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Spontaneous PT -symmetry breaking in non-Hermitian coupled-cavity array
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We study the effects of the position of the passive and active cavities on the spontaneous parity-time- (PT -)
symmetry-breaking behavior in a non-Hermitian coupled-cavity-array model. We analyze and discuss the energy
eigenvalue spectra and PT symmetry in the topologically trivial and nontrivial regimes under three different
cases in detail; that is, the passive and active cavities are located at, respectively, the two end positions, the
second and penultimate positions, and each position in the coupled-cavity array. The odevity of the number
of cavities is further considered to check the effects of the non-Hermitian terms applied on the PT -symmetric
and -asymmetric systems. We find that the position of the passive and active cavities has remarkable impacts
on the spontaneous PT -symmetry-breaking behavior, and in each case the system exhibits distinguishable
and novel spontaneous PT -symmetry-breaking characteristics. The effects of the non-Hermitian terms on the
PT -symmetric and -asymmetric systems due to the odevity are comparatively different in the first case but
qualitatively the same in the second case.
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I. INTRODUCTION

Since the discovery of topological insulators, research for
a topological state of matter has attracted intense interest in
recent years in condensed-matter physics [1,2] and atomic,
molecular, and optical physics [3]. Topological insulators are
characterized by a full insulating gap in the bulk and gapless
edge or surface states which are protected by time-reversal
symmetry. These modes have unique transport direction and
are very robust against disorder and perturbation. Owing to
these novel properties, multifarious theoretical models and
experimental schemes based on different physical systems,
including cold atoms trapped in optical lattices [4–8] and open
systems [9–11], have been proposed. As one of the simplest
systems of one-dimensional (1D) topological insulators, the
Su-Schrieffer-Heeger (SSH) model is a standard tight-binding
model with spontaneous dimerization proposed to describe
1D polyacetylene [12]. Despite its simplicity, it has attracted
extensive studies in the past few decades as it exhibits rich
physical phenomena, such as topological soliton excitation,
fractional charge, and nontrivial edge states [13–16]. Hence,
it is interesting and worthwhile to simulate and map the SSH
model based on different physical systems, such as graphene
ribbons [17], p-orbit optical ladder systems [18], and off-
diagonal bichromatic optical lattices [19]. In addition, as one
of the controllable and easily constructed quantum simulators,
arrays of cavities feature individual control and readout, and
crucial advances in cavity quantum electrodynamics (QED)
have turned this system into one of the leading platforms for
the study of problems in condensed-matter physics [20–25].

On the other hand, in traditional quantum mechanics,
one of the fundamental axioms is that Hermitian operators
stand for physical observables in the Hilbert space, so that
real energy eigenvalues and the conservation of probability
can be guaranteed [26]. However, in 1998 Bender and
Boettcher pointed out that a non-Hermitian Hamiltonian
with PT symmetry can also possess a completely real
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energy eigenvalue spectrum [27]. What’s more interesting
is that such a non-Hermitian Hamiltonian will undergo a
spontaneousPT -symmetry-breaking transition. The system in
the unbroken PT -symmetry phase exhibits a completely real
energy eigenvalue spectrum, and all the eigenfunctions of the
Hamiltonian are also the eigenfunctions of the PT operator,
showing that all the eigenfunctions are PT symmetric. How-
ever, in the spontaneous PT -symmetry-breaking phase, the
energy eigenvalue spectrum becomes partially or completely
complex, and not all the eigenfunctions of the Hamiltonian
have PT symmetry. Inspired by the extremely interesting
property, many non-Hermitian PT -symmetric Hamiltonians
have drawn much attention in recent years, and different kinds
of PT -symmetric systems have been investigated, including
quantum field theories [28], open quantum systems [29], An-
derson models for disordered systems [30–32], optical systems
with complex refractive indices [33–38], Dirac Hamiltonians
of topological insulators [39], topological systems [40–42],
the tight-binding chain [43–46], the spin chain [47,48], and
so on. Furthermore, the rapid development of photonic lattices
and crystals has made it possible to experimentally realize non-
Hermitian PT -symmetric systems and has opened up avenues
for experimental verification of these theorems [49–54].

