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Impurity states in the one-dimensional Bose gas
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The detailed study of the low-energy spectrum for a mobile impurity in the one-dimensional bosonic
environment is performed. Particularly we have considered only two analytically accessible limits, namely,
the case of an impurity immersed in a dilute Bose gas where one can use many-body perturbative techniques
for low-dimensional bosonic systems and the case of the Tonks-Girardeau gas for which the usual fermionic
diagrammatic expansion up to the second order is applied.
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I. INTRODUCTION

The behavior of impurity in the various media is a
cornerstone problem for the understanding of numerous
phenomena in the condensed-matter physics including the
Kondo effect, Anderson localization, etc. Recently, great
attention from theorists [1–12] has been paid to the analysis of
mobile impurity properties in the Bose gas. Such a renascence
of the old problem well studied in the context of a single 3He
atom immersed in liquid 4He (see, for instance, Refs. [13–16]
and references there) is stimulated by the success of the
experimental techniques [17,18] where the possibility to
control a small amount of impurity particles strongly coupled
to the bosonic bath is demonstrated.

A very interesting platform for the theoretical research in
the Bose polaron problem is the case of one-dimensional
environments [19–26]. It is well known that due to highly
nontrivial physics in the one spatial dimension [27,28] these
systems possess unexpected behavior which very often ob-
structs their analysis. In some limiting cases, however, they
admit analytical treatment [29] or even the existence of exact
solutions [30–34]. There is also an experimental realization of
the one-dimensional Bose polaron [35] where a minority of
41K atoms immersed in the 87Rb medium was observed during
expansion and the prediction for the impurity effective mass
within Feynman’s framework was given. Essentially exact
recent Monte Carlo simulations [36] revealed the impact of
the considerably strong phonon-mediated interaction on the
properties of a one-dimensional Bose polaron, and to describe
the system properly one needs to go beyond [37] the Fröhlich
model in this case.

II. FORMULATION

We study the properties of a single impurity atom immersed
in the Lieb-Liniger gas. It is assumed that the impurity
interacts with bath particles via a contact potential and by
appropriately choosing a sign of the coupling constant we
reproduce both repulsive and attractive Bose polarons. In
order to take advantage of the many-body perturbation theory
we consider the Bose-Fermi mixture consisting of a very
dilute spinless (spin-polarized) Fermi gas immersed in the
bosonic medium. The described model is characterized by the
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following Hamiltonian:

H = H0 + HB + Hint, (2.1)

where H0 describes the ideal Fermi gas (mi is the mass of the
impurity particle),

H0 = − h̄2

2mi

∫ L

0
dx ψ+(x)∂2

xψ(x). (2.2)

Here fermionic creation ψ+(x) and annihilation ψ(x) field
operators which refer to the impurity states and sat-
isfy usual anticommutating relations {ψ(x),ψ+(x ′)} = δ(x −
x ′), {ψ(x),ψ(x ′)} = 0. The second term in Eq. (2.1) is the
Hamiltonian of Bose particles of mass m interacting with the
δ-like repulsive potential,

HB = − h̄2

2m

∫ L

0
dx φ+(x)∂2

xφ(x)

+g

2

∫ L

0
dx[φ+(x)]2[φ(x)]2, (2.3)

where we have introduced field operators φ+(x),φ(x) of the
Bose type. Finally, the last term of H takes into account the
interaction of Bose-Fermi subsystems,

Hint = g̃

∫ L

0
dx ψ+(x)ψ(x)φ+(x)φ(x). (2.4)

It is well known that the formulated model (2.1) can be
solved exactly within the Bethe ansatz only when mi = m,
otherwise some approximate calculational schemes should
be applied. But this equal-mass limit is a good benchmark
for any perturbative approach. In the following sections we
will consider two opposite models of environments given by
Hamiltonian (2.3), namely, a dilute Bose gas [Bose-Einstein
condensate (BEC)] g → 0 and a case of the Tonks-Girardeau
(TG) limit g → ∞.

