N∑
j=1

[
4aj

π
cos(φj − φ0)

∫ 2π

π

cos(kr ′
j cos θ )dθ

]

+
N∑

j=1

N∑
i=1

[
4ajai

π
cos(φj − φi)

∫ 2π

π

cos(kr ′
j cos θ ) cos(kr ′

i cos θ )dθ

]⎫⎬
⎭. (16)

Due to the energy conservation, P should be equal to
the energy flux obtained in the slit P0. We can verify the
assumption with the instant diffracted magnetic field H̃z(x,y,t)
from the simulation of the large system, such as that shown
in Fig. 2. By observing the second integral of Eq. (16), we
learn that the diffracted energy flux is in fact the integral of the
field amplitude squared over a wave front. However, since the
system is finite, the wave front of the diffracted wave can only
be approximately semicylindrical. Therefore, Eq. (16) can be
altered to

P = η0

2

∫ 2π

π

H 2
z (xR,yR)R dθ, (17)

where R(r,θ ) is the path of the wave front of the diffracted
field at the peak phase that is sought near a semicircle of
radius r � 0 at the angle θ from π to 2π , as indicated in
Fig. 1, xR = R cos θ , yR = R sin θ , and Hz(xR,yR) represents
the field on R(r,θ ), which is considered the field amplitude.
The results measured at r � 20 μm for N from 0 to 10 are
shown in Fig. 5(a) (the black open squares). They agree well
with those from Eq. (6). Therefore, we obtain P = P0.

In Eq. (16), P can be replaced with P0, the phases φj for all
j and the amplitudes aj for j � 1 are already obtained, and the
integrals in the summations can be yielded numerically. Then
a0 is the only unknown in Eq. (16) as a quadratic equation and
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N = 10

FIG. 8. Amplitude of the point source aj for j = 0–N , where
N = 1 (black triangles), N = 4, (blue squares), N = 7 (green
diamonds), and N = 10 (red circles); the colored and dashed lines
are to guide the eye.

can be readily solved, i.e.,

a0 = −b +
√

b2 − 4(c − 2P0/η0)

2
, (18)

where b is the coefficient term of a0 and c is the constant term in
the curly brackets of Eq. (16). The energy flux P

f

0 = (η0/2)a2
0 ,

as a result, can be obtained.
Figure 8 exemplarily demonstrates the obtained aj for j =

0 to N , where N = 1, 4, 7, and 10. For the N = 1 case, a0 and
a1 are 9.25 and 3.36, respectively. When N increases to 4, a0

drops to 8.25 (about a 1 − 8.25/9.25 = 11% decrease) while
a1 increases to 4.98 (about a 4.98/3.36 − 1 = 48% increase),
and the j = 2, 3, and 4 grooves have the point sources of
amplitudes a2 = 3.50, a3 = 2.42, and a4 = 1.58, respectively.

For the case of N = 7, aj for j � 2 remains almost
the same as those when N = 4, but a3 and a4 increase to
2.79 and 2.22 (about 15% and 41% increases), respectively;
the amplitudes of the point sources at the j = 5, 6, and 7
grooves are a5 = 1.70, a6 = 1.24, and a7 = 0.80, respectively.
In the N = 10 case, while aj for j � 5 remains almost the
same, a6 and a7 increase to 1.45 and 1.19 (about 17% and
49% increases), respectively, and a8 = 0.92, a9 = 0.65, and
a10 = 0.42.

IV. MODELING RESULTS

Figure 9 shows the snapshots of the modeled magnetic
field by Eq. (1) for N = 1, 4, 7, and 10 in comparison to those
shown in Fig. 2. Since the model assumes the time-harmonic
oscillation exp(−iωt) everywhere in the diffraction region, we
set the time t = 0. The results are seen as the replicas of those

FIG. 9. Snapshot of the magnetic field from the model when (a)
N = 1, (b) N = 4, (c) N = 7, and (d) N = 10.
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Simulation
Model

FIG. 10. Angular distribution from the simulation (blue thick
curve) and the model (red thin curve) for (a) N = 1, (b) N = 4,
(c) N = 7, and (d) N = 10.

from the simulation by comparing the distribution patterns and
the field magnitudes from the near zone to the far zone.