In fact, any topological system will always interact with
its nearby environment, which leads to dissipative effects. A
frequently used and elegant way of describing interactions with
environments on the stationary level is given by the application
of non-Hermitian potentials [55]. On the other hand, it turns
out that PT symmetry is a powerful concept to effectively
describe systems interacting with the environment in such a
way that they experience balanced loss and gain. Thus, for
a specific interacting process, viz., the topological system
possesses PT symmetry, it is interesting and worth it to study
and simulate how the topological properties of the system are
affected by the presence of balanced non-Hermitian potentials
and what the difference is in the spontaneous PT -symmetry-
breaking behavior between topologically nontrivial and trivial
regimes. Very recently, there has been growing interest in
PT -symmetric or non-Hermitian 1D topological models. Zhu
et al. have studied thePT symmetry in the non-Hermitian SSH

2469-9926/2017/96(4)/043810(11) 043810-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.043810


XING, QI, CAO, WANG, BAI, WANG, ZHU, AND ZHANG PHYSICAL REVIEW A 96, 043810 (2017)

model with two conjugated purely imaginary potentials at the
two end sites [40]. The spontaneous PT -symmetry breaking
in the non-Hermitian Kitaev and extended Kitaev models with
two conjugated purely imaginary potentials at the two end
sites has also been mentioned in Ref. [41]. Moreover, Zeng
et al. have extensively discussed the effects of non-Hermitian
terms on the nontrivial phase and the robustness of Majorana
bound states in four kinds of generalized non-Hermitian Kitaev
chains with imaginary potentials added to some or all the
lattice sites [42]. Although the topological insulators, cavity
QED, and PT symmetry have been rapidly developed and
extensively investigated, the connection among them has been
less explored so far. It is the purpose of this work to provide
an effective approach to study and simulate the SSH model
and interaction process between the SSH model and its nearby
environment based on cavity QED by utilizing passive and
active cavities [56], which is more realistic. Additionally, the
PT -symmetric SSH model and spontaneous PT -symmetry
breaking of the PT -symmetric SSH model can be further
realized via adjusting balanced loss and gain.

To this end, we propose a scheme to investigate the spon-
taneous PT -symmetry-breaking behavior in a non-Hermitian
coupled-cavity-array model which is constructed by introduc-
ing additional passive and active cavities. The odevity of the
number of cavities is also considered to check the effects of
the non-Hermitian terms applied on the PT -symmetric and
-asymmetric systems. By assigning alternatingly modulative
coupling strength in the non-Hermitian coupled-cavity array,
the model can be accurately mapped to a non-Hermitian SSH
model with complex on-site potentials. The Hamiltonian of
the system in the situation of an even number of cavities
satisfies PT symmetry, although it does not obey P and
T symmetries separately, while in the situation of an odd
number of cavities, it is not PT symmetric. We mainly discuss
three different cases and find that if the passive and active
cavities are located at the two end positions, for an even
number of cavities, the PT symmetry in the topologically
nontrivial regime is spontaneously broken for an arbitrary
nonzero effective loss rate κ . However, in the topologically
trivial regime, the system will undergo an abrupt transition
from the unbroken PT -symmetry phase to the spontaneous
PT -symmetry-breaking phase at a critical value κc and a
second transition at another critical value κc

′ . The total system
exhibits complex energy eigenvalues once the effective loss
rate κ is nonzero, except the two “Dirac points,” which have
entirely real energy eigenvalues and undergo another transition
when the number of cavities is odd. However, if the passive
and active cavities are located at the second and penultimate
positions, for an even number of cavities, the system in
the topologically nontrivial regime can exhibit an unbroken
PT -symmetry phase when κ � κc. Furthermore, all of the
phase regimes will undergo the spontaneous PT -symmetry-
breaking transition and a second transition at critical values
κc and κc

′ , respectively. For an odd number of cavities, the
total system exhibits behaviors similar to those in the case
of an even number of cavities. In a more general case of an
even-number sequence of the passive and active cavities, as
κ ceaselessly increases, the PT symmetry of the total system
is spontaneously broken, accompanied by the occurrence of
large-scale purely imaginary energy eigenvalues. In the end,

Passive Cavity Active Cavity

1a 2a 1Na − Na

1J 2JLoss κ Gain κ

FIG. 1. Schematic illustration of non-Hermitian coupled-cavity-
array model with alternatingly modulative coupling strength includ-
ing an additional passive cavity at the first position and an additional
active cavity at the Nth position, where a two-level atom is trapped in
each cavity.

the whole energy eigenvalue becomes purely imaginary, and
the system exhibits a purely imaginary energy eigenvalue
spectrum.

The organization of the paper is as follows. In Sec. II,
the Hamiltonian of the non-Hermitian coupled-cavity-array
model is presented. In Sec. III, the energy eigenvalue spectrum,
the spontaneous PT -symmetry-breaking behavior in different
even-cavity situations, the effects of the non-Hermitian terms
on the PT -symmetric and -asymmetric systems due to
the odevity, and the experimental feasibility are given and
discussed. Finally, we summarize our results in Sec. IV.

