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Supersymmetric systems derive their properties from conserved supercharges which form a supersymmetric
algebra. These systems naturally factorize into two subsystems, which, when considered as individual systems,
have essentially the same eigenenergies, and their eigenstates can be mapped onto each other. We propose
a Mach-Zehnder interference experiment to detect supersymmetry in quantum-mechanical systems, which
can be realized with current technology. To demonstrate this interferometric technique, we first propose a
one-dimensional ultracold-atom setup to realize a pair of supersymmetric systems. Here, a single-atom wave
packet evolves in a superposition of the subsystems and gives an interference contrast that is sharply peaked
if the subsystems form a supersymmetric pair. Second, we propose a two-dimensional setup that implements
supersymmetric dynamics in a synthetic gauge field.
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I. INTRODUCTION

Supersymmetry (SUSY) was originally introduced in par-
ticle physics beyond the standard model, but its conceptual
structure can be applied outside of high-energy theory, giving
rise to supersymmetric quantum mechanics [1–3]. Here, the
algebraic structure of SUSY relates two Hamiltonians as
supersymmetric partner Hamiltonians. They share the same
eigenspectrum, except for the ground state possibly, and the
corresponding eigenstates can be mapped onto each other.
By mapping a seemingly complicated Hamiltonian onto
its supersymmetric partner for which the diagonalization is
known, an exact diagonalization can be constructed. This
concept has been applied to a wide range of physical
problems, e.g., the hydrogen problem [4,5], the Fokker-Planck
equation [6,7], and the Korteweg-de Vries equation [8,9].
Recent applications have been reported in [10,11].

We propose an interferometric technique to detect super-
symmetry between two systems. We discuss two examples for
this technique but emphasize that it can be applied to a wide
range of physical systems. Both examples are implementations
of the SUSY algebra that consists of a Hamiltonian H and a
supercharge operator Q. We assume that these operate on a
2-spinor ψ = (ψ (1),ψ (2)) (see [12]). The supercharge Q is
a conserved quantity of H and fulfills the defining equation
{Q,Q†} = H. We choose Q to have the form Q = B̂σ+, where
σ+ is the Pauli spin-raising matrix and B̂ is a scalar operator.
With this, H takes the form H = Ĥ (1)1↑ + Ĥ (2)1↓, with
1↑/↓ = (1 ± σz)/2 and with Ĥ (1) = B̂B̂† and Ĥ (2) = B̂†B̂. So
the system separates into two scalar subsystems (see [13]).
Considering Ĥ (1) and Ĥ (2) as individual Hamiltonians, these
are supersymmetric partners. They have the same spectrum,
with the possible exception of the ground state of Ĥ (2), and
the operator B̂ maps the eigenstates ψ (2)

n of Ĥ (2) onto the
eigenstates ψ (1)

n of Ĥ (1) [see Fig. 1(a)]. We have B̂ψ (2)
n ∼ ψ (1)

n ,
where ψ (1)

n and ψ (2)
n have the same eigenenergy En, and

similarly, B̂†ψ (1)
n ∼ ψ (2)

n . The zero-energy state of Ĥ (2) is
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Û (1)(t) Û (2)(t)

B̂†

B̂†

FIG. 1. Supersymmetric partner systems manifest themselves
equivalently as follows. (a) The spectra coincide, except for a
zero-energy state of Ĥ (2) for unbroken supersymmetry. Additionally,
the eigenstates can be mapped onto each other via B̂† and B̂. (b) The
time propagation of each system can be mapped onto each other via
B̂† at any time t .

annihilated by B̂, i.e., B̂ψ0 = 0, if it exists. This case of
unbroken supersymmetry is indeed realized in both examples
in this paper. We give an example for broken supersymmetry
in Appendix A. The number of zero-energy states is the Witten
index and is directly relevant for the proof of the Atiyah-Singer
index theorem (Refs. [3,14,15]). As a second realization of
this SUSY algebra, we discuss two-dimensional motion of a
spin-1/2 particle in a synthetic gauge field [16].
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The supersymmetric relation between two Hamiltonians
translates into