To examine the results in more detail, we use the path of
the wave front R in Eq. (17) to define the angular distribution

f (θ ) =
√

πRHz(xR,yR) (19)

for both the simulation and the model, where t = 60T for
the simulation; its purpose is to eliminate the influence of
the distance decay. Figure 10 shows the distributions at
r � 20 μm also for N = 1, 4, 7, and 10. In each case,
the model is in excellent agreement with the simulation; it
perfectly reproduces the profiles even in the details. It is worth
mentioning that the influence of N on the angular distribution
also agrees with the theoretical work [27]; the peak increases
and reaches a maximum when N = 7 for the convergence and
then decreases slightly when N = 10.

We further study the diffraction problem for the cases of
λ = 680 and 800 nm. In the simulation, the setting is the
same as that used for the field in Fig. 2 except for a minor
difference: The simulation time is changed to 45T and 40T

for λ = 680 and 800 nm, respectively, since their wave periods
are proportional to the wavelengths and larger than that for
λ = 560 nm. In addition, the time step of the λ = 800 nm
case is changed to 0.0025T to satisfy the Courant condition
[42]. Figures 11(a) and 11(b) show snapshots of the simulated
magnetic field for the two wavelengths and for N = 10. The
diffracted light becomes two beams and their angle with
respect to each other increases with the wavelength; the results
are also consistent with the theoretical work [27].

The small-system simulations for the modeling are per-
formed similarly to those for the cases of λ = 560 nm, but
the corresponding simulation time is changed to tf = 21T

and 18T for λ = 680 and 800 nm, respectively. For N = 10,
Fig. 12(a) shows the temporal phase difference τ ′

j = τj − τ0

from the observed peak time tj,peak of the electric field
in the two simulations. The results fit well with linear
functions τ ′(j ) = 0.76j + 0.11 and 0.64j + 0.11 for the two

FIG. 11. Snapshot of the magnetic field from the simulation for
the cases of (a) λ = 680 nm and (b) 800 nm for N = 10. (c) and (d)
Snapshots of the magnetic field from the model for the corresponding
wavelengths.

wavelengths, respectively. While the times for the surface wave
from one groove to the next are pT/λ = 0.74T and 0.63T ,
respectively, the slopes verify our assumption of the surface
wave time delay for different incident wavelength.

The amplitudes of the point sources for the two wavelengths
and for N = 10 are shown in Fig. 12(b) followed by the
same procedure demonstrated. When λ = 680 nm, a0 is higher
than that when λ = 560 nm, but a1 drops immediately to
one-seventh its value; then aj decays slower than in the
previous case. For the case of λ = 800 nm, both a0 and aj for
j > 0 are the smallest and they have the slowest decaying rates
of all the cases. With the two wavelengths, the wave coupling
is weak, so both the temporal phases and the amplitudes are
almost independent of N .

Snapshots of the magnetic field from the model for
the two wavelengths are shown in Figs. 11(c) and 11(d),
respectively, in comparison with the simulation results. As
can be seen, the model can also duplicate the field distribution
for different wavelengths. The angular distributions from both
the simulation and the model are examined as shown in Fig. 13.
The excellent agreement from the comparison of detail verifies
the authenticity of the model.
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τ′(j) for λ = 680 nm
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τ′(j) for λ = 800 nm
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λ = 800 nm

FIG. 12. (a) Temporal phase difference τ ′
j = τj − τ0 for λ =

680 nm (brown circles) and 800 nm (purple diamonds) and for
N = 10, along with the linear fitting functions τ ′(j ) = 0.76j + 0.11
(brown short-dashed line) and 0.64j + 0.11 (purple short-dash–long-
dashed line). (b) Amplitude of the point source aj for λ = 680 nm
(brown circles) and 800 nm (purple diamonds) and for N = 10; the
colored and dashed lines are to guide the eye.
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FIG. 13. Angular distribution from the simulation (blue thick
curve) and the model (red thin curve) for (a) λ = 680 nm and (b)
800 nm.

V. PHYSICS OF THE WAVE INTERACTION
DYNAMICS AND DISCUSSION

In the study of the wave interaction dynamics, we find that
adding the grooves creates surface waves that can propagate
backward to interfere with those at the slit and the already
existing grooves. The slight variation of the peak time tj,peak

with the increase of the groove number N , as shown in Table I,
is an implication.

