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Magic tilt angle for stabilizing two-dimensional solitons by dipole-dipole interactions
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In the framework of the Gross-Pitaevskii equation, we study the formation and stability of effectively two-
dimensional solitons in dipolar Bose-Einstein condensates (BECs), with dipole moments polarized at an arbitrary
angle θ relative to the direction normal to the system’s plane. Using numerical methods and the variational
approximation, we demonstrate that unstable Townes solitons, created by the contact attractive interaction, may
be completely stabilized (with an anisotropic shape) by the dipole-dipole interaction (DDI), in the interval
θ cr < θ � π/2. The stability boundary θ cr weakly depends on the relative strength of the DDI, remaining close to
the magic angle θm = arccos(1/

√
3). The results suggest that DDIs provide a generic mechanism for the creation

of stable BEC solitons in higher dimensions.
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I. INTRODUCTION

The collisional interaction of matter waves in Bose-Einstein
condensates (BECs) resembles the nonlinear interaction of
optical waves in nonlinear dielectric media [1]. If solely
the attractive short-range s-wave interatomic scattering is
present in the BEC, which is tantamount to the Kerr (cubic)
nonlinearity in optics in the framework of the mean-field
approximation, the two- and three-dimensional (3D) matter-
wave solitons are subject to collapse-driven instability [2–4].
In particular, the well-known instability of 2D Townes solitons
[5] is induced by the critical collapse in the same setting [6,7].

Long-range interactions may give rise to effects quite
different from those induced by the contact (local) cubic
nonlinearity [8]. In particular, the experimental realization of
BECs in gases of atoms carrying large permanent magnetic
moments (on the order of several Bohr magnetons), viz., 52Cr
[9], 164Dy [10], and 168Er [11], has drawn a great deal of interest
to effects of the dipole-dipole interactions (DDIs), which are
intrinsically anisotropic and nonlocal [12,13]. Similar to the
situation in nonlocal optical media [14–17], the long-range
nonlocal nonlinearity may play a crucial role in the formation
and stabilization of solitons. A wide range of novel solitonic
structures were predicted to be supported by the nonlocal
nonlinearities, such as discrete solitons [18–21], azimuthons
[22], solitary vortices [23–25], vector solitons [26–28], dark-
in-bright solitons [29], and other species of self-trapped modes.

Even though trapping potentials can be used to stabilize
3D or quasi-2D soliton condensates, dipolar BECs suffer
from instabilities against spontaneous excitation of roton and
phonon modes at high and low momenta, respectively [30–35],
which manifest themselves at large strengths of DDI [36]. For
matter waves trapped in a cigar-shaped potential, the existence
of stable quasi-1D solitons was predicted for combinations of
the DDI and local interactions [37–43]. The DDI anisotropy
brings the roton instability to trapped dipolar gases in the
2D geometry and drives the condensates into a bicon-
cave density distribution [44,45]. Stable strongly anisotropic

quasi-2D solitons in the condensate with in-plane-oriented
dipolar moments have been predicted too [46,47].

In this work we consider a general setting for the formation
of 2D bright solitons supported by the contact interaction and
DDI, with the dipoles aligned at an arbitrary tilt angle with
respect to the direction normal to system’s plane. By reducing
the 3D Gross-Pitaevskii equation (GPE) to an effective 2D
equation for the “pancake” geometry, we establish conditions
necessary for supporting matter-wave solitons in the dipolar
BEC, at different values of the DDI strength, chemical
potential, and tilt angle. In addition to the application of the
well-known Vakhitov-Kolokolov (VK) stability criterion [48],
the linear-stability analysis and variational approach are also
used for the study of the stability of the 2D dipolar soliton
solutions. Starting with a fixed strength of the attractive local
interaction, our analysis reveals that the originally unstable 2D
Townes solitons may be stabilized with the help of the DDI. It
is thus found that 2D solitons are stable if the orientation
angle of the dipoles, with respect to the direction normal
to the pancake’s plane, exceeds a certain critical (magic)
value [see Eq. (19) below], a similar magic angle for the
sample’s spinning axis being known in the theory of the nuclear
magnetic resonance [49,50]. Thus, the DDI in dipolar gases
provides a generic mechanism for the soliton formation of
stable 2D solitons.