A. Impurity in the dilute Bose gas

For the low-dimensional systems D � 2 where the con-
densate does not exist at finite temperatures it is conve-
nient to introduce the phase-density representation [27,38,39]
for the bosonic operators: φ(x) = eiϕ(x)√n(x), φ+(x) =√

n(x)e−iϕ(x) with commutator [n(x),ϕ(x ′)] = iδ(x − x ′) for
the phase ϕ(x) and density n(x) = φ+(x)φ(x) fields. Im-
posing periodic boundary conditions n(x + L) = n(x), φ(x +
L) = φ(x) with large “volume” L and making use of
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the Fourier transform n(x) = n + 1√
L

∑
k �=0 eikxnk, ϕ(x) =

1√
L

∑
k �=0 e−ikxϕk , where n = N/L is the equilibrium

density of the Bose system; substituting ϕ(x),n(x) in
Eq. (2.3) and then performing canonical transforma-
tions bk = i

√
n/αk ϕ−k + 1

2

√
αk/nnk, b+

k = −i
√

n/αkϕk +
1
2

√
αk/nn−k (note that [bk,b

+
q ] = δk,q and [bk,bq] = 0) that

diagonalize the quadratic part of the Hamiltonian HB we finally
obtain

HB = E0 +
∑
k �=0

Ekb
+
k bk + �HB, (2.5)

�HB = 1

3!
√

N

∑
k+q+s=0

Dbbb(k,q,s)bkbqbs + H.c.

+ 1

2
√

N

∑
k,q �=0

Db+bb(k + q|k,q)b+
k+qbkbq + H.c.,

(2.6)

where E0 and Ek are the Bogoliubov ground-state energy and
the quasiparticle spectrum, respectively. Introducing bosonic
free-particle dispersion εk = h̄2k2/2m one may show that
the above-mentioned requirement of diagonalization fixes
parameter αk = Ek/εk . It should be noted that in �HB the only
relevant terms for our two-loop calculations are presented. The
functions,

Dbbb(k,q,s)
Db+bb(s|k,q)

}
= h̄2

4m
√

αkαqαs

[kq(αkαq + 1)

+ ks(αkαs ± 1) + qs(αqαs ± 1)] (2.7)

describe the simplest scattering processes of the elementary
excitations. In the same fashion we rewrite the third term of
the Hamiltonian,

Hint = ng̃
∑

p

ψ+
p ψp

+ 1√
L

∑
p;k �=0

g̃
√

n/αk(b+
k + b−k)ψ+

p ψp+k, (2.8)

where operators ψ+
p and ψp are the Fourier transforms of

ψ+(x) and ψ(x), respectively. Although we are going to
discuss the ground-state properties of the impurity atom
immersed in a Bose gas, for the further analysis we adopt
the field-theoretical formulation at finite temperatures [40].
The exact single-particle Green’s function of the fermions in
the four-momentum space is given by

G−1
i (P ) = iνp − ξi(p) − �(P ), (2.9)

where P = (νp,p) (νp is the fermionic Matsubara frequency);
ξi(p) = h̄2p2/2mi − μ̃i where the chemical potential of the
Fermi gas μ̃i = μi − ng̃ shifted due to interaction with the
Bose subsystem ensures the particle number conservation.
The exact self-energy of the impurity is given by two skeleton
diagrams depicted in Fig. 1,

�(P ) = −g̃

Lβ

∑
K

√
n

αk

�b+ (P − K,P )GB(K)Gi(P − K)

FIG. 1. Exact diagrammatic representation of self-energy �(P )
in the weakly interacting Bose gas. The bold solid line represents the
exact one-particle fermionic Green’s function. The dashed line is the
bosonic propagator in the Bogoliubov approximation. The dots stand
for the zero-order (light) and the exact (black) vertices, respectively.

− g̃

Lβ

∑
K

√
n

αk

�b(P + K,P )GB(K)Gi(K + P ),

(2.10)

where we already have taken into account the diluteness of
the Bose gas, i.e., neglected the self-energy corrections to the
Green’s-function GB(K) of Bogoliubov’s quasiparticles.

This is formally an exact equation that determines the
impurity Green’s-function self-consistently. Technically this
program for a given approximation of the boson-fermion
vertices �b+ (P − K,P ) and �b(P + K,P ) is very hard for
practical realization, therefore, in the following we will use
perturbation theory. The appropriative expansion parameter is
the coupling constant g̃ that characterizes the intensity of the
two-particle Bose-Fermi interaction which we accept to be
small in our calculations. Following this ideology one readily
mentions that the correction of order g̃2 to the self-energy
�(1)(P ) is fully determined by the first diagram in Fig. 1 with
�b+ (P − K,P ) → g̃

√
n/αk and Gi(P ) → 1/[iνp − ξi(p)].