We believe that this kind of interference at the slit is also
able to change the original resonance condition so that the
transmitted energy flux P0 is altered accordingly. As we have
shown in Fig. 5(a), P0 slightly increases and then decreases
more when N increases, while adding the grooves enhances
the energy density of the diffracted wave in the central region
to the directional light beam as shown in Fig. 2. To analyze
further, we show in Fig. 5(b) the traveling downward and
upward energy fluxes P d

0 and P u
0 , respectively, yielded from

Eq. (11) for P0. We obtain that both P d
0 and P u

0 decrease at
the beginning. For N from 0 to 1, P d

0 is from 92.44 to 83.63
while P u

0 is from 42.08 to 30.50, respectively. Therefore, since
the decrease of P d

0 is less than that of P u
0 , P0 increases. As

N continues to increase to 4, P d
0 decreases to 73.43 and P u

0
to 25.95; the quicker decrease of P d

0 than of P u
0 results in the

decrease of P0. Although both P d
0 and P u

0 slightly increase to
74.87 and 28.06 for N = 5, respectively, the smaller increase
of P d

0 still causes the decrease of P0. Then P d
0 and P u

0 vary
slightly when N > 5, so P0 remains almost constant.

The decrease of P u
0 should result from the destructive

interference between the wave in the slit and those that
propagate from the grooves to flow into it. As indicated in
Eq. (7), there is a sign change of the magnetic field of the
upward traveling wave. Therefore, while the magnetic field
radiated from the slit and those from the grooves are almost in
phase in the central diffraction region, the field that is reflected
at the exit and those from the grooves are almost out of phase
in the slit. Thus, P u

0 decreases at the beginning. Since the phase
of the surface wave shifts according to the groove location, the
in-phase interference can occur when N is large.

We show the yielded phase of the upward traveling wave
in the slit φu

0 in Fig. 14 (the red circles). As N increases, φu
0

increases. That is, the upward traveling wave is delayed due to
the interference of the surface waves from the grooves. After
the upward traveling wave is reflected at the slit entrance to
propagate downward to the exit as a round-trip, the phase is
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FIG. 14. Phase of the upward traveling wave in the slit φu
0 when

h = 250 nm (red circles) and 470 nm (blue diamonds).

still delayed. The induced phase delay of the round-trip wave
should have an influence on the slit resonance.

The single-slit energy flux P0 (N = 0) as a function of the
film thickness h is shown in Fig. 15, where P0 is obtained
by the first method introduced in Sec. III. The film thickness
h determines the phase delay of the round-trip wave due to
the Fabry-Pérot-like resonance [36–39]. The single-slit P0

therefore varies periodically with h and the period is λ/2.
The two peaks are at hres1 = 220 nm and hres2 = 500 nm,
respectively. For our case, we choose h = 250 nm (30 nm
larger than hres1); at this h, the single-slit P0 decreases as h

slightly increases. Since adding the grooves also increases the
phase delay of the round-trip wave, P0 should decrease with
the increase of N as the single-slit P0 does with the increase of
h. This explains the decrease of P0 shown in Fig. 5(a). Since
both P0 and P u

0 decrease, P d
0 decreases accordingly.

We notice that, for the case studied in the previous work
[28] (for the same configuration but for h being 350 nm), P0 is
almost independent of N when N � 1. From our viewpoint,
we believe that this is because, at the film thickness, the single-
slit P0 is close to the minimum and is not sensitive to h, i.e.,
the phase delay of the round-trip wave does not influence P0.
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FIG. 15. Energy flux P0 obtained from Eq. (6) as a function of
the film thickness h when N = 0 (the single slit).
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FIG. 16. (a) Energy flux P0 obtained from Eq. (6) (red closed
circles) and from the assumption of Eq. (7) (green open diamonds)
when h = 470 nm, where y1 and y2 are adjusted accordingly. (b)
Traveling downward P d

0 (black closed circles) and upward P u
0 (dark

blue closed diamonds) energy fluxes inside the slit.

Therefore, even when adding the grooves delays the round-trip
wave, P0 in this case remains unchanged.

