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A point charge in the presence of a metallic nanosphere is a fundamental setup, which has implications for
Raman scattering, enhancement of spontaneous emission of a molecule by an antenna, sensing, and modeling
a metallic tip in proximity to a nanoparticle. Here we analytically expand the electric field of a point charge in
an ε2 host medium in the presence of an ε1 sphere using the sphere eigenstates, where ε1 and ε2 can take any
complex values. We develop a simple procedure to treat charge distribution, which results in a simple eigenstate
expansion for the electric field of charge sources and is able to treat volume sources analytically. The electric
field is strongly enhanced when ε1/ε2 is close to an (ε1/ε2)l eigenvalue of a dominant mode, which is determined
by the point charge location and the measurement point. An electric field exists inside the sphere when ε1/ε2 is
close to a (ε1/ε2)l resonance even when ε1 is a conductor. Low-order modes generate an electric field far away
from the interface, where the l = 1 mode with a resonance at ε1 = −2ε2 generates a field at the sphere center. The
high-order modes, which are associated with high spatial frequencies, become more dominant when the point
charge approaches the sphere surface or when the physical parameters are close the high-order modes resonances.
When ε1/ε2 is smaller or larger than the eigenvalues of the dominant modes, the modes interfere constructively
and generate a strong signal at an angular direction equal to that of the source. The spectral information at the
sphere surface may be utilized to calculate the point charge location without knowing its magnitude.
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I. INTRODUCTION

The electrostatic potential of a point charge in proximity to
a conducting sphere was calculated analytically long ago [1].
This calculation assumes a constant potential on the sphere
envelope and uses the method of images to construct a potential
outside the sphere. The electrostatic potential of a point
charge next to a dielectric sphere with vanishing conductivity
was calculated by using solutions of Laplace’s equation and
matching boundary conditions of the electric field [2]. The
electrodynamics of surface systems has been approached using
a Green’s function formalism in Ref. [3]. The electromagnetic
field of an oscillating dipole outside a conducting sphere
has been calculated by transforming an infinite series of
spherical harmonics for the Hertzian vector into a more rapidly
converging series [4]. In another study the electric field of
an oscillating dipole inside a dielectric sphere was calculated
by expanding the field in the vector spherical harmonics and
matching the field boundary conditions [5]. Radiation emission
rates for such a setup, where the dipole models a molecule,
were calculated, taking into account electrostatic spherical and
spheroidal cavity effects [6]. Asymptotic expressions for the
potential and the field very close to an interface between an
inclusion and a host medium in the limit ε1 = −ε2, both real,
have also been obtained [7–10].

In the quasistatic regime, which occurs when the typical
lengths of the system are much shorter than the wavelength,
Maxwell’s equations reduce to Poisson’s equation with a com-
plex and frequency-dependent permittivity ε(ω). To account
for a nonlocal conductivity and permittivity, ε(ω) should be
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expressed as a tensor that depends also on the wave vector k [1].
Metals at optical frequencies can be described using an
only ω-dependent permittivity and we therefore assume this
dependence in our derivations. To investigate a composite
system with a source in the quasistatic regime, a point charge
is often used to observe its properties. Scattering eigenstates
of Maxwell’s equations have been exploited to calculate the
electric field in electrostatics [11–15] and in electrodynamics
[16,17]. Recently, a procedure to treat current sources using the
electromagnetic spectral expansion has been introduced [17].

Here we introduce a procedure to treat charge sources using
the electrostatic eigenstate expansion. Such a procedure results
in a simple eigenstate expansion for the electric field of charge
sources and is able to treat volume sources analytically. In
addition, we show that when the system is close to a resonance
a strong electric field exists inside the sphere even if it is a
conductor.