In this approximation the second diagram provides the nonzero
contribution only at finite temperatures. On the two-loop level
which particularly contains g̃3 and g̃4 terms of the impurity
self-energy the situation is more complicated because now
we have to take into account six diagrams (see Fig. 2)
for each vertex �b(P + K,P ),�b+ (P − K,P ) and to use the
impurity Green’s function complicated with the first-order cor-
rection Gi(P ) = 1/[iνp − ξi(p)] + �(1)(P )/[iνp − ξi(p)]2 in
the first diagram in Fig. 1. The details of these calculations as
well as the explicit formula for the self-energy up to the second
order of a perturbation theory can be found in Appendix A.
Finally, it should be noted that the second-order formula for
the self-energy obtained in this section can be applied to the
Bose polaron problem in higher dimensions, for instance, in
the three-dimensional case it reproduces the results of Ref. [6].

FIG. 2. One-loop diagrams contributing to the vertices �b(P +
K,P ),�b+ (P − K,P ).
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FIG. 3. The self-energy of the impurity atom immersed in the
TG gas. Here the black dot denotes the exact vertex T (Q − K; P +
K|P ; Q), whereas the light dot stands for the Fourier-transform g̃ of
a bare interaction potential.

B. The Tonks-Girardeau limit

Another interesting limit where the perturbative calcula-
tions may be performed analytically is the case of the impurity
immersed in the Bose gas with infinite (g → ∞) interparticle
repulsion. In this limit the bosons become nonpenetrable
and operators φ+(x),φ(x) by means of the Jordan-Wigner
transformation can be mapped onto fermionic creation and
annihilation field operators [27]. This transformation leaves
the first term of Hamiltonian (2.3) unchanged and nullifies the
second one. Therefore in the following we have to consider the
properties of the one-dimensional Fermi-Fermi mixture with
unequal masses of two sorts of particles. The interaction is
assumed to be switched on only between atoms of different
species. The appropriate grand-canonical Hamiltonian H ′ =
H − ∑

p{μiψ
+
p ψp + μφ+

p φp} reads

H ′ =
∑

p

{ξi(p)ψ+
p ψp + ξpφ+

p φp}

+ 1

L

∑
p,q,k

g̃ψ+
p φ+

q φq+kψp−k, (2.11)

where ξp = εp − μ with μ = h̄2p2
0/2m (p0 = πn) being the

chemical potential of the Bose gas in the TG limit and we now
have to treat φ+

p and φp as Fermi creation and annihilation
operators, respectively. Then the impurity self-energy in the
TG gas is (see Fig. 3)

�(P ) = − g̃

(Lβ)2

∑
K,Q

T (Q − K; P + K|P ; Q)

×G0(Q)G0(Q − K)Gi(P + K). (2.12)

Here again we incorporated the Hartree term to the redefinition
of the impurity binding energy μi → μ̃i and introduced
the notation for the one-particle Green’s-function G0(Q) =
1/[iνq − ξq] of a bosonic medium in the infinite-g limit.
Keeping in mind the perturbative consideration in terms of
the impurity-boson coupling parameter we obtain the self-
energy in the simplest approximation by replacing the vertex
T (Q − K; P + K|P ; Q) with g̃. The second-order calculation
(see Appendix B) requires both vertex corrections that are of
order g̃3 and presented in Fig. 4 and the one-loop self-energy
insertion which is of order g̃4 and therefore is neglected in the
present paper.

In general, the impurity spectrum can be found from the
poles of the retarded Green’s function. Particularly for the real
part of the spectrum one obtains

ξ ∗
i (p) = ξi(p) + �R[ξ ∗

i (p),p], (2.13)

FIG. 4. One-loop diagrams contributing to the two-particle vertex
T (P ; Q|Q + K; P − K).

where �R(ν,p) = Re �(P )|iνp→ν+i0 is the real part of the
analytically continued self-energy. Up to the second order of
the perturbation theory Eq. (2.13) reads

ξ ∗
i (p) = ξi(p) + �

(1)
R [ξi(p),p] + �

(2)
R [ξi(p),p]

+1

2

∂

∂ξi(p)

{
�

(1)
R [ξi(p),p]

}2
, (2.14)

where �
(1)
R (ν,p) and �

(2)
R (ν,p) are real parts of the one- and

two-loop corrections to the self-energy, respectively. Absence
of the Fermi surface for the impurity atom guarantees that
its spectrum is gapless, i.e., ξ ∗

i (p → 0) → 0. In the long-
wavelength limit it is characterized by the effective mass only,
and by expanding the right-hand side of the above equation we
are in position to calculate both the impurity binding energy,

μi = ng̃ + μ
(1)
i + μ

(2)
i + · · · , (2.15)

and the inverse effective mass,

mi/m∗
i = 1 + �(1) + �(2) + · · · , (2.16)

where the superscript denotes the order of perturbation theory.