II. MODEL HAMILTONIAN

We consider a model composed of an array of cavities that
are coupled via exchange of photons with one two-level atom
in each cavity, as shown in Fig. 1. The Hamiltonian of the
system is written as (setting h̄ = 1)

H = Hac + Hcc, (1)

with

Hac =
N∑

i=1

(
ωa

2
σ z

i + ωca
†
i ai + gaiσ

+
i + ga

†
i σ

−
i

)
,

Hcc =
N−1∑

j=2n−1

J1a
†
j aj+1 +

N−1∑
j=2n

J2a
†
j aj+1 + H.c., (2)

where N is the total number of cavities, ai (a†
i ) is the

annihilation (create) operator of the ith cavity mode, ωa and
ωc are the frequencies of the atom and cavity mode, σ z

i , σ+
i ,

and σ−
i are atomic operators, and g is the coupling constant

between the atom and cavity mode. The cavity-cavity hopping
strengths are alternately modulative. Specifically, the coupling
strength between cavities j and j + 1 is J1 when j is odd,
whereas when j is even, the coupling strength is J2. In the
rotating frame with respect to the external driving frequency
ωd and in the interaction picture with respect to the atomic
frequency ωa , if all the atoms are prepared in the ground states,
we can obtain the effective Hamiltonian as

Heff =
N∑

i=1

(
�c − g2

�a

)
a
†
i ai

+
⎛
⎝ N−1∑

j=2n−1

J1a
†
j aj+1 +

N−1∑
j=2n

J2a
†
j aj+1 + H.c.

⎞
⎠, (3)
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where �c = ωc − ωd (�a = ωa − ωd ) is the detuning of
cavity-mode (atom) frequency from the driving field. Taking
the spontaneous energy loss at the first cavity and energy gain
at the last cavity into account, which means that a passive
cavity and an active cavity are located at the two end positions
of the coupled-cavity arrays, the total effective non-Hermitian
Hamiltonian takes the form

Htotal =
N∑

i=1

(
�c − g2

�a

)
a
†
i ai − iκ1a

†
1a1 − iκNa

†
NaN

+
⎛
⎝ N−1∑

j=2n−1

J1a
†
j aj+1 +

N−1∑
j=2n

J2a
†
j aj+1 + H.c.

⎞
⎠, (4)

where κ1 = κi
1 + κe

1 is the total loss rate of passive cavity 1,
with κi

1 being the intrinsic loss rate and κe
1 being the external

coupling loss rate. In the active cavity N , on the other hand,
the effective loss rate κN = κi

N − ξ is reduced by the gain ξ

(round-trip energy gain). Here κN > 0 (loss) corresponding
to a passive cavity or κN < 0 (gain) corresponding to an
active cavity depends on ξ , which has been realized in recent
experiments fortunately [57,58].

We set �c − g2

�a
= ε, κ1 = −κN = κ (κ > 0), and the

following parameter conditions:

J1 = J (1 − δ cos 	),

J2 = J (1 + δ cos 	), (5)

where the parameter 	 is a cyclical parameter which can vary
from zero to 2π continuously and δ is the strength of cycle
modulation. For convenience, J = 1 is set as the unit of energy
The Hamiltonian of the system thus can be rewritten as

Hs =
⎡
⎣ N−1∑

j=2n−1

(1 − δ cos 	)a†
j aj+1

+
N−1∑
j=2n

(1 + δ cos 	)a†
j aj+1 + H.c.

⎤
⎦

+
N∑

i=1

εa
†
i ai − iκa

†
1a1 + iκa

†
NaN. (6)

The above Hamiltonian can be proved to be PT symmetric
when the number of cavities is even, while it is not PT
symmetric in the case of an odd number of cavities.

III. RESULTS AND DISCUSSION

In this section, we present the energy eigenvalue spectrum
of the non-Hermitian coupled-cavity-array model and discuss
the effects of the position of the passive and active cavities
on the spontaneous PT -symmetry-breaking behavior of the
system. Further we consider the odevity of the number of
cavities to check the effects of the non-Hermitian terms
applied on the PT -symmetric and -asymmetric systems.
In the meantime, a more general PT -symmetric case is
presented. Without loss of generality, before proceeding, in
the absence of passive and active cavities, we plot the energy
eigenvalue spectrum of the Hermitian system as a function

0 0.5 1 1.5 2
-2

0

2

E
ε

−

Φ π

( )a

0 0.5 1 1.5 2
-2

0

2

( )b

E
ε

−

Φ π

FIG. 2. Energy eigenvalue spectrum for the Hermitian coupled-
cavity-array model with parameters δ = 0.5 when (a) N = 50 and
(b) N = 51.