The rest of the paper is structured as follows. In Sec. II,
we outline the derivation of the effective 2D model for the
dipolar BEC polarized at an arbitrary tilt angle, starting from
the 3D Gross-Pitaevskii equation. Then, in Sec. II A, numerical
solutions for 2D solitons, based on this effective equation,
are produced for two different scenarios, which correspond to
small and large DDI strengths. In Sec. II B, a variational solu-
tion is obtained by minimizing the corresponding Lagrangian,
using a 2D asymmetric Gaussian ansatz. The variational
approximation (VA) makes it also possible to predict the
stability of the solitons on the basis of the VK criterion,
which is an essential result, as the stability is the critically
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FIG. 1. Dipolar BEC in the 2D pancake geometry, with the dipole
moments p̂ oriented along the tilt angle θ defined with respect to the
normal axis ẑ.

important issue for the 2D solitons. Further, in Sec. III, we
display a stability map for 2D soliton solutions in the parameter
plane of the tilt angle and number of atoms, produced by
an accurate numerical solution of the stability-eigenvalue
problem for small perturbations. Comparison of the variational
and numerical results demonstrates that the VA predicts the
magic angle, as the stability boundary, quite accurately. In
particular, while the VA produces the single value of the magic
angle, given by Eq. (19), which does not depend on the relative
strength of the DDI gd with respect to the local self-attraction,
the numerical solution of the stability problem exhibits a very
weak dependence on gd . The paper is summarized in Sec. IV.

II. EFFECTIVE 2D MODEL

We consider an obliquely polarized dipolar BEC trapped in
the pancake-shaped potential, as shown in Fig. 1. The oblique
orientation of dipole moments is imposed by an external
magnetic field, which makes the tilt angle θ with the direction ẑ
perpendicular to the pancake’s plane. The mean-field dynamics
of the BEC at zero temperature is governed by the GPE, which
includes the integral term accounting for the DDI [13]:

ih̄
∂�(r,t)

∂t
=

[
− h̄2

2m
∇2 + V (z) + g|�(r,t)|2

+
(∫

d3r′Vd (r − r′)|�(r′,t)|2
)]

�(r,t). (1)

Here �(r,t) is the wave function of condensate, r = (x,y,z) is
the position vector, m is the atomic mass, and V (z) = mω2

zz
2/2

is the confining potential acting in the transverse direction. The
anisotropic DDI kernel is

Vd (r) = gd (1 − 3 cos2 η)/r3, (2)

where the DDI strength is gd = μ0μ
2
m/4π , with the vacuum

permeability μ0 and magnetic dipole moment μm, while η is
the angle between vector r and the orientation of dipole mo-
ments p̂. Note that this kernel vanishes at η = arccos(1/

√
3),

which coincides with the magic angle predicted by the VA as
a boundary between stable and unstable solitons [see Eq. (19)
below]. The usual contact interaction is represented in Eq. (1)

by the local cubic term with coefficient g = 4πh̄2a/m, where
a is the s-wave scattering length. The norm of the wave
function is fixed by total number of atoms N = ∫

d3r|�(r,t)|2.
The 3D GPE (1) can be reduced to an effective 2D equation,

provided the confinement in the z direction is strong enough.
To this end, we assume, as usual, that the 3D wave function
is factorized �(r) = ψ(ρ)φ(z) exp(−iμt/h̄), with transverse
coordinates ρ = (x,y) and chemical potential μ [51–53].
The transverse wave function is taken as the normalized
ground state of the respective trapping potential φ(z) =
(πL2

z)−1/4 exp(−z2/2L2
z), with the characteristic length Lz =√

h̄/mωz. Then, integrating Eq. (1) over the z coordinate,
the factorized ansatz leads one to the following effective 2D
equation:(

μ

h̄
− 1

2
ωz

)
h̄ψ(ρ)

= − h̄2

2m
∇2

⊥ψ(ρ) + g√
2πLz

|ψ(ρ)|2ψ(ρ)

+ gd

Lz

[∫
d2kρ

(2π )2
n(kρ)V2d

(
kρLz√

2

)
eikρ ·ρ

]
ψ(ρ), (3)

where ∇2
⊥ ≡ ∂2/∂x2 + ∂2/∂y2, n(kρ) ≡ ∫

d2ρ|ψ(ρ)|2 exp
[−ikρρ] is the Fourier transform of the 2D density |ψ(ρ)|2, and
kρ = (k2

x + k2
y)1/2. Further, defining the dipoles as being po-

larized and aligned in the (x,z) plane, i.e., p̂ = (sin θ,0, cos θ )
and cos η = p̂ · r̂, in the momentum (k) space, the DDI kernel
takes the form of

V2D

(
kρLz√

2

)

= −2
√

2π

3
(1 − 3 cos2 θ ) + [1 − 3 cos2 θ

+ cos(2ζ ) sin2 θ ]πkρLz exp

(
k2

ρL
2
z

2

)
erfc

(
kρLz√

2

)
,

(4)

with cos ζ ≡ kx/kρ and the complementary error function erfc
in the momentum space.