III. RESULTS

A. One-loop calculations

The general low-energy structure of the impurity Green’s
function is visible even in the simplest approximation. There-
fore it is worthwhile to discuss furthermore the first-order
result in more detail that these calculations in the small-g
limit can be performed analytically. In particular, for the first
correction to the impurity binding energy, which is determined
only by �

(1)
R (−μ̃i ,0), we obtained μ

(1)
i /(ng̃) = αε(1)(γ ) where

the function ε(1)(γ ) of the mass ratio γ = m/mi in the case of
a weakly interacting Bose gas,

ε
(1)
BEC(γ ) = − 1√

γ 2 − 1
ln

∣∣∣∣∣γ +
√

γ 2 − 1

γ −
√

γ 2 − 1

∣∣∣∣∣, (3.1)

and in the TG limit,

ε
(1)
TG(γ ) = −

∫ 1

0

dq

q
ln

∣∣∣∣ (1 + q)2 + γ (1 − q2)

(1 − q)2 + γ (1 − q2)

∣∣∣∣ (3.2)

is presented in Fig. 5. The dimensionless coupling constant
α = g̃/(2πh̄c) (with c being the sound velocity in both cases,
i.e., c = √

ng/m and c = h̄p0/m in BEC and TG limits,
respectively) is the expansion parameter which controls the
limits of applicability of our perturbative results. At finite
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FIG. 5. Dimensionless correction ε(1)(γ ) to the impurity binding
energy as a function of mass ratio γ = m/mi in the BEC (solid curve)
and TG (dashed curve) limits.

momenta the self-energy �
(1)
R [ξi(p),p] on the BEC side is

a nonmonotonic function of the wave vector with logarithmic
divergence at p = mic/h̄, i.e., when the velocity of impurity
reaches the value of the velocity of sound propagation in
the bosonic system. Qualitatively the same behavior of the
impurity self-energy is observed in the TG gas. Furthermore,
from the exact solution of the Lieb and Liniger model [41]
we learn that the spectrum of the system [42] contains two
phononlike branches in the long-length limit for any finite
value of coupling constant g. Therefore these divergences
always appear indicating a nonperturbative nature of the
impurity self-energy in the momentum region close to h̄p =
mic. On the other hand, it is well known that the impurity
moving with supersonic velocity starts to dissipate its energy
by producing elementary excitations in the bosonic bath. In
the one spatial dimension this dissipation is so intensive that
the imaginary part of the self-energy �

(1)
I [ξi(p),p]/(ng̃) =

−πα/γ, (p = mic/h̄ + 0) is on the order of magnitude to the
real one and in what follows we cannot neglect the damping
and use Eq. (2.14) to determine the impurity spectrum at
this point. But in the long-wavelength limit p � mic/h̄ the
damping is absent so the perturbative impurity spectrum is
well defined. The one-loop contribution to the effective mass
is given by �

(1)
TG = −4α2 in the TG limit and by

�
(1)
BEC = − g̃

g

αγ

γ 2 − 1

[
2γ − 1√

γ 2 − 1
ln

∣∣∣∣∣γ +
√

γ 2 − 1

γ −
√

γ 2 − 1

∣∣∣∣∣
]
,

(3.3)

in the dilute one-dimensional Bose gas.
No less interesting is the behavior of the impurity wave-

function renormalization (quasiparticle residue) Z−1
i (p) =

1 − ∂�R[ξi(p),p]/∂ξi(p). It is easy to show by the direct cal-
culations that the above derivative is logarithmically divergent
for any p both in the BEC and in the TG limits. Particularly it
means that the series expansion of the inverse retarded Green’s
function, calculated in the first order of perturbation theory,

.

.

.

.

.

.

.