B̂†Û (1)(t) = Û (2)(t)B̂† (1)

for their time propagators Û (1/2)(t) = exp(−iĤ (1/2)t/h̄) for
any time t [see Fig. 1(b)]. h̄ is the reduced Planck constant.
We propose to implement and detect the supersymmetric
relation of the time propagators in Eq. (1) in an ultracold-
atom experiment. To make the experimental realization of
the operator B̂† feasible, we propose to use a trivially
supersymmetric system with a supercharge that can be realized
experimentally and to adiabatically deform this system into
the desired system. Our first example provides an illustration
of this proposal. Here, supersymmetric quantum mechanics
is realized in the one-dimensional Schrödinger equation. The
trivially supersymmetric system is the harmonic oscillator,
which is then deformed into a nonharmonic system by adding
additional potential barriers. In the second example we discuss
atomic motion in a synthetic gauge field in two dimensions.
In each case, we consider a single atom subjected to an
interferometric protocol, but we emphasize that a similar
approach can be taken to higher-dimensional systems or
many-body systems.

This paper is organized as follows. In Sec. II we describe
the Hamiltonian of our first example of an atom moving
in a potential in one dimension. In Sec. III we present our
interferometric protocol. In Sec. IV we discuss atomic motion
in an artificial gauge field, and in Sec. V we conclude.

II. SUPERSYMMETRY OF THE ONE-DIMENSIONAL
SCHRÖDINGER EQUATION

In the first example, the atom initially moves in a one-
dimensional harmonic trap potential, as mentioned. The atom
is prepared in the ground state and then split coherently,
either by spatially splitting the trap in one of the confining
directions (see, e.g., Ref. [17]) or by applying a π/2 pulse
to a second internal state, such as a hyperfine state. Then
an approximation of B̂† is applied to the second component
of the wave packet (see Fig. 2). Both parts of the wave
packet are shifted away from the potential minimum, and
for each an additional potential barrier, localized near the
harmonic potential minimum, is ramped up. The wave-packet
components then move in each of these potentials. They
oscillate in the harmonic potential and scatter off the potential
barriers. Then B̂† is applied to the first component of the wave
packet, and the two components are brought to interference.

This interferometer probes if the two Hamiltonians Ĥ (1) and
Ĥ (2), with Ĥ (i) = Ĥkin + V (i), are supersymmetric partners,
with Ĥkin = −h̄2/(2m)∂xx . m is the atom mass. The potentials
are V (i) = Vosc + V

(i)
loc , with the confining potential Vosc =

mω2x2/2, where ω is the trap frequency. The additional
potentials V

(i)
loc fall off on a length scale σ . The initial dis-

placement x̄ of the wave packets is such that x̄ � max(x0,σ ),
where x0 is the harmonic oscillator length, x0 = √

h̄/(mω).
In this setup the atom scatters repeatedly off the potential
barriers, which strongly increases the interference contrast
discussed below, which identifies the supersymmetric relation
between the two subsystems. We note that other, nonharmonic
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FIG. 2. (a) Mach-Zehnder interferometer. The initial state ψi is
split to evolve along the two paths corresponding to the supersymmet-
ric partners. B̂† is applied before or after the time evolution, depending
on the path. Finally, the paths are brought to interference, resulting in
a contrast measurement. (b) Experimental sequence. Assuming the
beam splitter is realized by spatial splitting, the potential barrier Vy

in the y direction is smoothly turned on and rapidly turned off. B̂†

is approximated by a shaking process. During this shaking, we turn
off the nonharmonic potentials, i.e., A = 0. A is held at a constant
nonzero value for a hold time tr and then ramped down linearly.

confining potentials can also be used (see Appendixes A
and B).

As our main example, we consider

V
(i)

loc (x) = V (i)
s exp

(
− x2

2σ 2

)
+ V (i)

p x exp

(
− x2

4σ 2

)
. (2)

Each potential has a Gaussian term, which we refer to as the
s barrier, and a term of the form ∼x exp[−x2/(4σ 2)], which
we refer to as the p barrier. The s barrier has a width σ ; the p

barrier has a width
√

2σ .
One approach to realize this potential experimentally is

to use a spatial light modulator (see, e.g., Refs. [18–21]),
which also allows for selective control of spatially separated
potentials close to each other. Alternatively, the s barrier can
be realized with a blue-detuned Gaussian beam, which results
in a repulsive potential. The p barrier can be realized by using
two Gaussian beams, one blue detuned and located at +xb,
with xb � σ , and one red detuned, located at −xb.