Rescaling Eq. (3) by μ → μ/h̄ωz − 1/2, ∇⊥ → ∇⊥Lz,
ρ → ρ/Lz, kρ → kρLz, ψ(ρ) → ψ(ρ)

√
2(2π )1/2|a|Lz, g →

g/4πh̄ωz|a|L2
z , and gd → gd/2

√
2πh̄ωz|a|L2

z , we arrive at
the following normalized 2D equation:

μψ(ρ) = −1

2
∇2

⊥ψ(ρ) + g|ψ(ρ)|2ψ(ρ)

+ gd

[∫
d2kρ

(2π )2
n(kρ)V2D

(
kρ√

2

)
eikρ ·ρ

]
ψ(ρ). (5)

According to the rescaling, the norm of the 2D wave function
N2 ≡ ∫

d2ρ|ψ(ρ)|2 is related to the number of atoms N =
N2 × (Lz/2

√
2π |a|).

Our model is based on Eq. (5). For example, in the case of
the BECs of 52Cr atoms, the atomic magnetic moment is μm =
6 μBohr and an experimentally relevant trapping frequency

ωz = 2π × 800 Hz (6)
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FIG. 2. Transverse profiles of 2D solitons in the x-y plane
normalized to the characteristic transverse length Lz, produced by the
numerical solution of Eq. (5), with chemical potential μ = −0.01,
fixed strength of contact attraction g = −1, and a small DDI strength
gd = 0.1. The tilt angles are (a) θ = 0, (b) θ = 0.73 (41.8◦), (c)
θ = π/3, and (d) θ = π/2. Here the corresponding particle numbers
N2 are (a) 7.15, (b) 6.23, (c) 5.71, and (d) 5.34.

[54–57] corresponds to the characteristic transverse length
Lz = 0.493 μm. With the same trapping frequency, for BECs
of 168Er atoms we have μm = 7 μBohr and m = 2.8 × 10−25 g,
which corresponds to a characteristic transverse length Lz =
0.274 μm, while for 162Dy atoms we have μm = 10 μBohr,
m = 2.7 × 10−25 g, and Lz = 0.279 μm.

A. The 2D numerical soliton solutions

In the absence of the DDI, gd = 0, solutions in the form of
isotropic Townes solitons are supported by an attractive contact
interaction with g < 0 [6,7,58]. Then, by setting the strength
of the contact attraction g = −1, we introduce the DDI in
Eq. (5) and seek 2D bright-soliton solutions numerically, by
varying the DDI strength gd for different values of the chemical
potential μ. The validity of our effective 2D equation for the
pancake geometry is ensured by checking that the transverse
width of the 2D soliton solutions is larger than the transverse-
confinement length Lz in the z direction. This condition sets a
constraint on the available range for the chemical potential, i.e.,
|μ|/h̄ωz 	 1. In our simulations, the 2D effective equations
remain valid in the range of

−0.1 < μ < −0.003. (7)

The tilt angle of the dipoles in the (x,z) plane was also
varied, in the full interval of 0 < θ < π/2. The DDI sign is
set as gd > 0, which corresponds to the natural situation of the
repulsion between the dipoles oriented perpendicular to the
pancake’s plane θ = 0. Thus, the DDI is isotropic but repulsive
at θ = 0, being anisotropic at θ 
= 0. Accordingly, the DDI
tends to compete with the fixed-strength contact attraction.

Numerical solution of Eq. (5) produces 2D soliton profiles,
typical examples of which are displayed in Figs. 2 and 3,
for μ = −0.01. With the fixed contact-interaction coefficient
g = −1, we find two different scenarios of the evolution of

FIG. 3. Same as in Fig. 2, but for stronger DDI, with gd = 1.0.
Here the corresponding particle numbers N2 are (a) 4.69, (b) 9.11,
(c) 4.53, and (d) 2.86.

the shape of the 2D solitons. For a weak DDI, such as that
with coefficient gd = 0.1, starting with the isotropic profile
at θ = 0 [Fig. 2(a)], the transverse widths in the x and y

directions both expand, but at different rates, as the tilt angle
increases [see Figs. 2(b)–2(d) for θ = 0.73 (41.8◦), π/3, and
π/2, respectively]. The 2D solitons are wider along the x

direction and narrower along y because the dipoles are tilted
in the (x,z) plane.