The case of h = 470 nm (30 nm smaller than hres2) is
chosen to further study the influence of the wave dynamics
on P0. The phase of the upward traveling wave in the slit
φu

0 is shown in Fig. 14 (the blue diamonds). The increase
of the phase indicates that adding the grooves delays the slit
round-trip wave, similar to the h = 250 nm case. Therefore,
P0 should vary with N as the single-slit P0 does with the
increase of h. At h = 470 nm, the single-slit P0 increases as
h slightly increases, as shown in Fig. 15. The yielded P0 as a
function of N is shown in Fig. 16(a), where P0 is obtained by
both the first and second methods in Sec. III. As can be seen,
P0 indeed increases in this case, contrary to the h = 250 nm
case. Our physical interpretation of the wave dynamics for the
P0 variation is thus verified. Besides the increase of the film
thickness h, adding the grooves also increases the phase delay
of the round-trip wave in the cases studied; the wave dynamics
will result in the change of P0 with N in the way the single-slit
P0 varies with h.

The yielded P d
0 and P u

0 from the second method are
shown in Fig. 16(b). In this h = 470 nm case, P u

0 decreases
at the beginning as we anticipate, since the condition of the
destructive interference between the wave reflected at the exit
and those from the grooves are still the same; however, it
increases earlier. In addition, P d

0 decreases slightly when N is
from 0 to 1; then it increases immediately due to the increase of
P0. These results are qualitatively consistent with our physical
interpretation.

The surface waves from the grooves also propagate back-
ward to flow into the nearby grooves. The increase of P1 when
N increases from 1 to 4, as the increase of a1 indicated in
Fig. 8, suggests the influence of the surface waves from the
higher-j grooves. Since the separation distance p is almost
a wavelength, the surface waves that propagate to the groove
have the constructive interference to increase the energy flux
P1 [about a (4.98/3.36)2 − 1 = 120% increase]. When N is
from 4 to 7, the point sources are created farther away from the
center. The surface waves correspondingly created have less
influence on the first few grooves than those nearby. That is,
P1 and P2 remain almost the same, while the increasing ratio
of P3 is less than that of P4 [about (2.79/2.42)2 − 1 = 33%
and (2.22/1.58)2 − 1 = 98%, respectively].
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FIG. 17. (a) Energy flux radiated from the slit into free space
P

f

0 . (b) Coefficient term b (red pluses) and the constant term c (blue
crosses) in Eq. (18) obtained from Eq. (16).

With the similarity in the N = 10 case, the surface waves
created are so far that the Pj for j up to 5 are unchanged, while
the increasing ratios of P6 and P7 [about (1.45/1.24)2 − 1 =
37% and (1.19/0.80)2 − 1 = 121% increases, respectively]
can be analogous to those of P3 and P4 in the previous N = 7
case. These results verify the existence of the surface waves
and indicate that they are more influential on the more nearby
grooves.

It is important to keep in mind that P f

0 is only the energy flux
radiated from the slit into free space. While P0 decreases with
N in our original h = 250 nm case, P f

0 should further decrease
so that the energy is conserved, as indicated in Eq. (18) for the
solution of a0 and P

f

0 = (η0/2)a2
0 . As shown in Fig. 17(a),

P
f

0 drops from 51.56 to the lowest 34.07 when N = 4 (about
a 1 − 34.07/51.56 = 34% decrease); the decreasing ratio is
much larger than that of P0.

To analyze, we show in Fig. 17(b) the coefficient term
b and the constant term c in Eq. (18) that are obtained
from Eq. (16). Since b is close to zero, b in the square
root term is negligible; the slit source amplitude can be
approximated to a0 = (2P0/η0 − c)1/2 − b/2. Then we ob-
tain P

f

0
∼= (η0/2)[(2P0/η0 − c) − b(2P0/η0 − c)1/2], where

the b2/4 term is ignored. The term c increases to become
comparable to 2P0/η0 so that P

f

0 decreases more quickly.
That is, since c represents the energy of the superposed waves
radiated from the grooves, the grooves share P0 efficiently to
reduce P

f

0 . When N is large, b increases negatively, which
indicates that the radiated waves from the grooves in fact
contribute to P

f

0 so that it slightly increases.
From Eqs. (14) and (16) it is not difficult to obtain that the

intensity of the diffracted wave is

I (r,θ ) = η0

2
H 2

z (r,θ ) = η0

2

1

πr

⎡
⎣a2

0 + 2a0

N∑
j=1

ajBj (θ )