of 	, which illustrates that the energy eigenvalue spectrum
is analogous to the conventional SSH model essentially, as
shown in Fig. 2. For an even number of cavities, in the
regimes of 0 < 	 < π

2 and 3π
2 < 	 < 2π , it is featured by

the presence of twofold-degenerate zero-energy edge modes in
the topologically nontrivial regime. Conversely, corresponding
to the topologically trivial regime π

2 < 	 < 3π
2 , the system

does not support the topologically nontrivial zero-energy edge
modes. Remarkably, the bulk gap closes and reopens at the
phase boundary points 	 = π

2 , 3π
2 , as shown in Fig. 2(a). On

the other hand, a single zero-energy mode will always emerge
for all 	 when the number of cavities is odd, as shown in
Fig. 2(b). This is the typical even-odd effect of the SSH model
owing to the chiral symmetry.

A. The passive and active cavities at the two end positions

We first consider the situation that the number of cavities is
even. The system is PT symmetric under this circumstance,
and numerical results of the energy eigenvalue spectrum
for the PT -symmetric coupled-cavity-array model governed
by Hamiltonian (6) are shown in Figs. 3 and 4. Figure 3
shows the real and imaginary parts of the energy eigenvalue
spectrum as a function of 	 for different κ . To begin with,
we consider the topologically nontrivial regimes 0 < 	 < π

2
and 3π

2 < 	 < 2π . When the effective loss rate κ is weak,
for example, κ = 0.1, complex energy eigenvalues emerge in
this regime, implying that the PT symmetry is spontaneously
broken. As a matter of fact, we find that the system exhibits a
pair of conjugated purely imaginary energy eigenvalues with
the form of ±ib (b is a function of 	 and κ) and N − 2
real energy eigenvalues as long as κ is nonzero, as shown in
Fig. 3(a). With κ continuously increasing, one can observe that
the energy eigenvalue spectrum in the topologically nontrivial
regime can also exist for only a pair of conjugated purely
imaginary energy eigenvalues, as shown in Figs. 3(b)–3(e).

In the topologically trivial regime π
2 < 	 < 3π

2 , it turns
out that the system exhibits much richer characteristics, which
have significant differences from the topologically nontrivial
regime. In the case of weak effective loss rate κ = 0.1, as
shown in Fig. 3(a), the system has an entirely real energy
eigenvalue spectrum, which indicates that thePT symmetry of
the regime is unbroken. As κ continues to increase, we find that
the four complex energy eigenvalues with the form of ±a ± ib

begin to arise if κ is larger than a critical value κc (here κc is a
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FIG. 3. The real and imaginary parts of the energy eigenvalue
spectrum of the PT -symmetric coupled-cavity-array model as a
function of 	 with parameters δ = 0.5 and N = 50 for different κ:
(a) κ = 0.1, (b) κ = 0.7, (c) κ = 1.1, (d) κ = 2.5, and (e) κ = 3.3.
Left and right columns represent the real and imaginary parts of the
energy eigenvalue spectrum, respectively. The red points represent
the real and imaginary parts of the complex energy eigenvalues.

function of 	), which indicates that the system in this regime
undergoes a spontaneousPT -symmetry-breaking transition at
the critical value κc. The spontaneousPT -symmetry-breaking
transition initially occurs at 	 = π with κc(π ) = 0.502,
and the complex energy eigenvalues will extend from 	 = π

to the phase boundary points with the increase in κ . It is worth
mentioning that the system in this regime still has unbroken
PT symmetry for a suitable κ , as shown in Fig. 3(b).

Figure 3(c) shows the PT -symmetry breaking at the phase
boundary points (π/2 and 3π/2) with κc(π

2 ) = κc( 3π
2 ) = 1; in

this case thePT symmetry of the total system is spontaneously
broken. What’s more interesting is that when κ > 1, a novel
behavior appears in the topologically trivial regime near the
phase boundary points, which can be characterized by the
split of the imaginary parts of the energy eigenvalues, and the
behavior spreads from the phase boundary points to 	 = π

with a second critical value κc
′ (	), corresponding to the point
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5

( )a

( )b

( )c

(
)

R
e

E
ε

−

(
)

Im
E

ε
−

κ κ
FIG. 4. The real and imaginary parts of the energy eigenvalue

spectrum versus κ for the system in different topological regimes.
(a) System in the topologically nontrivial regime with 	 = 0,
(b) system on the phase boundary points with 	 = π

2 , and (c) system
in the topologically trivial regime with 	 = π . Other parameters are
the same as in Fig. 3. The red points represent the real and imaginary
parts of the complex energy eigenvalues.

when the four complex energy eigenvalues turn into two pairs
of conjugated purely imaginary energy eigenvalues, as shown
in Fig. 3(d). Further increasing κ , the whole topologically
trivial regime exhibits two pairs of conjugated purely imag-
inary energy eigenvalues when κ > κc

′ (π ) = 2.91, as shown
in Fig. 3(e).