For a larger DDI strength, such as gd = 1.0, we still have
an isotropic profile at θ = 0, as shown in Fig. 3(a). As the tilt
angle increases, the transverse widths in the x and y directions
expand, but remain nearly equal at θ = 0.73 (41.8◦), π/3, and
π/2, as shown in Figs. 3(b)–3(d). Note that, quite naturally,
the radius of the isotropic profile, observed at θ = 0, is smaller
in Fig. 2(a) than in Fig. 3(a), as in the latter case the dipole-
dipole repulsion is much stronger than the competing contact
attraction. Nevertheless, the increase of θ makes the expansion
of the profiles and the growth of its anisotropy, which are
effects of the DDI, more salient in Fig. 2, i.e., when the DDI
is weaker. This counterintuitive evolution of the shape may be
explained by the fact that it is shown not for a fixed number
of atoms N2, but for a fixed chemical potential μ. To keep the
same μ in the case of the stronger DDI competing with the
contact self-attraction (in Fig. 3), the system needs to increase
N2, which in turn helps the contact interaction to keep the
compact, nearly isotropic shape of the soliton.

To present a clearer illustration of these trends, we display,
in Figs. 4 and 5, N2 as a function of θ and μ for the same
small and large strengths of DDI, i.e., gd = 0.1 and gd = 1.0,
respectively. In accord with what is said above, N2 decreases
monotonically at gd = 0.1, as the tilt angle increases from θ =
0 to π/2, at all values of μ. However, the stronger DDI strength
(with gd = 1.0) produces a completely different picture (also
in agreement with the above explanation): As θ increases from
0, N2 at first increases too, reaching a maximum at

θ = θ0 ≈ 0.73 (equivalent to 41.8◦) (8)
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FIG. 4. Scaled 2D particle number N2 in the soliton solutions
versus the tilt angle θ and chemical potential μ at the fixed strength
of the contact interaction g = −1 and a small DDI strength gd = 0.1.

[note that this angle is smaller than the critical (magic) one θm

given below by Eq. (19), which is an approximate boundary
between the stable and unstable solitons]. As mentioned
above, the increase of N2 is necessary to keep the same
value of μ while the essentially repulsive DDI competes with
the local self-attraction, at θ < θ0. Then N2 decreases, as
θ passes θ0 and approaches π/2. Indeed, in the latter case,
the DDI becomes essentially attractive [46], hence the local
and nonlocal interactions act together, instead of competing,
making it possible to keep the given value of μ with a smaller
norm. Note that these trends are the same at different values
of μ, although the corresponding values of N2 are naturally
different. Below we demonstrate that the angle θ0 can be
accurately predicted by the variational approximation [see
Fig. 6(a)].

B. The variational approximation

In addition to numerical solutions, we have developed
the VA, following the lines of Refs. [59,60] and using the
Lagrangian density corresponding to Eq. (5),

L = −μ|ψ |2 + 1

2
|∇⊥ψ |2 + g

2
|ψ |4

+ gd

2
|ψ |2

∫
d2ρ ′V2d (ρ − ρ ′)|ψ(ρ ′)|2. (9)

FIG. 5. Same as in Fig. 4, but for a much stronger DDI, with
gd = 1.0. In this case, N2 attains its maximum at θ ≈ 0.73 (41.8◦),
irrespective of the value of μ.

FIG. 6. Comparison of the norm of the 2D wave function N2 as
produced by the numerical solution and variational approximation
(solid and dashed lines, respectively). (a) Plot of N2(θ ) at fixed μ =
−0.01 for the weak and strong DDI gd = 0.1 and 1 (red and blue lines,
respectively). Also shown is N2(μ) for the fixed values of the DDI
strength (b) gd = 0.1 and (c) gd = 1.0. In these panels, fixed values
of the tilt angle are θ = 0 (red lines), θ = θ0 ≈ 0.73 [see Eq. (8);
magenta lines], and θ = π/2 (blue lines). In each panel we also
show, by solid and dashed black horizontal lines, the constant value
of N2 for the Townes soliton (when the DDI is absent, gd = 0) and
its variationally predicted counterpart (see the main text for details).
For the condensate of 52Cr atoms, the corresponding total numbers
of atoms, for fixed values of other parameters [see Eq. (6)], are given
on the right vertical axis as a reference for a possible experiment.