+
N∑

j=1

N∑
i=1

ajaiCji(θ )

⎤
⎦, (20)

where

Bj (θ ) = cos[kr ′
j cos θ + (φj − φ0)]

+ cos[kr ′
j cos θ − (φj − φ0)],
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Cji(θ ) = cos[kr ′
j cos θ + kr ′

i cos θ + (φj − φi)]

+ cos[kr ′
j cos θ + kr ′

i cos θ − (φj − φi)]

+ cos[kr ′
j cos θ − kr ′

i cos θ + (φj − φi)]

+ cos[kr ′
j cos θ − kr ′

i cos θ − (φj − φi)]. (21)

That is, the angular distribution is related to the light path
difference due to the groove location and the temporal phase
difference between each point source. In our case, since
the separation distance p is about a wavelength and the
temporal phase difference is almost an integer multiple of T ,
we obtain Bj (θ ) ∼= 2 cos(2jπ cos θ ) and Cji(θ ) ∼= 2 cos[2(j +
i)π cos θ ] + 2 cos[2(j − i)π cos θ ]. At the peak, Bj (θ ) and
Cji(θ ) should be at the maximum, i.e., the most constructive
interference between the radiated waves of each point source.
Therefore, the angle yielded is θ = 270◦. The cause of the
central directional light beam is explained.

Also, the change of aj with N may be linked to the
convergence mechanism of the diffraction patterns shown in
Fig. 2. As indicated in Fig. 8, more point sources cause the
more constructive interference in the central diffraction region;
eventually, a directional light beam can be formed. However,
the quickly decaying aj means that only the point sources
at the first few grooves have the major contribution. Taking
the N = 7 case for example, the source amplitude that decays
from a1 = 4.76 to 1/e it value is a5 = 1.70. That is, only
the j � 5 grooves are accountable for the main formation of
the light beam. Therefore, even when N further increases,
the correspondingly created point source does not have an
influence, so the diffraction pattern caused by the N = 10
case is similar to that by the N = 7 case.

For the longer-wavelength cases demonstrated in the pre-
ceding section, the surface wave from the slit creates the point
sources at the grooves that are not in phase, as the temporal
phase relationship indicated in Fig. 12(a). Therefore, we obtain
that the amplitudes of the groove point sources, as shown in
Fig. 12(b), are much smaller. Besides, the surface waves from
the grooves are not in phase with those at the other grooves
either, to contribute their energy. In other words, the energy
fluxes that flow into and propagate out from the grooves are
weak, so the groove source amplitudes are independent of the
groove number.

It is thus instinctive to consider that the grooves in the
structure have the weak-wave-coupling ability to the longer
wavelength. Since the energy from the grooves is weak,
it should not influence the slit either. That is, P0 is also
anticipated to be independent of N . As shown in Figs. 18(a)
and 18(b) for the cases of λ = 680 and 800 nm, respectively,
P0 is constant. The yielded P d

0 and P u
0 shown in Figs. 18(c) and

18(d) for the two cases are both constant too. This indicates
that the surface waves do not change the amplitude and phase
of the upward traveling wave; thus, they do not influence the
wave resonance in the slit.

For the diffracted wave, however, the point source radiations
from the grooves do have the contribution to cause angular
light beams; however, the contribution is mainly from the
interaction with the slit radiation. According to Eqs. (20) and
(21), since aj for j � 1 is small, the angular distribution is
mostly determined by the second term Bj (θ ). For the peak of
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FIG. 18. Energy fluxes P0 obtained from Eq. (6) (red closed
circles) and the assumption of Eq. (7) (green open diamonds), where
y1 and y2 are adjusted accordingly, and the radiated energy flux from
the slit into free space P

f

0 (brown open squares) for the cases of
(a) λ = 680 nm and (b) 800 nm, respectively. Also shown are energy
fluxes traveling downward P d

0 (black closed circles) and upward
P u

0 (dark blue closed diamonds) inside the slit, for the cases of
(c) λ = 680 nm and (d) 800 nm, respectively.

