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We investigate systems of interacting bosonic particles confined within slablike boxes of size L2 × Z with
Z � L, at their three-dimensional (3D) Bose-Einstein-condensation (BEC) transition temperature Tc, and below
Tc where they experience a quasi-two-dimensional (quasi-2D) Berezinskii-Kosterlitz-Thouless (BKT) transition
(at TBKT < Tc depending on the thickness Z). The low-temperature phase below TBKT shows quasi-long-range
order: the planar correlations decay algebraically as predicted by the 2D spin-wave theory. This dimensional
crossover, from a 3D behavior for T � Tc to a quasi-2D critical behavior for T � TBKT, can be described by a
transverse finite-size scaling limit in a slab geometry. Numerical evidence of the 3D → 2D dimensional crossover
is presented for the Bose-Hubbard model defined in anisotropic L2 × Z lattices with Z � L. We extend this
scaling analysis to the case the slab geometry of the gas is effectively realized by a transverse (inhomogeneous)
harmonic trap. Finally, we discuss off-equilibrium behaviors arising from slow time variations of the temperature
across the BEC transition of gases confined within a slab geometry. We argue that the system develops an
off-equilibrium transverse finite-size scaling under these time-dependent protocols.
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I. INTRODUCTION

The Bose-Einstein condensation (BEC) characterizes the
low-temperature behavior of three-dimensional (3D) bosonic
gases, below a finite-temperature BEC phase transition sep-
arating the high-temperature normal phase and the low-
temperature superfluid BEC phase. The phase coherence
properties of the BEC phase have been observed by several
experiments (see, e.g., Refs. [1–10]). Several theoretical and
experimental studies have also investigated the critical proper-
ties at the BEC transition, when the condensate begins forming
(see, e.g., Refs. [11–33]). Both the phase-coherence properties
of the BEC phase and the critical behavior at the BEC transition
turn out to be particularly sensitive to the inhomogeneous
conditions arising from the presence of spatially dependent
confining potentials, and/or the geometry of the atomic-gas
system. Inhomogeneous conditions due to space-dependent
trapping potentials give rise to a universal distortion of the
homogeneous critical behavior, which can be cast in terms of
a universal trap-size scaling [14,26] controlled by the same
universality class of the 3D BEC transition. In the case of
homogeneous traps, such as those experimentally realized
in Refs. [28,30,31,33], the geometry of the trap may lead
to quite different phase-coherence properties, when passing
from 3D to quasi-two-dimensional (quasi-2D) or quasi-one-
dimensional (quasi-1D) systems. For example, atomic gases
in elongated homogeneous boxes [34] and harmonic traps
[6,7,35–38] show a spatial dimensional crossover from a
high-temperature 3D behavior to a low-temperature quasi-1D
behavior.

In this paper, we consider bosonic particle systems confined
within a slablike geometry, i.e., within boxes of size L2 × Z

with Z � L. We investigate their behavior at the BEC
transition temperature Tc (this is the critical temperature of
the 3D system in the thermodynamic limit, i.e., when all
system sizes tend to infinity) and at lower temperatures.
Their low-temperature behavior (T < Tc) is further charac-
terized by the possibility of undergoing a finite-temperature

transition to a quasi-long-range-order (QLRO) phase, with
long-range planar correlations which decay algebraically.
This is the well-known Berezinskii-Kosterlitz-Thouless (BKT)
transition [39–42], which occurs in 2D systems with a
global U(1) symmetry. Experimental evidences of BKT tran-
sitions have been also reported for quasi-2D trapped atomic
gases [43–49].

The behavior of homogeneous gases confined within a
slab geometry shows dimensional crossover (DC) from a
3D behavior for T � Tc to a quasi-2D critical behavior for
T � TBKT. In the limit of large thickness Z, the quasi-
2D BKT transition temperature approaches that of the 3D
BEC transition, i.e., TBKT → T −

c for Z → ∞ (assuming the
thermodynamic limit for the planar directions, i.e., L � Z).
The interplay of the BEC and BKT critical modes gives rise
to a quite complex behavior. We show that it can be described
by a transverse finite-size scaling (TFSS) limit for systems
confined within a slab geometry [50,51], i.e., Z → ∞ and
T → Tc keeping the product (T − Tc)Z1/ν fixed, where ν is
the correlation-length exponent at the 3D BEC transition. In
this TFSS limit, the BKT transition below Tc appears as an
essential singularity of the TFSS functions.