The corresponding Gaussian ansatz is naturally anisotropic:

ψans =
√

N2

πwxwy

exp

(
− x2

2w2
x

− y2

2w2
y

)
, (10)

with the 2D norm N2 and different transverse widths in the
x and y directions wx and wy . Then the effective Lagrangian
L = ∫

dx dy L is calculated

L = −N2μ + N2
(
w2

x + w2
y

)
4w2

xw
2
y

+ gN2
2

4πwxwy

+ gdN
2
2

8π2
(f1 + f2), (11)
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where we have introduced the shorthand notation

f1 = −4
√

2π3/2

3wxwy

(1 − 3 cos2 θ ),

f2 = 2π2
∫ ∞

0
dkρ

{
k2
ρ exp

(
2k2

ρ − k2
ρ

(
w2

x + w2
y

)
4

)

× erfc

(
kρ√

2

)[
(1 − 3 cos2 θ )I0

(
k2
ρ

(
w2

x − w2
y

)
4

)

− (sin2 θ )I1

(
k2
ρ

(
w2

x − w2
y

)
4

)]}
, (12)

with the modified Bessel functions I0,1(z). The Euler-
Lagrange equations follow from Eq. (11) in the form of
∂L/∂(wx,y,N2) = 0:

− μ + w2
x + w2

y

4w2
xw

2
y

+ gN2

2πwxwy

+ gdN2(f1 + f2)

4π2
= 0, (13)

− 1

2w3
x

− gN2

4πw2
xwy

+ gdN2

8π2

(
∂f1

∂wx

+ ∂f2

∂wx

)
= 0, (14)

− 1

2w3
y

− gN2

4πwxw2
y

+ gdN2

8π2

(
∂f1

∂wy

+ ∂f2

∂wy

)
= 0. (15)

For small arguments 0 < |z| 	 √
α + 1, the modified

Bessel function can be replaced by the first term of its
expansion Iα(z) ≈ (z/2)α/
(α + 1), where 
 is the Gamma
function [61]. Such an approximation makes it possible to
simplify Eqs. (13)–(15) in the case of

0 < k2
ρ

(
w2

x − w2
y

)/
4 	 1. (16)

This condition implies that either the soliton is wide in compar-
ison with the characteristic transverse-confinement width Lz

(which may be naturally expected from the quasi-2D solitons),
i.e., kρ 	 1, or the profile is an almost symmetric one,
with |w2

x − w2
y | 	 w2

x,y . Further analysis makes it possible
to expand, under condition (16) and to the first order in gd , the
VA-predicted 2D norm of the wave function as

N2(μ) = 2π − gdπ
3/2[1 + 3 cos(2θ )]

3(1 + 2μ)2
√

−2
μ

− 4

×
[

(4 + 2μ)(4μ − 1)

√
−1

μ
− 2

+ 9
√

2 arctan

√
−1

2μ
− 1

]
, (17)

where 2π is the well-known VA prediction for the 2D norm
of the Townes solitons [59], which is obviously valid in the
limit of gd = 0, while the term ∼gd in Eq. (17) is a small
correction to it. The correction is a critically important one, as
it lifts the degeneracy of the Townes solitons, whose norm does
not depend on μ [5–7], and thus makes it possible to check
the VK criterion, which states that a necessary condition for
the stability of any soliton family supported by self-attractive
nonlinearity is dN2/dμ < 0 [48,62–64]. It originates from
the condition that a soliton that may be stable should realize a

minimum of the energy for a given value of the norm. Note also
that condition −1/2 < μ < 0, which is obviously necessary
for the validity of Eq. (17), definitely holds in the range of μ

given by Eq. (7), dealt with in the present work.
Applying the VK criterion to the N2(μ) dependence given

by Eq. (17), we obtain

dN2

dμ
= − gdπ

3/2(1 − 3 cos2 θ )

μ(1 + 2μ)3
√

−2
μ

− 4

×
[

2μ(4μ − 13)

√
−1

μ
− 2

+ 3
√

2(8μ − 1) tan−1

√
−1

2μ
− 1

]
. (18)

It immediately follows from Eq. (18) that the VK criterion
holds, i.e., the solitons may be stable (in the framework of the
VA), if the dipoles are polarized under a sufficiently large angle
θ with respect to the normal direction, i.e., the polarization is
relatively close to the in-plane configuration (cf. Ref. [46]):

θ > θm ≡ cos−1(1/
√

3) ≈ 0.955 (tantamount to 54.74◦).