Remarkably, in the parameter space of the two potentials
in Eq. (2), there is a submanifold for which these two systems
are supersymmetric partners. To determine this manifold,
we consider the ansatz B̂† = [W (x) − h̄∂x/

√
m]/

√
2. W (x)

is the superpotential of the system. Using Ĥ (1) = B̂B̂† and
Ĥ (2) = B̂B̂†, we obtain Ĥ (i) = Ĥkin + V (i), with V (i)(x) =
W 2(x)/2 ± h̄W ′(x)/(2

√
m). We use W (x) = √

h̄ω{x/x0 +
A exp[−x2/(4σ 2)]} for the superpotential. The first term
creates the harmonic potential; the second term creates the
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barrier potentials. A is the dimensionless amplitude of the
Gaussian term. This gives

V (i)(x) = mω2x2

2
∓ h̄ω

2
+ h̄ωA2

2
exp

(
− x2

2σ 2

)

+2h̄ωAx

x0

(
1 ∓ x2

0

4σ 2

)
exp

(
− x2

4σ 2

)
. (3)

Thus the prefactors of the barrier potentials have to fulfill
V

(1/2)
s = h̄ωA2/2 and V

(1/2)
p = 2h̄ωA[1 ∓ x2

0/(4σ 2)]/x0. We
choose σ = x0/2, resulting in V (1)

p = 0 and V (2)
p = 4h̄ωA/x0.

For A = 0, the potentials reduce to V (i)(x) = Vosc ∓ h̄ω/2,
which is a supersymmetric pair with B̂† = √

h̄ωâ†, with â†

being the harmonic oscillator creation operator. We use this
pair of potentials as the trivially supersymmetric system which
we deform during the interferometric protocol by turning A

on and off.
For comparison, we define Vη(x) = Vosc(x) +

(h̄ωA2/2) exp(−2x2/x2
0 ) + (2ηh̄ωAx/x0) exp(−x2/x2

0 )
as a family of potentials parametrized by η. For η = 0, this
is V (1)(x), up to an energy offset, and for η = 1, Vη(x) is
V (2)(x). We will depict the interference contrast between
the potential for η = 0 and the potential for arbitrary η. For
η = 1 the response will be strongly peaked, demonstrating
the existence of supersymmetry. In Appendix C, the spectrum
of Vη(x) is shown as a function of η. The isospectral feature
at η = 1 is clearly visible.

III. INTERFEROMETRIC PROTOCOL

In the protocol, initially, we use A = 0 [see Fig. 2(b)].
The atom is prepared in the ground state χ0(x) =
(πx2

0 )
−1/4

exp[−x2/(2x2
0 )] (e.g., Ref. [22]) in one of the inter-

nal states. Then a coherent superposition in the interferometer
paths is created. Next, we displace the wave function in the
following example by x̄ = −5 x0 and apply B̂† to state 2.
As mentioned, B̂† reduces to

√
h̄ωâ† for A = 0. When we

apply â† to the shifted-ground-state wave function, we obtain
a superposition of a shifted ground state χ0(x) and a shifted
first excited state χ1(x) of the harmonic oscillator, that is,
ζ1χ1(x − x̄) + ζ0χ0(x − x̄). The amplitudes ζ0/1 depend on
x̄ and are ζ 2

0 = x̄2/(x̄2 + 2x2
0 ) and ζ 2

1 = 2x2
0/(x̄2 + 2x2

0 ). For
x̄ = −5 x0, this gives ζ 2

0 = 49/53 and ζ 2
1 = 4/53. Thus only a

small admixture of the excited state is necessary to implement
B̂† for x̄ � x0.