Potential applications are enhancement of spontaneous
emission of a molecule by an antenna [18] in the quasistatic
regime, modeling a tip in proximity to a metallic nanosphere,
near-field imaging, sensing, and Raman spectroscopy. In
particular, enhancement of Raman scattering and spontaneous
emission of a molecule become more dominant when the field
intensity at the molecule is higher, which can be obtained
when the system is close to a resonance. Near-field imaging
exploits evanescent waves to generate an image with resolution
that is better than the diffraction limit. In this technique a
two-dimensional image is generated by scanning the surface
with a scattering tip. We show that the spectral information of
the electric field can be utilized to calculate the point charge
location when it is not at the sphere surface, which we define
as the detector.

In Sec. II we present the theory and introduce a procedure
to treat charge sources. In Sec. III we describe how we can
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obtain the point charge location from the spectral content of
the electric field on the sphere surface. In Sec. IV we present
the potential and the electric field for permittivity values that
are close to the resonances of the dominant eigenstates. In
Sec. V we discuss our results and potential applications.

II. THEORY

In the quasistatic regime Maxwell’s equations reduce to
Poisson’s equation with a complex and frequency-dependent
permittivity

∇ · (ε∇ψ) = −4πρ. (2.1)

By expressing the permittivity using the step functions θ1 and
θ2 of the ε1 and ε2 media [θi(r) = 1 when ε(r) = εi ; otherwise
θi(r) = 0] we write [11]

∇ · [(ε1θ1 + ε2θ2)∇ψ] = −4πρ,

∇2ψ = −4πρ + u∇ · (θ1∇ψ), u ≡ 1 − ε1

ε2
.

(2.2)

This is transformed to [11]

ψ = ψ0 + u�ψ, (2.3)

where

�ψ =
∫

dV ′θ1(r′)∇′G(r,r′) · ∇′ψ(r′),

G = 1

4π |r − r′| , ψ0 = q

ε2|r − r0| , (2.4)

and r0 is the point charge position, assumed to be in the
ε2 medium.

The eigenstates satisfy Eq. (2.3) when there is no source,
namely,

snψn = �ψn,
1

sn

≡ un = 1 − ε1n

ε2
. (2.5)

By defining the scalar product

〈ψ |φ〉 ≡
∫

dV θ1∇ψ∗ · ∇φ, (2.6)

� becomes a Hermitian operator and therefore it has a complete
set of eigenstates. We insert the unity operator in Eq. (2.3) and
arrive at

ψ = ψ0 +
∑

n

sn

s − sn

〈ψn|ψ0〉ψn, s ≡ 1/u, (2.7)

where ψn are the normalized eigenstates.
The sphere eigenstates are [11]

ψn ≡ ψlm(r) = Ylm(
)

(la)1/2
×

⎧⎪⎨
⎪⎩

( r

a

)l

, r < a(a

r

)l+1
, r > a,

(2.8)

where a is the sphere radius, Ylm are the spherical harmonics,
and the eigenvalues are

ε1l = −ε2
l + 1

l
, slm ≡ sl = l

2l + 1
. (2.9)

Clearly, in the l → ∞ limit sl → 1/2. Thus, for a choice of
s ≈ 1/2 the high-order modes make a large contribution to the
potential [11,12,15].

Note that the inclusion permittivity eigenvalues are real
and on the order of magnitude of the host medium permittivity
(with the opposite sign). In statics, the imaginary part of a
metal permittivity is very high and it is impossible to approach
the resonances. At high frequencies that imaginary part can
become small and the resonances can be approached. In such a
case, the physical electric field becomes very large due to a high
contribution of one of the modes in the eigenstate expansion.
The coefficient of an eigenstate s2

l /(s − sl) can be expressed as

s2
l

s − sl

= s2
l /s

1 − sl(1 − ε1/ε2)

and becomes large when the real and imaginary parts of
the denominator 1 − sl(1 − ε1/ε2) are small. Assuming
Im(ε1),Im(ε2) > 0 and Re(ε1) < 0, Im(ε1) and Im(ε2)
are required to be small with respect to |ε2|2/Re(ε2) and
|ε2|2/|Re(ε1)|, respectively, in order for the imaginary part of
the denominator to be small. When one of the constituents has
gain [14] we can approach the condition for vanishing imagi-
nary part of the denominator Im(ε1)/Im(ε2) = Re(ε1)/Re(ε2).