(19)

On the other hand, the solitons are predicted to be definitely
unstable at θ < θm. The same critical (alias magic) angle is
known, e.g., in the theory of the nuclear magnetic resonance,
when a sample is spinning about a fixed axis [49,50]. Note that,
in the framework of the approximation based on Eqs. (17) and
(18), at θ = θm the 2D norm of the solitons coincides with that
of the Townes solitons.

In the more general case, we have found the VA-predicted
parameters N2 and wx,y solving Eqs. (13)–(15) numerically. In
Fig. 6 we present the comparison of the norm of N2, as obtained
from the full numerical solution of Eq. (5) and its counterpart
predicted by the VA (solid and dashed curves, respectively).
For reference, we also show the constant value N

(T )
2 ≈ 5.85

for the Townes solitons (gd = 0) and its above-mentioned VA-
predicted counterpart N

(T )
2 = 2π [59]. In particular, Fig. 6(a)

features the same trends in the dependence N2(θ ) at fixed μ

as were identified, and qualitatively explained, above while
addressing Figs. 4 and 5: In the case of the weak DDI, the
dependence is monotonic, while the strong DDI gives rise to
a well-pronounced maximum at the point (8).

In Fig. 6 we also depict the 2D norm N2 as a function of the
chemical potential μ for weak [Fig. 6(b)] and strong [Fig. 6(c)]
DDI, i.e., gd = 0.1 and 1.0, respectively, for three fixed tilt
angles, namely, θ = 0 (the dipoles polarized perpendicular
to the pancake), θ = θ0 [the special value given by Eq. (8)],
and θ = π/2 (the in-plane polarization). In particular, it can
be seen that the slope of the N2(μ) dependences, which
determines the VK criterion, is definitely positive, slightly or
strongly positive (for small or large DDI strength), and slightly
negative, for θ = 0 (red curves), θ = θ0 (magenta curves),
and θ = π/2 (blue curves), respectively. These conclusions,
which pertain to the weak and strong DDI alike, agree with the
prediction of Eq. (18), namely, that dN2/dμ < 0 for θ > θm

and dN2/dμ > 0 for θ < θm. Finally, Figs. 6(b) and 6(c) also
show, as a reference for possible experimental realization, the
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expected numbers of atoms in the solitons created in the 52Cr
condensate, transversely trapped under the condition (6).

III. STABILITY OF THE 2D SOLITONS

As said above, stability is the critically important issue
for 2D solitons, as the usual cubic local self-attraction
creates Townes solitons that are subject to the subexponential
instability against small perturbations [2,6,7]. Originally, the
perturbations grow with time algebraically, rather than expo-
nentially, but eventually the solitons are quickly destroyed. The
subexponential instability implies that, in terms of the above-
mentioned VK criterion, the Townes solitons are, formally,
neutrally stable, having dN2/dμ = 0 [see the flat black lines
in Figs. 6(b) and 6(c)].

As said above, Eq. (18) and Figs. 6(b) and 6(c) demonstrate
that the addition of the DDI to the local self-attraction lifts
the degeneracy (the independence of the norm of the Townes
solitons on the chemical potential). The resulting sign of the
slope dN2/dμ is the same for the numerical solutions and
their counterparts predicted by the variational approximation.
The sign is the same too for both the weak and strong DDI
(gd = 0.1 and gd = 1). Equation (18) produces an important
prediction that, with the increase of the title angle from θ = 0
to π/2, the slope dN2/dμ changes from positive (unstable) to
negative (possibly stable) at the magic angle given by Eq. (19).

Because the VK criterion is only a necessary stability con-
dition and also because Eq. (18) was derived approximately,
under the condition (16), it is necessary to develop a consistent
linear stability analysis for our numerically generated soliton
solutions. To this end, we introduce a perturbed solution as

ψ(ρ,t) = {ψ0(ρ) + ε[p(ρ)e−iδt + q(ρ)eiδ∗t ]}e−iμt . (20)

Here the asterisk stands for the complex-conjugate value,
ψ0(ρ) is the unperturbed solution, ε is an infinitesimal
perturbation amplitude, and p(ρ) and q(ρ) are eigenmodes
of the small perturbation, with the respective eigenvalue δ.
The instability occurs in the case when δ is not real. The
unperturbed solution was classified as a stable one if the
numerically found instability growth rate |Im(δ)| was smaller
than 10−7.