To create this admixture, we perform a shaking process
of the harmonic trap, i.e., V (2)(x,t) = Vosc[x − x(2)(t)] [see
Fig. 2(b)]. We choose x(2)(t) = δx sin(�t)τ (t), where δx is the
shaking amplitude; � is the shaking frequency, resonant with
the trap frequency � = ω; and a Gaussian envelope τ (t) =
exp[−(t − t0)2/(2σ 2

t )] with a pulse length σt . t0 is the pulse
time, which we choose to be well separated from turning on the
barrier potentials at t = 0, with t0 = −5σt . This perturbation
is of the form −F (t)x̂, with F (t) = mω2x(2)(t), ignoring an
overall energy shift. The x̂ operator is x̂ ∼ B̂† + B̂, which is
applied to the ground state, giving a small admixture of the
first excited state for a small driving term. In Appendix D we
discuss the optimal shaking parameters.
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FIG. 3. In (a) and (b) we show |ψ (1)(x)|2 and |ψ (2)(x)|2/N2,
respectively, and in (c) we show their difference. |ψ (2)(x)|2 was
normalized by N2 = (〈B̂B̂†〉2,t=0)1/2, after B̂† was applied at t = 0,
to obtain a probability distribution. In (d) we show the initial
densities, and in (e) we show those at time tr = 4.5 × 2π/ω. In (f) we
demonstrate that the two densities coincide after B̂† has been applied
to ψ (1)(x) and normalized by N1 = (〈B̂B̂†〉1,t=tr )

1/2.

Having applied B̂† to state 2 and shifted both states by
x̄, the resulting densities are shown in Fig. 3(d). The barrier
potentials are ramped up at t = 0. We use A = √

26 (see [23]).
Figures 3(a) and 3(b) show the evolution of the two densities.
These differ at any time, which is clearly visible by depicting
their difference [Fig. 3(c)], due to the different barriers and ini-
tial wave functions. We show |ψ (1)(x,tr)|2 and |ψ (2)(x,tr)|2/N2

in Fig. 3(e). If we apply B̂† to state 1, |B̂†ψ (1)(x,tr)|2/N1

and |ψ (2)(x,tr)|2/N2 coincide [see Fig. 3(f)], demonstrating
supersymmetric dynamics.

To implement B̂†, after A has been ramped down and
after time t1, we again perform a shaking pulse, x(1)(t) =
δx sin(�t)τ (t). ψ (1)(x,t1) is a superposition of oscillator states
that is controlled by the initial displacement x̄, which results
in n̄ ≈ x̄2/(2x2

0 ), where n̄ is the average occupation number.
In contrast to the first shaking process, now both B̂† and B̂ will
affect the wave function. Therefore the maximal overlap of the
desired and the implemented operator is approximately 1/

√
2.

This magnitude can indeed be achieved (see Fig. 4). The con-
tribution of B̂ to the interference contrast is oscillatory in time
and can be removed by time averaging. In Fig. 8 we show the
operator that is realized via the shaking process. For the desired
energy range, this gives satisfactory agreement with B̂†.

Finally, we bring the two paths to interference (see
Appendix E). The interference contrast is

C = 2|〈ψ (1)
f |ψ (2)

f,η〉|
〈ψ (1)

f |ψ (1)
f 〉 + 〈ψ (2)

f,η |ψ (2)
f,η〉

, (4)
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FIG. 4. In the top panels of (a), (b), and (c) we show the contrast as a function of tr and η. In (c), we interfere ψ (2)(t1) with ψ (1)(t1) after
the shaking pulse, by applying a π/2 pulse. For comparison, we show the contrast with B̂†ψ (1)(t1) and x̂ψ (1)(t1) in (a) and (b), respectively,
each properly normalized (compare with Fig. 3). The linear ramp-down time of A after tr is 3 × 2π/ω. In the bottom panels, the contrast has
been averaged over tr = 0, . . . ,10 × 2π/ω. The peaks at η = ±1 demonstrate supersymmetry.

where ψ
(1)
f and ψ

(2)
f,η are the states that emerge from the paths

[see Fig. 2(a)]. C is depicted in Fig. 4 as a function of tr
and η in the top panels. We compare the contrast for the
exact application of B̂†, the exact application of x̂, and the
shaking pulse. The latter reproduces the exact pattern well. The
lower three panels show the contrast averaged over the hold
time tr. The peaks at η = ±1 demonstrate supersymmetry, as
desired [24].

IV. SUPERSYMMETRY IN SYNTHETIC GAUGE FIELDS

The second realization of the SUSY algebra is the Pauli
equation

H = (px + Ax)2

2m
+ (py + Ay)2

2m
+ V (r) + h̄g

4m
Bzσz (5)

in two dimensions for V (r) = 0 and for g = 2. The super-
charge is Q† = −σ+[(py + Ay) + i(px + Ax)]/(

√
2m) (see

Refs. [3,25]). Thus, for this unique value of the gyromagnetic
ratio g, there exists an additional conserved quantity that mixes
orbital and spin motion in an arbitrary vector field A.