Now we proceed to calculate the scalar product 〈ψlm|ψ0〉.
We exploit the fact that ψ0(r) = 4π/ε2

∫
G(r,r′)ρ(r′)dV ′ and

use Eq. (2.5) to obtain

〈ψlm|ψ0〉 = 4π

ε2

∫ ∫
θ1∇ψ∗

lm · ∇G(r,r′)ρ(r′)dV ′dV

= 4π

ε2
sl

∫
ψ∗

lm(r′)ρ(r′)dV ′

= 4πq

ε2
slψ

∗
lm(r0), (2.10)

where we assumed a point charge ρ = qδ3(r − r0). We finally
get

ψ(r) = ψ0(r) + 4πq

ε2

∑
l,m

s2
l

s − sl

ψ∗
lm(r0)ψlm(r). (2.11)

It can readily be seen from Eqs. (2.8) and (2.11) that as the point
charge approaches the sphere surface the contribution of the
high-order modes becomes non-negligible [because ψ∗

lm(r0) is
larger] and they become more dominant in the expansion. In
addition, low-order modes decay more slowly away from the
interface and can therefore generate fields far away from the
interface.

The ratio ε1/ε2 can be chosen to enhance a contribution
to the electric field of one or more modes. We can there-
fore decompose each term in the sum in Eq. (2.11) into
(4πq/ε2)s2

l ψ
∗
lm(r0)ψlm(r), which does not depend on s, and

1/(s − sl), which is determined by the distance between the
physical s and an eigenvalue sl .

For a point charge at r0 = z0ẑ, ψ∗
lm(r0) = ψlm(r0) and

ψlm(r0) �= 0 only when m = 0. Thus, ψ(r) is independent of
the azimuthal angle φ and the sum in Eq. (2.11) is considerably
simplified. In addition, it can be seen that when the ratio
ε1/ε2 is fixed, ψ(r)/ψ0(r) is also fixed since s does not
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change and ε2 cancels out. Therefore, the relative effect of
a sphere inclusion on the potential and the electric field does
not change when keeping this ratio fixed, even when ε1 is large.
For example, the l = 1 resonance occurs when ε1 ≈ −2ε2. If
Re(ε1) ≈ −2 Re(ε2) and ε1 and ε2 have small dissipation we
will be close to the resonance. When downscaling the system
by a factor b we get that |E|2 increases by a factor of b4, as is
the case for a point charge in a uniform medium.

To verify our result in Eq. (2.11) we placed a point charge at
r0 = z0ẑ (z0 > a) and took the ε1 → ∞ limit, assuming ε2 is
finite. We then summed a geometric series to obtain the known
textbook result for r on the +z axis

ψ(r) = ψ0(r) − qa/z0

|r − a2/z0| . (2.12)

We also took the limit of a point charge near a plane.
Assuming r ≈ z0 ≈ a and defining k ≡ l/a and z ≡ r

we obtained( r

a

)l

r < a ≈ e−k(a−z),
(a

r

)l+1
r > a ≈ e−k(z−a),

(
a

z0

)l+1

z0 > a ≈ e−k(z0−a), sk ≈ 1

2
(1 − e−2ka). (2.13)

From symmetry considerations one can obtain for the eigen-
states dependence on the directions parallel to the plane
ψk(ρ,z) = exp(ik · ρ)fk(z), where ρ is the radial vector in
cylindrical coordinates and k ≡ (kx,ky). In this limit the spec-
trum of eigenvalues is continuous and there is an accumulation
point of the eigenvalues at s = 1/2 [11,12,15]. Note that the
eigenstates can be normalized according to Eq. (2.6) due to
their exponential dependence on the direction perpendicular
to the plane.