To illustrate the phenomena mentioned above more clearly,
we plot the real and imaginary parts of the energy eigenvalue
spectrum as a function of κ for the system in different phase
regimes in Fig. 4. As an example, the energy eigenvalue spec-
trum versus κ for the system with 	 = 0 is given in Fig. 4(a),
and it is obvious that the complex energy eigenvalues turn up
in the topologically nontrivial regime once κ �= 0. Specifically,
for the system with 	 = π

2 ,π , the energy eigenvalue spectra as
a function of κ are also shown in Figs. 4(b) and 4(c). It is clear
that the spontaneousPT -symmetry-breaking transition finally
takes place at the phase boundary points. Moreover, there exists
unbrokenPT symmetry for κ � κc(	), and the system reveals
first a PT -symmetry-breaking transition and then a second
transition at a certain κc(	) and κc

′ (	) in the topologically
trivial regime, respectively. A pair of conjugated purely
imaginary energy eigenvalues tends to zero, corresponding
to the two central red lines in Fig. 3(e) in the limit of κ → ∞,
as shown in Fig. 4(c). On the other hand, the approximate
relationships between κc(	), κc

′ (	), and 	 are also plotted
in Fig. 5. From the numerical results we can draw the con-
clusion that the PT symmetry in the topologically nontrivial
regime is spontaneously broken once κ �= 0. However, in the
topologically trivial regime the system exhibits an entirely
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FIG. 5. Sketches of κc(	) and κc
′ (	) for the system as a function

of 	.

real energy eigenvalue spectrum when κ � κc(	) and will
undergo a spontaneous PT -symmetry-breaking transition and
a second transition at a certain κc(	) and κc

′ (	), respectively,
which have opposite transition directions. Furthermore, the
PT symmetry at the phase boundary points is the most
stable.

To study the effects of the odevity of the number of
cavities on the energy eigenvalue spectrum of the system,
we also present the numerical results of the energy eigenvalue
spectrum in the case of an odd number of cavities, although the
Hamiltonian of the system in this case is not PT symmetric,
as shown in Figs. 6 and 7. For the system with a weak
effective loss rate κ = 0.1, as shown in Fig. 6(a), the complex
energy eigenvalues composed of one purely imaginary energy
eigenvalue and N − 1 complex energy eigenvalues with weak
imaginary parts emerge in the whole region of 	 except 	 =
π
2 , 3π

2 . On the contrary, there exist N real energy eigenvalues
consisting of a single zero-energy mode and N − 1 real
energy eigenvalues at 	 = π

2 , 3π
2 . With increasing κ , one

of the absolute values of the imaginary parts belonging
to the complex energy eigenvalues gradually increases, as
shown in Fig. 6(b). In Fig. 6(c), one can see that a pair of
purely imaginary energy eigenvalues with the form of ±ib

emerge at 	 = π
2 , 3π

2 , with κc′′ (π
2 ) = κc′′ ( 3π

2 ) = 1.01. When
further increasing κ , one of the imaginary parts belonging
to the complex energy eigenvalues follows on a split when
κ > 1.38. At the same time, the other absolute values of the
imaginary parts of the complex energy eigenvalues taper off,
as shown in Figs. 6(d) and 6(e). Finally, the entire energy
eigenvalue spectrum is made up of three purely imaginary
energy eigenvalues and N − 3 complex energy eigenvalues
with weak imaginary parts except 	 = π

2 , 3π
2 , which contains

a single zero-energy mode, a pair of purely imaginary energy
eigenvalues, and N − 3 real energy eigenvalues, as shown in
Fig. 6(e). Especially, the energy eigenvalue spectra versus κ

for the system with 	 = 0, π
2 ,π are given in Fig. 7, which is

consistent with the preceding numerical results. In the limit
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FIG. 6. The real and imaginary parts of the energy eigenvalue
spectrum of the PT -asymmetric coupled-cavity-array model as a
function of 	 with parameters δ = 0.5 and N = 51 for different κ:
(a) κ = 0.1, (b) κ = 0.7, (c) κ = 1.1, (d) κ = 2.5, and (e) κ = 3.3.
Left and right columns represent the real and imaginary parts
of the energy eigenvalue spectrum, respectively. The cyan points
represent the real and imaginary parts of the purely imaginary energy
eigenvalues, and the magenta points represent the real and imaginary
parts of the real energy eigenvalues.

of κ → ∞, one of the values of the three purely imaginary
parts corresponding to the middle cyan line in Fig. 6(e) tends
to zero, as shown in Figs. 7(a) and 7(c).