In Ref. [26] the synthetic gauge field Ax = By and Ay = 0,
with B > 0, was proposed and realized. This vector potential
gives Landau-level dynamics in each spin state described by
H = ωc(π2

x + π2
y − h̄σz)/2 = h̄ωc[a†a + (1 − σz)/2], where

we introduced πx,y = (px,y + Ax,y)/
√

B. For this linear vec-
tor potential, these are canonical variables, [πx,πy] = ih̄, so
we define a = (πx + iπy)/

√
2h̄, which are bosonic operators.

ωc = B/m is the cyclotron frequency. The cyclotron motion
is centered around R = (X,Y ), with X = x + πy/

√
B and

Y = y − πx/
√

B. For 〈X〉 = 〈Y 〉 = 0, the Landau levels are
(a†)nψ0 ∼ exp(inφ)ρn exp[−ρ2/(4ρ2

0 )], with n = 0,1,2, . . .,
ρ =

√
x2 + y2, and the magnetic length r0 = √

h̄/(mωc). The
ground state ψ0 is ψ0 ∼ exp[−ρ2/(4ρ2

0 )]. We note that these

are also the eigenstates of the two-dimensional harmonic os-
cillator, Hosc = p2/(2m) + mω2

cr2/2, with the same energies
h̄ωc(n + 1/2) and with the angular momentum lz = n.

We propose the following protocol to detect and realize
supersymmetry of this system. Initially, A is turned off, and a
harmonic potential Vosc(r) = mω2

cr2/2 is turned on, which we
again use as the trivially supersymmetric system. The atom
is prepared in the ground state ψ0 in the spin state ↑. A
π/2 pulse is applied, and the a† operator, operating on ↓,
is implemented by shaking the potential Vosc[r − r0(t)], while
the potential of ↑ is stationary. The circular shaking is given
by r0(t) = δ(x cos(�t),y sin(�t))τ (t), with a protocol similar
to that for the one-dimensional case, generating approximately
the transitions n→n + 1 and lz→lz + 1. Then the harmonic
potential is ramped down, and the gauge field is ramped
up. Remarkably, any gauge field supports supersymmetry.
Therefore an arbitrary A(r,t) can be used in the interferometric
paths, preserving 〈X〉 = 〈Y 〉 = 0, with the final states Ax =
By and Ay = 0 again. Then A is switched off, and the
harmonic potential is switched on. The circular shaking
process is applied to the state ↑, and a π/2 pulse is used to
bring the paths to interference. To detune the system away from
supersymmetry, either a potential V (r) �= 0 can be applied, or g

can be tuned as g = 2η. Then, a peak at η = ±1 demonstrates
supersymmetry.

V. CONCLUSIONS

In this paper we have demonstrated an interferometric
method to realize and detect supersymmetric dynamics in
ultracold-atom systems, realizable with current technology.
To illustrate this general interferometric method, we have
presented two examples which both realize a supersym-
metric algebra with one supercharge. The first consists of
one-dimensional motion in a pair of potentials; the second
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consists of two-dimensional motion of an atom in a synthetic
gauge field. We have given a detailed description of the
experimental sequence, including a beam-splitter step, the
application of the supercharge operator, and the constraints
on the Hamiltonians of the two subsystems. We used the
first example to demonstrate that this protocol gives a sharp
interference peak if the system is supersymmetric.

From a practical perspective, an intriguing application is a
case in which a supersymmetric partner of a desired system
is technically easier to realize than the original system, such
as the box potential for which we show its supersymmetric
partner in Fig. 6(c). Instead of the technically more challenging
box potential, the supersymmetric mapping on its isospectral
partner potential can be implemented by first applying B̂†,
letting the system evolve under its smooth and experimentally
feasible partner system, and then applying B̂, which gives a
state identical to the one that emerges under time evolution of
the original system.