The electric field can be written as

E(r) = −∇ψ0(r) − Escat, (2.14)

where

Escat ≡ −4πq

ε2

∑
l

s2
l

s − sl

ψ∗
lm(r0)∇ψlm(r); ∇ψlm(r) = erYlm

∂fl(r)

∂r
+ eφ

fl(r)

r sin θ
imYlm + eθ

fl(r)

r

∂Yl,m

∂θ
;

fl(r) = 1

(la)1/2
×

⎧⎪⎨
⎪⎩

( r

a

)l

, r < a

(a

r

)l+1
, r > a;

∂fl(r)

∂r
= 1

(la)1/2
×

⎧⎪⎨
⎪⎩

l
( r

a

)l 1

r
, r < a

−(l + 1)
(a

r

)l+1 1

r
, r > a;

(2.15)

and where ∂ψlm/∂θ can be written as [19]

∂ψlm

∂θ
= eθ

fl(r)

r sin θ

[
l(l + 1)

[(2l + 1)(2l + 3)]1/2
Yl+1,m − l(l − 1)

[(2l − 1)(2l + 1)]1/2
Yl−1,m

]
. (2.16)

Note also that the field of the l = 1 mode does not vanish
at the origin and extends far from the sphere surface. In
addition, the spherical harmonics satisfy Yl,m=0(θ = 0) = 1
and Yl,m=0(θ = π ) = ±1. Hence, when s is very close to a
resonance a dominant mode is excited and the intensity peaks
at both θ = 0 and θ = π . The l components Escat, r,l at θ = 0
have a positive sign for sl < s and a negative sign for sl > s.
In addition, Yl,m=0 and Yl+1,m=0 at θ = π have opposite signs,
but at the transition between sl′ < s and sl′+1 > s, Escat, r,l′ and
Escat, r,l′+1 have the same sign because the coefficient 1/(s − sl)
also changes sign. Thus, when s ≈ (sl′ + sl′+1)/2 the dominant
l′ and l′ + 1 modes will interfere destructively at θ = 0 and
constructively at θ = π . When s < sl for every l (s < 1/3),
which corresponds to ε1 � −2ε2, all Escat, r,l at θ = 0 have
the same sign and they interfere constructively to generate a
strong signal. In this case the low-order modes that extend far
from the sphere surface are strongly enhanced. Similarly, when
s > sl for every l (s > 1/2), which corresponds to ε1 � −ε2,
all Escat, r,l at θ = 0 interfere constructively and a strong signal
is expected there. In this case the high-order modes that are
associated with high spatial frequencies are strongly enhanced.
When s > sl or s < sl for every l the signs of Escat, r,l alternate
at θ = π and a relatively weak signal is expected there.

III. CALCULATING THE POINT CHARGE LOCATION
FROM THE SPECTRAL CONTENT OF THE

ELECTRIC FIELD

In the far field, a point in the object is mapped into a point
in the image due to constructive interference, enabling 3D
imaging. Near-field imaging exploits evanescent waves and
achieves resolutions better than the diffraction limit. However,
measuring an electric field in the near-field region produced
by a point source that is not very close to the detector is
usually difficult. This is since the modes decay exponentially
with distance and since there can be orders of magnitude
differences among electric-field intensities produced by point
sources at different distances from the detector. When we are
close to a resonance, the local physical field is enhanced and
there is a significant field also due to point sources that are
not very close to the detector (e.g., at the sphere surface).
Thus, high-order components of the electric field can be
detected. For a single point charge source, which we will
treat as the object, the image field intensity will be maximal
at an angular direction equal to that of the source and at
the reflected direction with respect to the spherical surface
(see Sec. II).
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We start by calculating the field at the sphere surface and
requiring full retrieval of an l mode of the electric field. We
expand ψ0 inside the sphere, where there are no sources, using
the unity operator. We then take the gradient of Eq. (2.14) to
obtain the following expression for the electric field, which is
valid inside the sphere:

Einside = −
∑

l,m=0

[
〈ψlm|ψ0〉∇ψlm + sl

s − sl

〈ψlm|ψ0〉∇ψlm

]

= −
∑

l,m=0

s

s − sl

〈ψlm|ψ0〉∇ψlm. (3.1)

From this expression we calculate the electric field at r = a+,
i.e., just outside the sphere, using continuity conditions (note
that the right-hand side is taken at r = a−, not r = a+)

E(r = a+,θ )

= −
∑

l,m=0

s

s − sl

〈ψlm|ψ0〉
(

ε1

ε2

∂ψlm

∂r
r̂ + 1

r

∂ψlm

∂θ
θ̂

)
r=a−

.