From the above figures, we can conclude that the difference
revealed by the two systems due to odevity is noteworthy and
the effects of the non-Hermitian terms on the PT -symmetric
and -asymmetric systems are comparatively different in this
case.

B. The passive and active cavities at the second
and penultimate positions

In this section, we consider that the passive and active
cavities are placed at the second and penultimate positions
in the coupled-cavity array. In this case, the Hamiltonian of
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FIG. 7. The real and imaginary parts of the energy eigenvalue

spectrum versus κ for the system with different values of 	:
(a) 	 = 0, (b) 	 = π

2 , and (c) 	 = π . Other parameters are the same
as in Fig. 6. The cyan points represent the real and imaginary parts
of the purely imaginary energy eigenvalues, and the magenta points
represent the real and imaginary parts of the real energy eigenvalues.

the system becomes

H ′
s =

⎡
⎣ N−1∑

j=2n−1

(1 − δ cos 	)a†
j aj+1

+
N−1∑
j=2n

(1 + δ cos 	)a†
j aj+1 + H.c.

⎤
⎦

+
N∑

i=1

εa
†
i ai − iκa

†
2a2 + iκa

†
N-1aN-1. (7)

Compared with the case in Sec. III A, in the situation of an
even number of cavities, the PT -symmetric system displays
distinct behaviors in both the topologically nontrivial regime
and phase boundary points, as shown in Figs. 8 and 9. One
can clearly observe from Fig. 8(a) that there exists a real
energy eigenvalue spectrum even at κ = 0.4. With increasing
κ , four complex energy eigenvalues with the form ±a ± ib

emerge in the topologically nontrivial regime on the condition
that κ > κc(0) = 0.474. In the meantime, the spontaneous
PT -symmetry-breaking transition is almost simultaneous in
both the topologically nontrivial and trivial regimes, as shown
in Fig. 8(b). Nevertheless, the spontaneous PT -symmetry-
breaking finally takes place at the phase boundary points as
usual, as shown in Fig. 8(c). Then with further increasing κ , one
can see from Fig. 8(d) that the values of the imaginary parts of
the four complex energy eigenvalues increase markedly. More
interestingly, when κ > 2.59, the entire energy eigenvalue
spectrum will undergo a second transition propagated from the
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FIG. 8. The real and the imaginary parts of the energy eigenvalue
spectrum of the PT -symmetric coupled-cavity-array model as a
function of 	 with parameters δ = 0.5 and N = 50 for different
κ: (a) κ = 0.4, (b) κ = 0.6, (c) κ = 0.71, (d) κ = 2, (e) κ = 2.8,
and (f) κ = 3.5. Left and right columns represent the real and
imaginary parts of the energy eigenvalue spectrum, respectively. The
red points represent the real and imaginary parts of the complex
energy eigenvalues.

phase boundary points to both sides with another critical value
κc

′ (	), corresponding to four complex energy eigenvalues
turning into two pairs of conjugated purely imaginary energy
eigenvalues, as shown in Fig. 8(e). All of the phase regimes
exhibit two pairs of conjugated purely imaginary energy
eigenvalues when κ > κc

′ (0) = κc
′ (π ) = 3.08, as shown in

Fig. 8(f). Particularly, we also present the real and imaginary
parts of the energy eigenvalues as a function of κ for the
system in different topological regimes by setting 	 = 0, π

2 ,π ,
as shown in Fig. 9. A pair of conjugated purely imaginary
energy eigenvalues also tends to zero in the limit of κ → ∞,
corresponding to the two central red lines in Fig. 8(f). Addition-
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FIG. 9. The real and imaginary parts of the energy eigenvalue

spectrum versus κ for the system in different topological regimes.
(a) System in the topologically nontrivial regime with 	 = 0, (b)
system at the phase boundary points with 	 = π

2 , and (c) system in
the topologically trivial regime with 	 = π . Other parameters are
the same as in Fig. 8. The red points represent the real and imaginary
parts of the complex energy eigenvalues.

ally, sketches of κc(	) and κc
′ (	) are also given in Fig. 10. In

brief, the system can maintainPT symmetry when κ � 0.474,
corresponding to a real energy eigenvalue spectrum. A second
transition definitely occurs in both the topologically nontrivial
and trivial regimes, and so do the phase boundary points.