Bj (θ ), it should satisfy the condition

kr ′
j cos θ ± (φj − φ0) = ±2jπ. (22)

The condition considers the phase difference φj − φ0 that
includes the wave coupling due to the groove depth, which is
in contrast to the previous studies that use the conventional
grating theory to study the beaming angle and ignore the
groove coupling [22–26,33–35]. Using the temporal phase
relationship in Fig. 12(a), we obtain that the angle is θ =
270◦ ± 19.05◦ and 270◦ ± 35.17◦ for the cases of λ = 680 and
800 nm, respectively. Note that this approximation assumes
r → ∞, but the results are still consistent with the peak angles
of the distributions shown in Fig. 13. As a matter of fact, our
test indicates that, when r increases, these peak angles will
converge to the predicted angles.

It is interesting to find that the yielded P
f

0 in both cases
are larger than P0, as shown in Figs. 18(a) and 18(b) (the
brown open squares) for λ = 680 and 800 nm, respectively.
We show in Figs. 19(a) and 19(b) the coefficient term b and
the constant term c in Eq. (18) for the two cases. When N is
small, the ratio of 2P0/η0 and c is large, so we can further have
approximately P

f

0
∼= (η0/2)[(2P0/η0) − b(2P0/η0)1/2] in the

previous analysis for the case of λ = 560 nm. Since b is
negative, we obtain P

f

0 > P0. Indeed, c increases with N , but
it is still much smaller than 2P0/η0; besides, b also becomes
more negative. Therefore, P

f

0 is larger than P0 when N

continues to increase. In either of the two scenarios, Eqs. (16)
and (18) suggest that, while the point sources at the grooves
do not share P0 efficiently, their radiated waves still contribute
energy to the slit. As a result, the energy flux radiated from the
slit into free space is larger than that transmitted through it.
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FIG. 19. Coefficient term b (red pluses) and the constant term c

(blue crosses) in Eq. (18) obtained from Eq. (16) for (a) λ = 680 nm
and (b) 800 nm.

VI. SUMMARY

A point source model has been developed to study the
physics of the light diffracted by a subwavelength slit and
a number of grooves, in which the dynamics of the wave
interacting with the metallic structure is emphasized. With the
help of small-system simulations, we determined the temporal
phases of the point sources by the tangential electric field at
the openings, and the amplitudes by the conservation of energy
fluxes from the slit and the grooves. Although the far-zone
approximation was employed, our modeling results still work
in the near zone. Besides the cases of the standard incident
wavelength, the cases of the longer incident wavelengths are
also in good agreement. The wave analysis based on this
model enables us to reveal interesting physics. In the standard
case studied, the surface waves created by the added grooves
propagate backward into the slit and then delay the reflection.
The transmitted energy flux thus decreases with the groove
number in a way similar to the single slit case of increasing
the film thickness. We also found that the independence

of the transmitted energy with the groove number in the
previous study [28] results from the choice of the phase whose
transmitted energy is not sensitive to the film thickness. This
finding was further verified by the study of the case whose
transmitted energy is at the increasing phase. These surface
waves also flow back into the nearby grooves closer to the slit to
increase their energy fluxes. In this strong-wave-coupling case,
the superposed waves radiated from the grooves increasingly
share the transmitted energy flux. As the total energy decreases
with the groove number, the radiated energy flux from the slit
decreases further. In the cases of the longer wavelengths, the
surface wave coupling is not influential, so the grooves poorly
share the transmitted energy, but their radiations still interfere
with the slit radiation, so the diffracted light is split into two
beams. Applied from our formula of the energy-conservation
condition, the angular distribution of the field intensity in
the far zone is approximated; this approximation gives the
origin of the directional light beaming, which suggests that the
beam angles are determined by the point source location and
the temporal phase difference that considers the time delay
due to the surface wave propagation from the slit and
the groove coupling. In these weak-wave-coupling cases,
the energy of the slit radiation is in fact larger than that
transmitted through it; as indicated by the calculation results
for the energy-conservation condition, the contribution from
the groove radiation enhances the slit radiation energy.
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