(3.2)

We measure the field at the sphere surface and require
that the magnitude of a given field component will be of the
same order of magnitude as this field component in near-field
imaging so that it can be detected. In near-field imaging the
field of an object placed in a uniform medium is measured
approximately at the object location. We therefore require
that an l component measured at the sphere surface and an
l component of E0 = −∇ψ0 measured at the point charge
location (each field component is finite) will be approximately
equal in magnitude. For a point charge in the presence of a
sphere we define r0 = z0ẑ as the point charge location and
r = a+ẑ as the measurement point. For near-field imaging we
define the point charge location as r0 near field = a+ẑ and the
measurement point also at r = a+ẑ and write

Er,l, sphere setup(r = a+ẑ, r0 = z0ẑ)

Er,l, uniform medium(r = a+ẑ,r0 near field = a+ẑ)

=
ε2
ε1

ssl

s−sl
ψlm(r0 = z0ẑ) ∂ψlm

∂r

∣∣∣
r=a− ẑ

slψlm(r = a+ẑ) ∂ψlm

∂r

∣∣∣
r=a− ẑ

= ε2

ε1

s

s − sl

(a/z0)l+1 � 1, (3.3)

where we have used Er,l(r = a−ẑ) = Er,l(r = a+ẑ) for a point
charge in a uniform medium. Assuming s � 1/2 and sl − s �
0.0025 we obtain

(a/z0)l+1 � 2(sl − s) � 0.005,

and for l = 10 we get

z0/a � 1.62.

This means that if we assume ε1 � −ε2, s − sl � (ε1 −
ε1l)/4ε2 and for ε2 = 1.5, ε1 − ε1l � 0.015, and z0/a � 1.62,
the l = 10 mode magnitude is equal to or higher than its
magnitude when measuring E0 at the point charge location.
The angular half-width of this mode near θ = π calculated

using the l = 10 Legendre polynomial is 0.14 rad, which
translates to 4 nm for a sphere with a radius of 30 nm.

We now calculate the point charge location using the
spectral content of the electric field on the sphere surface.
Our motivation for calculating the source location without
knowing its magnitude q is, for example, fluorescence in
which the emission strength of the source can be unknown. The
electric field at the sphere surface is composed of modes with
magnitudes that depend on the point charge location. Thus,
the spectral information of the electric field is affected by the
point charge location. If s � sl , the electric field is dominated
by this l mode. Alternatively, if the radial component of the
electric field on the sphere surface can be measured then by
using a spherical harmonics transform defined by

F (l,m) =
∫

ErY
∗
lmd
, (3.4)

we can obtain the spectral content of an l,m mode in the
expansion of the physical electric field. Note that this transform
gives the spectral content since

∫
Yl′m′Y ∗

lmd
 = δll′δmm′ and
Er,lm has a Yl,m associated with it. To perform the transform
we need to choose the coordinate system so that θ = 0 points
to the point charge location. Since the maximal intensity is
always at θ = 0,π we must choose between them to define
θ = 0 according to the s value (see discussion above) or by
knowing in which half space the point charge is located. The
ratio between the magnitudes of the l1 and l2 components of
the electric field of a point charge located at r0 = z0ẑ is

F (l1,m = 0)

F (l2,m = 0)
= l1 + 1

l2 + 1

l2

l1

sl1

sl2

s − sl2

s − sl1

al1−l2z
l2−l1
0 . (3.5)