More conceptually, the existence of conserved supercharges
and the supersymmetric algebraic structure provide a fresh
perspective on dynamics in synthetic gauge fields. Finally,
these concepts could potentially be used to test extensions
of the Atiyah-Singer index theorem on manifolds with open
boundaries by creating gauge fields that constrain the motion
of a particle to a nontrivial topological subset of the two-
dimensional plane.
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APPENDIX A: BROKEN AND UNBROKEN
SUPERSYMMETRY

For a pair of supersymmetric Hamiltonians with unbroken
supersymmetry, there exists a zero-energy state ψ

(2)
0 in the

system described by the Hamiltonian Ĥ (2) = B̂†B̂, which
is annihilated by the operator B̂, i.e., B̂ψ

(2)
0 = 0. It can

be expressed in terms of the superpotential W (x), that is,
ψ

(2)
0 ∼ exp [

√
m�(x)/h̄], with �(x) = ∫ x

W (u)du. For the
wave function ψ

(2)
0 (x) to be normalizable, it has to fall off

to zero for |x| → ∞. Therefore, the superpotential must fulfill
W (x → ±∞) = ±∞. An example for unbroken supersym-
metry is the one-dimensional case presented in this paper, with
the zero-energy state of Ĥ (2) visible on the right in Fig. 1(a).

For supersymmetric Hamiltonians with broken supersym-
metry, no zero-energy state exists. All eigenstates have a
partner state. To give an example for broken supersymmetry,
we choose the superpotential as follows:

W (x) =
√

2h̄ω

[
x2

x2
1

+ c tanh

(
x

x2

)]
, (A1)

where x1 and x2 are characteristic length scales and c is a
dimensionless constant. Note that W (x → ±∞) = ∞, which
breaks the supersymmetry. Furthermore, W (x) �= W (−x) to
avoid the trivial case of V (1)(x) = V (2)(−x). The supersym-

Ĥ(1) = B̂B̂† Ĥ(2) = B̂†B̂

B̂†

B̂

FIG. 5. Example of a pair of potentials with broken supersymme-
try [see Eq. (A2)], with x1 = 2, x2 = 1/2, and c = 2. Ĥ (2) does not
have an additional zero-energy state; all states have a partner state.

metric potentials are then given by

V (x)(1/2) = h̄ω

{[
x2

x2
1

+ c tanh

(
x

x2

)]2

±
√

h̄

2mω

[
2x

x2
1

+ c

x2
sech2

(
x

x2

)]}
, (A2)

where the upper sign is for V (1) and the lower sign is for
V (2). We show an example of this family of supersymmetric
potentials in Fig. 5.

APPENDIX B: NONHARMONIC CONFINING
POTENTIALS

In our main example for supersymmetric quantum me-
chanics in one dimension, we considered a linear term in the
superpotential and thus harmonic confinement in the potentials
V (1) and V (2). This linear term by itself gives the potentials
V (1) = Vosc and V (2) = Vosc + h̄ω, which are supersymmetric
partners. Here, we give two examples in which these potentials
have a confining potential that is not harmonic in addition to
the example in the previous section.

As a first example, we consider a superpotential of the form
W (x) = cxn, where c is a constant and n is a positive integer.
The potentials are V (1/2)(x) = c2x2n ∓ cnxn−1 and approach
each other asymptotically in the limit x → ∞. If n is even, the
isospectral character of the supersymmetric partners is trivial
since V (1)(x) = V (2)(−x). If n is odd, one of the potentials,
depending on the sign of c, has a double-well structure with a
local maximum at x = 0 while the other has a single minimum
at x = 0. We show examples for n = 2 and n = 3 in Figs. 6(a)
and 6(b).

As a second example we consider the box potential
V (1)(x) = −π2 for 0 < x < 1 and infinity otherwise. The
supersymmetric partner is V (2)(x) = π2[2 sin−2 (πx) − 1] for
0 < x < 1, softening the singularities at the edges of the box
[see Fig. 6(c)].

APPENDIX C: SPECTRUM OF THE POTENTIAL Vη(x)

We determine the spectra of Vη(x) as a function of η

and compare them to the spectrum of Vη=0(x) + h̄ω (see
Fig. 7). The spectra of Vη=1(x) = V (2)(x) and Vη=0(x) +
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FIG. 6. Examples of nonharmonic supersymmetric confining
potentials. (a) V (1/2)(x) = 0.01x4 ∓ 0.2x. (b) V (1/2)(x) = 0.01x6 ∓
0.3x2. (c) Box potential V (1) and V (2) = π 2[2 sin−2 (πx) − 1].

h̄ω = V (1)(x) coincide, except for an additional ground state,
indicating the unbroken supersymmetric relation at this point.