FIG. 6. The second-order binding energy corrections ε
(2,2)
BEC (γ )

(solid curve) and ε
(2)
TG(γ ) (dashed curve). The inset shows function

ε
(2,1)
BEC (γ ).

reads [ν → ξ ∗
i (p)][

Gret
i (ν,p)

]−1

= ν − ξi(p) − �
(1)
R (ν,p)

→ ν − ξ ∗
i (p) − ∂�

(1)
R [ξ ∗

i (p),p]

∂ξ ∗
i (p)

[ν − ξ ∗
i (p)] + · · ·

→ [ν − ξ ∗
i (p)]{1 − η(1)(p) ln[ν − ξ ∗

i (p)] + · · · }, (3.4)

where the ellipses stand for the finite terms. Being independent
of the wave vector these divergences suggest the exact Green’s
function has a branch-point singularity [η(0) = η],

Gret
i (ν,p → 0)|ν→ξ∗

i (p) ∝ 1

[ν − ξ ∗
i (p)]1−η

. (3.5)

This statement is supported by the explicit calculation of
the exponent η since in both analytically available cases we
obtained the same value,

η
(1)
BEC = η

(1)
TG = ng̃2/(2πh̄mc3), (3.6)

on the one-loop level. Looking ahead it should be noted that
this power-law behavior of the impurity Green’s function is
confirmed perfectly by the second-order perturbation theory
calculations.

B. Two-loop results

The numerical calculations up to the second order of
perturbation theory requires more computational effort. Par-
ticularly the expansion for the binding energy correction in
the BEC limit reads μ

(2)
i /ng̃ = g̃

g
α2ε

(2,1)
BEC (γ ) + α2ε

(2,2)
BEC (γ ). In

the TG case the above expansion contains the single term
μ

(2)
i /(ng̃) = α2ε

(2)
TG(γ ). For comparison in Fig. 6 we built all

three curves. It is seen that function ε
(2,2)
BEC (γ ) is almost two

orders of magnitude larger than ε
(2,2)
BEC (γ ), which particularly

means that, even in a weakly interacting Bose gas, the quasi-
particle-mediated impurity potential is not negligible. In the
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FIG. 7. Function δ
(2)
TG(γ ) determining the two-loop result for an

effective mass in the TG limit.

TG limit when γ = 1 our results for the impurity binding en-
ergy μi |γ=1 = ng̃(1 − π2

4 α + π2

3 α2 + · · · ) exactly reproduce
the first three terms of an analytical formula [30] obtained
within the Bethe ansatz wave function. The similar expansions
were derived for the second-order corrections to the parti-
cle effective mass in the BEC �

(2)
BEC = (g̃/g)2α2δ

(2,1)
BEC (γ ) +

(g̃/g)α2δ
(2,2)
BEC (γ ) and TG �

(2)
TG = α3δ

(2)
TG(γ ) limits, respectively

[functions δ
(2,1)
BEC (γ ), δ

(2,2)
BEC (γ ), and δ

(2)
TG(γ ) are plotted in Figs. 7

and 8].
It is easy to verify that the numerically calculated TG

effective mass in the integrable limit perfectly coincides
with the exact expansion mi/m∗

i |γ=1 = 1 − 4α2 + 4(π2/3 −
4)α3 + · · · . Figure 7 reveals the strong dependence of function
δ

(2)
TG(γ ) on the mass ratio parameter γ . This signals the

breakdown of an ordinary perturbation theory at large mass
imbalance in the TG limit, and in order to resolve this problem
one needs to take into account an infinite series of diagrams

.

.

.

.

.

.

FIG. 8. Dimensional functions δ
(2,1)
BEC (γ ) (solid curve) and δ

(2,2)
BEC (γ )

(dashed curve).

(ladder summation in the particle-particle or particle-hole [43]
channels).

Our second-order perturbative calculations of the self-
energy allow for obtaining the above-presented exponent η

on the two-loop level. In the same manner as was performed
before [see Eq. (3.4)] by the explicit series expansion of the
retarded impurity Green’s function in the vicinity of a singular
point ν → ξ ∗

i (p) we have

[
Gret

i (ν,p)
]−1 = [ν − ξ ∗

i (p)]
{
1 − [η(1) + η(2)] ln[ν − ξ ∗

i (p)]

+ 1
2 [η(1)]2 ln2[ν − ξ ∗

i (p)] ± · · · },
where η(1) already was given by Eq. (3.6) and the value of the
second correction η(2) depends strongly on the properties of
the bosonic environment. The presence of the ln2 divergences
with a proper factor 1

2 [η(1)]2 proves our original suggestion
(3..5). Combining the first- and second-order results we obtain
in the BEC limit,

η
(1)
BEC + η

(2)
BEC = ng̃2

2πh̄mc3

×
[

1 − α

2
√

γ 2 − 1
ln

∣∣∣∣∣γ +
√

γ 2 − 1

γ −
√

γ 2 − 1

∣∣∣∣∣
]2

.