Thus, from this ratio we can calculate the point charge
location z0 without knowing its magnitude. Now using z0, it
is straightforward to calculate q from any F (l,m) component.
In order for the l mode fields of two point charges q1 and
q2 located at z01ẑ and z02ẑ, respectively, to be comparable
in magnitude we can require 0.1 � (q1/q2)(z02/z01)l+1 � 10.
For example, for the l = 10 mode assuming q1 = q2 we
obtain that for comparable field intensities we must have
0.9 � z01/z02 � 1.11. Thus, objects in a range of 3 nm along
r for a sphere with a radius of 30 nm produce comparable field
intensities at the sphere surface.

It should be noted that measuring the electric field on the
whole sphere is possible only if the detector has a negligible
effect on the incoming field at all the measurement points.
When the detector is situated on the half sphere that is closer
to the source it will be on the path of the incoming field and
may interfere with the field. When s ≈ (sl + sl+1)/2 the field
will peak at θ = π and the object location can be approximated
using the field magnitude at the half sphere that is further away
from the source. Also, measuring the field on the sphere surface
necessitates 3D sampling (scanning the field with a detector
in three axes), which is more challenging. This concept of
transforming a field on a surface to the spectral plane may
be adjusted to setups in which the required measurements are
more suited for current experimental techniques. For example,
in a setup of a flat slab and a source in a host medium [14,17],
measuring the electric field at the slab surface that is further
away from the source is both two dimensional and has a
negligible effect on the measured field. In such a setup the
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FIG. 1. Plot of |Er,l(r)(s − sl)| at r = a−ẑ and r = a+ẑ, i.e., just
inside and just outside the sphere, and at r = z0ẑ as a function of l

for ε2 = 1, z0 = 1.5a, and a = 30 nm.

perpendicular field component at the surface may be Hankel
transformed [20] in order to retrieve the source location.

IV. RESULTS

We first considered ε2 = 1 and a point charge located
at z0 = 1.5a, where a = 30 nm. In order to exclude the
effect of the choice of physical s on the results we
decomposed each term in the sum in Eq. (2.14) into
(−4πq/ε2)s2

l ψ
∗
lm(r0)∇ψlm(r), which does not depend on the

choice of s, and 1/(s − sl). The size of the last factor is
determined by the difference between the physical s and the
eigenvalue sl . We calculated

|Er,l(r)(s − sl)| =
∣∣∣∣4πq

ε2
s2
l ψ

∗
l,m=0(r0)

∂ψl,m=0(r)

∂r

∣∣∣∣ (4.1)

at r = a−ẑ, i.e., just inside the sphere, up to l = 20. Note that
the spectral components of E0 = −∇ψ0 can be included in the
calculation of Er,l(r) both inside the sphere and at the sphere
surface. We found that the l = 3 mode with sl = 0.4286 and
ε1,l=3 = −4/3 is the most dominant one. In Fig. 1 we present
the results as a function of l.

We then chose ε1 = −1.3256 and s = 0.43, which are close
to the l = 3 mode resonance. We calculated the electric field
for these s and ε1 values. The calculation of the electric field
was performed analytically using Eq. (2.15). In Fig. 2 we
present the intensity of the electric field.

It can be seen that the electric field is significantly enhanced
with maximal intensity at the interface between the sphere and
the host medium at θ = 0,π .

We also calculated |Er,l(r)(s − sl)| at r = a+ẑ, i.e., just
outside the sphere, and at the point charge location r = 1.5aẑ
(see Fig. 1). The field intensity at the point charge location is
relevant for phenomena such as enhancement of spontaneous
emission of a molecule by an antenna and Raman spectroscopy,
which become more dominant as the intensity at the molecule
increases. The most dominant modes at r = a+ẑ and at
the point charge location r = 1.5aẑ are l = 2 and l = 1,
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FIG. 2. Plot of |E|2 for a point charge at z0 = 1.5a, a = 30 nm,
s = 0.43, ε2 = 1, and ε1 = −1.3256.

respectively. The contributions to the electric field inside and
outside the sphere do not need to have the same l dependence
since continuity of Dr for each mode is satisfied for the
eigenvalue ε1l but not for ε1.