On the other hand, the numerical results of the energy
eigenvalue spectrum for an odd number of cavities are also
given in Figs. 11 and 12. In spite of some subtle differences,
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FIG. 10. Sketches of κc(	) and κc
′ (	) for the system as a function

of 	.
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FIG. 11. The real and imaginary parts of the energy eigenvalue
spectrum of the PT -asymmetric coupled-cavity-array model as a
function of 	 with parameters δ = 0.5 and N = 51 for different κ:
(a) κ = 0.4, (b) κ = 0.6, (c) κ = 0.74, (d) κ = 2, (e) κ = 2.8,
and (f) κ = 3.5. Left and right columns represent the real and
imaginary parts of the energy eigenvalue spectrum, respectively. The
red points represent the real and imaginary parts of the complex
energy eigenvalues.

such as between Figs. 8(c) and 11(c), one can clearly see
that the system still exhibits similar behaviors compared
with the results for an even number of cavities; namely,
the complex energy eigenvalue spectrum shows a similar
distribution behavior throughout the regime 	 ∈ [0,2π ] for
each of the same κ . The above phenomena clarify that the
effects of the non-Hermitian terms on the PT -symmetric and
-asymmetric systems are qualitatively the same in this case.

C. A sequence of passive and active cavities

Now we turn to a more general PT -symmetric case; that
is, the system is composed of a sequence of passive and active
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FIG. 12. The real and imaginary parts of the energy eigenvalue

spectrum versus κ for the system with different values of 	:
(a) 	 = 0, (b) 	 = π

2 , and (c) 	 = π . Other parameters are the
same as in Fig. 11. The red points represent the real and imaginary
parts of the complex energy eigenvalues.

cavities. In this case the Hamiltonian of the non-Hermitian
coupled-cavity-array model becomes

H ′′
s =

N−1∑
j=2n−1

[1 − δ cos(	)]a†
j aj+1

+
N−1∑
j=2n

[1 + δ cos(	)]a†
j aj+1 + H.c.

+
N∑

i=2n−1

(ε − iκ)a†
i ai +

N∑
i=2n

(ε + iκ)a†
i ai, (8)

where
∑N

j=2n−1 (
∑N

j=2n) denotes that the passive cavities
(active cavities) are added at the odd (even) positions.

The numerical results of the energy eigenvalue spectrum
are plotted in Figs. 13 and 14. In the case of weak effective
loss rate κ = 0.1, we find that a pair of conjugated purely
imaginary energy eigenvalues with the form ±ib emerges
both in the topologically nontrivial regime and at the phase
boundary points, as shown in Fig. 13(a). With increasing κ ,
the number of conjugated purely imaginary energy eigenvalues
around the phase boundary points (including phase boundary
points) begins to increase; the behavior will gradually diffuse
to all phase regimes with further increasing κ , and the PT
symmetry of the total system is spontaneously broken when
κ > 1, as shown in Figs. 13(b)–13(d). Relatively, the number
of real energy eigenvalues decreases until there exists only
a purely imaginary energy eigenvalue spectrum, as shown in
Figs. 13(e) and 13(f). Figure 14 shows the real and imaginary
parts of the energy eigenvalue spectrum as a function of κ for
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FIG. 13. The real and imaginary parts of the energy eigenvalue
spectrum of the PT -symmetric coupled-cavity-array model as a
function of 	 with parameters δ = 0.5 and N = 50 for different κ:
(a) κ = 0.1, (b) κ = 0.8, (c) κ = 1, (d) κ = 1.5, (e) κ = 2, and (f) κ =
3. Left and right columns represent the real and imaginary parts of
the energy eigenvalue spectrum, respectively. The red points represent
the real and imaginary parts of the complex energy eigenvalues.

the system in different phase regimes by setting 	 to 0, π
2 ,π .

One can observe that in the topologically nontrivial regime it
initially exhibits a pair of conjugated purely imaginary energy
eigenvalues and sequently accompanies with the occurrence

of large-number purely imaginary energy eigenvalues. With
respect to the phase boundary points and the topologically
trivial regime, only the latter behavior exists. It is evident that
the whole energy eigenvalue of the system becomes purely
imaginary when κ � 2.

Now we briefly analyze and discuss some practical issues
in relation to the experimental realization of the proposed
scheme. In order to connect to promising candidates for an
experimental realization, we refer our setup to the photonic
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FIG. 14. The real and imaginary parts of the energy eigenvalue

spectrum versus κ for the system in different topological regimes.
(a) System in the topologically nontrivial regime with 	 = 0,
(b) system at the phase boundary points with 	 = π

2 , and (c) system
in the topologically trivial regime with 	 = π . Other parameters are
the same as in Fig. 13. The red points represent the real and imaginary
parts of the complex energy eigenvalues.