(3.7)

The TG limit demonstrates an unexpected behavior η
(2)
TG = 0

instead. Such a dependence of the second-order correction η(2)

led us to the conclusion that the exact value of an exponent
responsible for the nonanalytic behavior of the impurity
Green’s function is given by η = n(∂μi/∂n)2/(2πh̄mc3).
Indeed, it is easy to verify that μ

(1)
i , that determines η(2), does

not depend on the density of the medium in the TG limit and
that a derivative ∂μ

(1)
i /∂(ng̃) on the BEC side is equal to the

expression in the square brackets of Eq. (3.7). Of course, it
is too optimistic to write down the whole result only with the
second-order perturbative calculations at hand, but exactly the
same formula for η as well as a singular behavior (3.5) of
the impurity propagator can be proven by using a technique
similar to that of Refs. [44,45].

IV. CONCLUSIONS

To summarize, by applying perturbation theory up to the
second order we have revealed the detailed low-energy struc-
ture of the spectrum (binding energy and effective mass) for
a mobile impurity immersed in the one-dimensional bosonic
environment. Considering our system as a Fermi-Bose mixture
with the vanishingly small fermionic density we found that
the interaction with a bosonic medium crucially changes the
single-particle impurity Green’s function providing the latter
exhibits branch-point singularity. Using our second-order
perturbative results we have proposed the general formula for
the nonuniversal exponent determining this behavior. It also
is demonstrated that the induced interaction, especially in the
case of a large mass imbalance, has a profound effect on the
behavior of a single impurity atom in the one-dimensional
Bose gas.
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APPENDIX A: BEC LIMIT

The calculations of the one-loop diagrams (see Fig. 1) on the BEC side at zero temperature yield

�(1)(P ) = − 1

L

∑
k �=0

ng̃2

αk

1

Ek + ξi(k + p) − iνp

. (A1)

The second-order result is more cumbersome for evaluation nevertheless still tractable. While calculating the one-loop correction
to vertices we find that only four diagrams in Fig. 2 are nonzero at T = 0. Furthermore, by substituting these eight terms in
Eq. (2.10) one concludes that only five contribute to the self-energy with the result,

�(2)(P ) = − 1

2L2

∑
k,s �=0

n2g̃4

αkαs

1

Es + Ek + ξi(s + k + p) − iνp

[
1

Ek + ξi(k + p) − iνp

+ 1

Es + ξi(s + p) − iνp

]2

+ 1

L2

∑
k,s �=0

ng̃3

αkαsαk+s

1

Es + ξi(s − p) − iνp

1

Ek + ξi(k + p) − iνp

− 1

2L2

∑
k,s �=0

ng̃3

αkαsαk+s

1

Ek + Es + ξi(k + s + p) − iνp

[
D+(k,s)

Ek+s + ξi(s + k + p) − iνp

− D−(k,s)

Ek + Es + Ek+s

]

×
[

1

Ek + ξi(k + p) − iνp

+ 1

Es + ξi(s + p) − iνp

]
, (A2)

where the symmetric functions D±(k,s) read

D±(k,s) = h̄2

2m
[k(k + s)(αk − 1)(αk+s ± 1) + s(s + k)(αs − 1)(αk+s ± 1) ± ks(αk − 1)(αs − 1)].

APPENDIX B: TG GAS

The self-energy calculations in the TG limit are much simpler. For instance, on the one-loop level we obtained

�(1)(P ) = 1

L

∑
q

g̃2(1 − nq)�q(P ) = − 1

L

∑
q

g̃2nqtq(P ), (B1)

where nq = θ (p0 − |q|) is a unit step function. The impurity-boson particle-hole diagram reads

�q(P ) = 1

L

∑
k

nk

iνp − ξq + ξk − ξi(k − q + p)
, (B2)

and the notation for the particle-particle bubble,

tq(P ) = 1

L

∑
k

1 − nk

ξk + ξi(k + q + p) − ξq − iνp

(B3)

is used. Taking into account the vertex corrections (see Fig. 4) the calculations in the next order of perturbation theory give

�(2)(P ) = 1

L

∑
q

g̃3nqt
2
q (P ) − 1

L

∑
q

g̃3(1 − nq)�2
q(P ). (B4)

Both �q(P ) and tq(P ) on the “mass-shell” iνp → ξi(p) can be written in terms of elementary functions.
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