APPENDIX D: OPTIMAL SHAKING PARAMETERS

We approximate the operator B̂† with a shaking process
(see Fig. 2) of the harmonic potential of the form V (x,t) =
Vosc[x + x(t)], where x(t) = δx sin (�t + φ)τ (t), with the
shaking amplitude δx , the carrier frequency of the shaking
�, and the phase of the driving φ. We fix the carrier frequency
to � = ω to be on resonance. We use a Gaussian envelope
τ (t) = exp [−(t − t0)2/(2σ 2

t )] of width σt , where t0 = −5σt

is the center of the pulse driving from t = −10σt to 0.
Based on a path-integral ansatz for the forced harmonic

oscillator [27], we have analytic access to the transition matrix
elements in the Fock basis, Tmn = 〈m|Û (t)|n〉 [see Fig. 8(a)].
In particular, the transition amplitude from the ground state

0
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FIG. 7. Spectrum of Vη(x) as a function of η (solid gray curves)
compared to the spectrum of the reference V (1)(x) (dashed blue
curves). The positions of the reference (η = 0), its supersymmetric
partner (η = 1), and an arbitrary nonsupersymmetric case (η = 2) are
marked. The crossing of the dashed blue curves with the gray curves
at η = 1 indicates supersymmetry.

FIG. 8. (a) Matrix elements in the Fock basis of the shaking
process V (x,t) = Vosc[x + x(t)] using the optimal shaking param-
eters in the first path, δxσt = 0.0470 x0 × 2π/ω, and φ = 0.06π .
Inset: Matrix elements of the harmonic creation operator B̂† =√

n + 1|n + 1〉〈n|. (b) Fourier coefficients of a typical desired state,
cn = 〈n|ψ (1)(t)〉, in amplitude and phase. Within the corresponding
energy range, we find satisfactory agreement of the two operators
shown in (a).

χ0(x) to any state χm(x) is given by

Tm0 = T00√
m!

(
iC∗)m

, (D1)

where

C =
√

2

π

ω

x0

∫ T

0
x(t)dt ≈ −i

ω

x0
δxσte

iφ (D2)

for 2ω2σ 2
t � 1 and t0 � √

2σt . Note that this result depends
only on the product δxσt and the phase φ.

We apply a shaking process x(2)(t) in the second path,
starting from the ground state χ0(x), to create a superposition
of the ground state and the first excited state, ζ0χ0(x) +
ζ1χ1(x). To create this superposition we demand that T00 = ζ0

and T10 ≈ ζ1. Since ζ 2
0 = x̄2/(x̄2 + 2x2

0 ), as given in the
main text, is close to unity for x̄/x0 � 1, we expect the
transition probabilities to higher excited states with m > 1
to be negligible.

The shaking process conserves the norm,
∑∞

m=0 |Tm0|2 = 1,

so it follows that |C| =
√

ln |T00|−2. Using the assumption
T00 = ζ0 and Eq. (D2), we find the correct shaking amplitude,
that is,

δxσt =
√

ln |ζ0|−2 =
√

ln

(
1 + 2

x2
0

x̄2

)
x0

ω
. (D3)

All other matrix elements are now given by Eq. (D1), in
particular,

T10 = iT00C
∗ = − 1√

2
ζ0δxσte

−iφ. (D4)

Since we aim at T10 = ζ1 � 0, where ζ1 is real, this relation
sets the correct amplitude relation to be φ = π . We estimate
the error ε of our ansatz by the sum of all higher excitation
amplitudes, that is, ε = 1 − |T00|2 − |T10|2 ≈ 2x4

0/x̄4.
With our choice of x̄ = −5 x0 the theoretical amplitude

is δxσt = 0.0442 x0 × 2π/ω, which is in excellent agreement
with our numerical optimized result δxσt = 0.046 x0 × 2π/ω.
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FIG. 9. Interference pattern I2D(x,y) for a hold time tr = 4 ×
2π/ω (color plot). Parallel interference fringes in the x direction
indicate supersymmetry in the two paths. White dashed lines serve as
guides to the eye. Integrating over the x axis gives a one-dimensional
interference pattern I1D(y), from which we obtain its contrast.
(a) η = 0 corresponds to identical potentials in both paths.
(b) η = 1 is the supersymmetric case. (c) and (d) η = 2,3 show
nonsupersymmetric cases.