band gap cavities in photonic crystals and the whispering-
gallery microcavities. Experimentally, large-scale ultrahigh-Q
coupled nanocavity arrays based on photonic crystals have
been realized [59]. Additionally, the design and fabrication of
active and passive two-dimensional photonic-crystal devices
based on GaAs/AlGaAs slab waveguide nanoresonators have
been presented [60], which can be used as the setup in
our scheme. It was also shown in the laboratory that PT
symmetry and PT -symmetry breaking can be realized by
utilizing active and passive whispering-gallery microcavities.
The experimental realization of PT -symmetric optics on
a chip in two directly coupled high-Q silica-microtoroid
resonators with balanced effective gain and loss is mentioned
in [57], and PT -symmetry breaking in coupled optical
resonators has also been reported [58], which can be used
for the active and passive cavities in our scheme. All of
the above experimental constructions and progress contribute
to the experimental simulation of the PT -symmetric SSH
model and are beneficial for experimental realization of the
PT -symmetric SSH model based on large-scale arrays of
cavities.

IV. CONCLUSIONS

In conclusion, we have proposed a scheme to study and
simulate the PT -symmetric SSH model based on a non-
Hermitian coupled-cavity-array model and investigated the
effects of the position of the passive and active cavities on the
spontaneous PT -symmetry-breaking behavior of the system.

We divided the scheme into three cases to analyze it and discuss
it in detail; that is, the passive and active cavities are located at
the two end positions, the second and penultimate positions,
and each position in the coupled-cavity array. Furthermore,
the odevity of the number of cavities was also considered to
check the effects of the same non-Hermitian terms applied to
the PT -symmetric and -asymmetric systems. In the first case,
for the situation of an even number cavities, we found that the
system exhibits different spontaneousPT -symmetry breaking
behaviors in the topologically nontrivial and trivial regimes.
As long as the effective loss rate of the passive cavity κ �= 0,
a pair of conjugated purely imaginary energy eigenvalues will
emerge in the topologically nontrivial regime. However, in the
topological trivial regime, when κ is smaller than the critical
value κc(	), there is no spontaneous PT -symmetry-breaking
behavior. However, the system exhibits the spontaneous PT -
symmetry-breaking transition behavior with four complex
energy eigenvalues and a second transition behavior with
two pairs of conjugated purely imaginary energy eigenvalues
at critical values κc(	) and κc′ (	), respectively. For the
odd-number situation, the entire energy eigenvalue spectrum is
composed of one purely imaginary energy eigenvalue and N −
1 complex energy eigenvalues once κ > 0 except 	 = π

2 , 3π
2 .

For 	 = π
2 , 3π

2 , the system shows real energy eigenvalues
which are composed of a single zero-energy mode and N − 1
real energy eigenvalues. However, if further increasing κ

and once up to critical value κc(π
2 ) = κc( 3π

3 ) = 1.01, the N

purely real energy eigenvalues begin to transform into a single
zero-energy mode, a pair of conjugated purely imaginary
energy eigenvalues, and N − 3 purely real energy eigenvalues.
One of the imaginary parts of the complex energy eigenvalues
also begins to split when κ > 1.38, and finally, the energy
eigenvalue spectrum is composed of three purely imaginary
energy eigenvalues and N − 3 complex energy eigenvalues
except for 	 = π

2 , 3π
2 . However, in the second case, for the

situation of an even number of cavities, we find that the system
exhibits the same spontaneous PT -symmetry-breaking and
second transition behaviors but a different breaking degree
in both the topologically nontrivial and trivial regimes and
phase boundary points. For the situation of an odd number
of cavities, the system reveals behaviors similar to those in
the case of an even number of cavities. In the third case, the
system exhibits a pair of conjugated purely imaginary energy
eigenvalues in both the topologically nontrivial regime (once
κ �= 0) and phase boundary points for a weak κ . Additionally,
with κ increasing further, large-scale purely imaginary energy
eigenvalues appear in the entire energy eigenvalue spectrum. In
the end, all the energy eigenvalues become purely imaginary,
and only a purely imaginary energy eigenvalue spectrum
exists.

When the number of cavities is even, i.e., the PT -
symmetric situation, one can clearly observe from the first and
second cases that the effects of the position of the passive and
active cavities on the spontaneous PT -symmetry-breaking
behavior of the topologically nontrivial regime and phase
boundary points are remarkable. Moreover, the results for
the first case imply that the effects of the non-Hermitian
terms on the PT -symmetric and -asymmetric systems due to
the odevity are comparatively different. However, this means
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in the second case that the effects of the non-Hermitian
terms on the PT -symmetric and -asymmetric systems due
to the odevity are qualitatively the same. We hope that the
conclusions obtained in the present work will stimulate more
interest in the study and simulation of the PT -symmetric
topological system and the non-Hermitian topological system
under the influence of the environment based on a cavity-array
system.
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