We then calculated |Er,l(r)(s − sl)| for z0 = 2a. The most
dominant modes of the electric field at r = a−ẑ and r = a+ẑ
and at the point charge location r = 2aẑ were found to be
l = 2, 1, and 1, respectively.

Then, for a point charge located at r0 = 1.15aẑ we
calculated |Er,l(r)(s − sl)| at both r = a−ẑ and r = a+ẑ and at
the point charge location r = 1.15aẑ, and the most dominant
modes were found to be l = 8, 7, and 3, respectively (see
Fig. 3). Thus, as the point charge approaches the sphere
interface the most dominant modes are of higher order,
including for a measurement at the point charge location. These
calculations necessitated 50 modes in the expansion. Here we
were interested to excite high-order modes and compromise on
intensity, which is high anyway. We therefore chose s = 0.487,
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FIG. 3. Plot of |Er,l(r)(s − sl)| at r = aẑ inside and outside the
sphere and at r = z0ẑ as a function of l for ε2 = 1, a point charge
located at z0 = 1.15a, and a = 30 nm.
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FIG. 4. Plot of |E|2 for a point charge at z0 = 1.15a, a = 30 nm,
s = 0.487, ε2 = 1, and ε1 = −1.0534.

which corresponds to ε1 = −1.0534 and is in between the
sl=19 = 0.4872 and sl=18 = 0.4865 resonances. In Fig. 4 we
present the electric-field intensity. It can be seen that the field
intensity is greatly enhanced. In addition, the field is highly
localized at θ = π with exp(−1/2) of the maximal intensity
at �2 nm from the maximum.

We were then interested in considering a system that is
close the l = 1 resonance. The electric field of the l = 1 mode
extends far from the interface and does not vanish at the
origin. A resonance of this mode occurs when the material
parameters satisfy ε2 ≈ −ε1/2 and with small and positive
Im(ε1) and Im(ε2) we can approach this resonance. Note that a
resonance occurs when s = sl and the effect of approaching the
resonance can be computed by calculating s2

l /(s − sl) (see the
discussion in Sec. II). We chose ε1 = −3.38 + 0.192i (silver
at 380 nm) and ε2 = 1.69 + 0.08i and placed a point charge at
r0 = 2aẑ. In Fig. 5 we present |E|2 in space. It can be seen that

y/a

z/
a

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.5

1

1.5

2

2.5

3

x 10
4

FIG. 5. Plot of |E|2 for a point charge at z0 = 2a, a = 30 nm,
s = 1/3, ε2 = 1.69 + 0.08i, and ε1 = −3.38 + 0.192i.
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FIG. 6. Plot of |E|2 for a point charge at z0 = 3.5a, a = 30 nm,
s = 0.3, ε2 = 1, and ε1 = −2.33.

there is a strong electric field inside the sphere even though
it is a conductor. Interestingly, water permittivity at 380 nm
is ε2 = 1.797 + 8.5 × 10−9 and a strong electric field inside
and outside the sphere is expected for a silver nanosphere
immersed in water.

Finally, we calculated |E|2 for setups in which s is smaller
or larger than sl of all the dominant modes. In these setups the
low- and high-order modes interfere constructively at θ = 0.
In Fig. 6 we present |E|2 for z0 = 3.5a and s = 0.3 (ε2 = 1
and ε1 = −2.33), which is smaller than all the eigenvalues sl .
It can be seen that the intensity is strong at θ = 0 and that
the electric field extends far from the sphere surface since s is
closer to sl of the low-order modes. In Fig. 7 we present |E|2 for
z0 = 1.5a and s = 0.492 (ε2 = 1 and ε1 = −1.0325), which
is larger than the eigenvalues sl of the dominant modes. The
intensity is again strong at θ = 0 and is spatially concentrated
since s is closer to sl of the high-order modes that are associated
with high spatial frequencies.
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FIG. 7. Plot of |E|2 for a point charge at z0 = 1.5a, a = 30 nm,
s = 0.492, ε2 = 1, and ε1 = −1.0325.
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To verify our results we checked the continuity of the
physical Dr at the interface. In the electric-field expansions
E0 is continuous and all the eigenstates satisfy continuity of
Dr with their ε1l eigenvalue. Thus, none of the terms in the
expansion is expected to satisfy continuity of physical Dr at
the interface. Our calculations showed that the physical Dr