The phase can be reproduced numerically exactly, φ = 1.00π .
The error estimate of the ansatz is ε = 3.2 × 10−3.

In the second step, we apply a shaking process in the first
path x(1)(t) to an unknown state ψ (1)(t1). Numerically, we
find the optimal amplitude relation to be δxσt = 0.0470 x0 ×
2π/ω. The numerical phase is φ = 0.06π , while the phase
dependency is weakened compared to the first case. In Fig. 8
we compare the matrix elements Tmn using these optimal
shaking parameters with the operator B̂† at an energy range of
a typical desired wave function.

APPENDIX E: INTERFERENCE PATTERN
AND CONTRAST

For a realization with two spatially separated systems, the
confining potentials are turned off to realize the second beam
splitter. The two states, ψ

(1)
f and ψ

(2)
f,η , expand rapidly in the

y direction and form a two-dimensional interference pattern
I2D(x,y) with interference fringes along the x axis [17,28–30]
(see Fig. 9). The envelope of the pattern will depend on x and
reflects the spatial density of the states in this direction. In
the case of supersymmetry, the output states are equal up to a
relative phase, ψ (1)

f (x) ∼ ψ
(2)
f,η(x), and the fringes are perfectly

parallel to the x axis.
We evaluate the two-dimensional interference pattern

I2D(x,y) by integrating it over the full x axis, that is,

I1D(y) = 〈ψ (1)
f |ψ (1)

f 〉 + 〈ψ (2)
f,η |ψ (2)

f,η〉
+2

∣∣〈ψ (1)
f |ψ (2)

f,η〉
∣∣ cos ξ (y), (E1)

where we use the shorthand notation 〈·|·〉 = ∫
R | · |2dx. The

phase ξ (y) is the argument of 〈ψ (1)
f |ψ (2)

f,η〉 and a linear function
in y. The result I1D(y) is a one-dimensional interference
pattern. For long enough expansion times, we can assume
all terms 〈·|·〉 to be independent of y.

The contrast C of I1D(y) is defined by the maximum, max =
〈ψ (1)

f |ψ (1)
f 〉 + 〈ψ (2)

f,η |ψ (2)
f,η〉 + 2|〈ψ (1)

f |ψ (2)
f,η〉|, and the minimum,

min = 〈ψ (1)
f |ψ (1)

f 〉 + 〈ψ (2)
f,η |ψ (2)

f,η〉 − 2|〈ψ (1)
f |ψ (2)

f,η〉|, in the fol-
lowing manner:

C = max − min

max + min
= 2

∣∣〈ψ (1)
f |ψ (2)

f,η〉
∣∣

〈ψ (1)
f |ψ (1)

f 〉 + 〈ψ (2)
f,η |ψ (2)

f,η〉
. (E2)

The contrast is 1 if the two states are equal up to a relative
phase. This holds for supersymmetric partner potentials for
any initial state ψi and any time t1. Otherwise, the contrast is
smaller than 1 and is determined by fluctuating correlations
also in nonsupersymmetric cases, resulting in a residual
contrast.

In the numerical simulations, we do not consider the
expansion in the y direction. Instead, we directly evaluate the
second expression of Eq. (E2).

APPENDIX F: ON THE DISPLACEMENT x̄

In our proposal we initialize the system by displacing the
ground state of the harmonic confinement by x̄. On the one
hand, a large displacement improves the initialization process
in the second path of the interferometer [see Fig. 2(b)]. On the
other hand, the correct potential shape, including harmonic
confinement and localized central barrier, has to be ensured
to energies of the order of h̄ω(x̄/x0)2/2 ∝ x̄2, which might
constitute an experimental challenge that limits how large x̄

can be chosen. In this paper, we choose x̄ = −5 x0 in our
main example, which displays the desired effect. We have
considered other values such as x̄ = −3 x0. Here, the contrast
after the shaking pulse as depicted in Fig. 4(c) gives lower
peaks at η = ±1 while the residual contrast away from η = ±1
is increased.
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