Results of the stability analysis are summarized in Fig. 7,
where the stability map for the soliton solutions is displayed
in the plane of the DDI strength gd and the tilt angle θ , the
stability region being

θ cr(gd ) < θ � π/2. (21)

This map is found to be the same, up to the accuracy of
the numerically collected data, for the entire interval (7) of
values of the chemical potential in which the derivation of the
effective 2D equation (5) is valid. This map shows that the
originally unstable Townes solitons, corresponding to gd = 0,
quickly attains the stability saturation, i.e., expansion of the
stability interval (21) to its limits θ cr ≈ θm < θ � π/2 at very
small values of gd . At gd = gcr

d ≈ 0.059, the stability boundary
attains its minimum value θ cr ≈ 0.97, as labeled by point A

in Fig. 7. With the increase of gd , the critical tilt slightly
increases to θ = 1.04 (tantamount to 59.59◦), as labeled by
point B, which corresponds to gd = 0.91. Comparing these
numerically exact results with the analytical prediction given

FIG. 7. Stability map for 2D solitons in the plane of the DDI
strength gd and the tilt angle θ as produced by the solution of the
eigenvalue problem for small perturbations. The solitons are stable
at θ cr < θ � π/2, where θ cr(gd ) is shown by the blue line. As above,
the strength of the contact interaction is fixed to be g = −1. Points
A and B correspond, respectively, to the smallest and largest values
of θ cr, respectively (the definition of the largest value excludes the
narrow stripe of the quick decrease of θ cr with the increase of gd from
0 to point A). In fact, the difference between the largest and smallest
values is small. The nearly flat shape of the stability boundary roughly
agrees with the analytical prediction given by Eq. (19).

by Eq. (19), we conclude that the relative error is limited to
8.2% and although the VA fails to predict the dependence of
θ cr on gd , the actual dependence is quite weak. Finally, it is
relevant to stress that by setting dN2/dμ = 0 to identify the
VK-predicted stability boundary, we obtain results, from the
full numerical solution, for both weak and strong DDI, with
gd = 0.1 and 1.0, respectively, which exactly coincide with
the stability boundary identified above through the calculation
of the linear-stability eigenvalues, i.e., θ cr = 0.97 and 1.04.

Before the conclusion, we discuss the possibility to sta-
bilize dipolar BECs with quantum fluctuations. The stability
boundary we reveal above is based on the mean-field theory.
However, when the quantum fluctuations are taken into
consideration, a repulsive [known as Lee-Huang-Yang (LHY)]
correction may stabilize an attractive Bose gas [65]. Recently,
experimental observations of stable and ordered arrangement
of droplets in an atomic dysprosium BEC has illustrated the
importance of LHY quantum fluctuations in stabilizing the
system against collapse [66,67]. Lee-Huang-Yang corrections
have been shown to stabilize droplets in unstable Bose-
Bose mixtures [68] and self-bound filamentlike droplets [69].
Relations on an arbitrary tilt angle to LHY corrections and the
related stability of 2D solitons with DDI interaction deserve
further study.

IV. CONCLUSION

For the dipolar BEC confined to the pancake geometry, we
have investigated the formation and stability of 2D solitons
with atomic magnetic moments polarized in an arbitrary
direction. Fixing the strength of the contact attractive inter-
action (which, by itself, would only create unstable Townes
solitons), we demonstrate, by means of numerical methods
and the VA, combined with the VK criterion, that the 2D
solitons can be completely stabilized by the DDI with relative
strength gd , which makes the solitons anisotropic. Both the
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VK criterion and numerically exact linear-stability analysis
confirm that there exists a magic angle of the polarization tilt
θ cr such that the 2D solitons are stable at θ cr(gd ) < θ � π/2.
While the VA predicts θ cr = arccos(1/

√
3), which does not

depend on gd , the numerically exact results feature a weak
dependence of θ cr on gd , with the actual values of θ cr being
quite close to the VA prediction. We also produce physical
parameters for experiments in the condensate of 52Cr atoms,
which should make the creation of the stable 2D solitons
possible.
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