is continuous at the interface for various s values to a high
accuracy.

The calculations were performed using a grid of 70 × 70
on the y and z axes. In our calculations of the potential and the
electric field in all space, the running times on a single core
were ∼2, 3, and 8 s for z0 = 2a, 1.5a, and 1.15a, respectively,
which can be reduced by an order of magnitude with code
optimization in MATLAB.

V. DISCUSSION

We presented an analytic expansion of the potential and
the electric field for a setup of an ε1 sphere embedded in an
ε2 host medium, where the permittivity values of the sphere
and the host medium can take any value. For a point charge
on the z axis at z0 the expansion only includes the m = 0
terms and involves up to 20 terms when z0 � 1.5a. For a given
charge location and measurement point a dominant mode can
be readily identified and one can select a sphere permittivity
value that is close to the mode resonance in order to obtain a
significant enhancement of the electric field.

We placed a point charge at z0 = 1.5a, 1.15a, 2a, and 3.5a

and chose permittivity values that are close to a resonance.
We observed very high enhancement of the electric field.
Interestingly, a significant electric field can exist inside the
sphere even if it is a conductor, when ε1/ε2 is close to (ε1/ε2)l
of a dominant mode. The contribution of the high-order modes
becomes non-negligible as the point charge approaches the
sphere surface. The low-order modes decay more slowly
and generate an electric field away from the surface. Very
high resolution is obtained when a high-order mode is
excited since high-order modes are associated with high

spatial frequencies. When s ≈ (sl + sl+1)/2 the dominant l and
l + 1 modes interfere constructively at θ = π . When ε1 �
−2ε2, the radial field component of all the modes at θ = 0
interfere constructively and generate a strong signal dominated
by the low-order modes that extend far from the sphere surface.
Similarly, when ε1 � −ε2 the radial field component of all the
modes at θ = 0 interfere constructively and a strong signal
dominated by the high-order modes that are associated with
high spatial frequencies is generated.

We showed that the spectral information at the sphere
surface can be utilized to calculate the point charge location
without knowing its magnitude. In addition, when the system
is close to a resonance the high-order modes of the electric
field can be retrieved. These may have relevance for near-field
imaging of objects that are not at the surface. To assist in
balancing the smaller magnitudes of evanescent waves from
distant sources, the magnitude of the light sources can be larger
for larger r , which can be achieved by back illumination. Gain
can both enhance the incoming field and enable s that is closer
to the sl resonances that are real. Another possible mechanism
to enable detection of high-order modes in the expansion of
the electric field of a point charge that is not very close to the
surface is to mediate them through resonant particles inside the
medium that enhance them, similarly to the isolated sphere.
Since we can calculate the point charge location for a single
point charge, selectively exciting local points that radiate at
different times may enable one to retrieve their locations too
[21,22]. A similar analysis can be formulated for a setup of
a flat slab in a host medium [14] where the spectrum of the
eigenvalues is continuous.

Potential applications are enhancement of spontaneous
emission of a molecule by an antenna [18], where the point
charge and the sphere can model the molecule and the antenna,
respectively, sensing, modeling a tip in proximity to a metallic
nanosphere, near-field imaging, and Raman spectroscopy.
Finally, since the expansion employs a small number of terms
for a single point charge source, calculating the potential and
the electric field in all space is very fast.
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