The DC scenario is expected to apply to any quantum gas
of interacting bosonic particles confined in boxes or lattice
structures with a slab geometry. The DC scenario is supported
by a numerical study of the Bose-Hubbard (BH) model [52],
which models bosonic atoms in optical lattices [10,53]. We
show that the predictions of the 3D → 2D DC are realized
when considering anisotropic slablike lattices L2 × Z with
Z � L.

We mention that DC phenomena have been also investi-
gated in 4He systems in film geometries [54], and 3D XY

spin models defined in slablike lattices [55–58], whose phase
transitions belong to the same universality class of the BEC
transition.

The DC scenario also arises when the slab geometry is real-
ized by trapping the particles by an external (inhomogeneous)
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harmonic potential. The corresponding scaling behaviors can
be inferred using the trap-size scaling framework [14,26].

We also extend the discussion to the off-equilibrium behav-
ior arising from slow time variations of the temperature across
the BEC transition. The behavior of weakly interacting atomic
gas confined in quasi-2D geometries has been experimentally
investigated under time-dependent protocols across the BEC
regime (see, e.g., Refs. [31,33]) to verify the Kibble-Zurek
mechanism of defect production [59,60]. In gases confined
within a slab geometry, the off-equilibrium behavior arising
from the slow variation of the temperature across the BEC tran-
sition point is made particularly complex by the presence of
the quasi-2D BKT transition at TBKT � Tc. Thus, disentangling
the behaviors corresponding to 3D BEC and quasi-2D BKT
transitions may be quite hard in experimental or numerical
analyses. To describe this complex behavior, we put forward an
off-equilibrium TFSS framework for bosonic gases confined
within slablike homogeneous traps.

The paper is organized as follows. In Sec. II, we introduce
the BH model that we use as a paradigmatic model of Bose
gases showing the DC phenomenon when confined within
a slab geometry; we also define the observables that we
consider in the rest of the paper. In Sec. III, we present
the general features of the DC of Bose gases confined in
a slab geometry, exploiting the framework provided by the
TFSS theory. In Sec. IV, we present a numerical study of
the DC scaling behavior in 3D BH models. In Sec. V, we
discuss the new features arising when the confinement of the
particles along the transverse direction is due to a harmonic
trap. In Sec. VI, we study the off-equilibrium behavior arising
from slow time variations of the temperature across the BEC
transition, and put forward the corresponding off-equilibrium
scaling ansatz. Finally, we summarize our results in Sec. VII.
We also add a few appendices. Appendix A reports some exact
spin-wave results for the phase-coherence correlations within
the low-temperature phase of quasi-2D bosonic systems. In
Appendix B we discuss the critical behavior arising at the
boundary of the BEC region in Bose gases trapped by a
transverse harmonic potential.

II. BOSE-HUBBARD MODEL IN A SLAB GEOMETRY

Lattice BH models [52] are interesting examples of inter-
acting Bose gases undergoing BEC transitions. They provide
realistic models of gases of bosonic atoms in optical lattices
[53]. In the following discussions, we use the BH model as
a paradigmatic model of Bose gases showing DC in a slab
geometry.

The Hamiltonian of BH models reads as

HBH = −t
∑
〈ij〉

(b†i bj + b
†
j bi)

+ U

2

∑
i

ni(ni − 1) − μ
∑

i

ni , (1)

where bi is a bosonic operator, ni ≡ b
†
i bi is the particle density

operator, the sums run over the bonds 〈ij 〉 and the sites i of a
cubic L1 × L2 × L3 lattice, a = 1 is the lattice spacing (thus
lengths are expressed in units of a). The phase coherence

FIG. 1. Sketch of the T -μ (in units of the hopping parameter t)
phase diagram of the 3D BH model in the hard-core U → ∞ limit.
The BEC phase is restricted to a finite region between μ = −6 and 6.
It is bounded by a BEC transition line Tc(μ), which satisfies Tc(μ) =
Tc(−μ) due to a particle-hole symmetry. Its maximum occurs at
μ = 0, where [27,29] Tc(μ = 0) = 2.01599(5); we also know that
[26] Tc(μ ± 4) = 1.4820(2). At T = 0, two further quantum phases
exist: the vacuum phase (μ < −6) and the incompressible n = 1 Mott
phase (μ > 6). Since we set t = 1 for the hopping parameter of the
BH model (1), T and μ are expressed in units of t .

properties can be inferred from the one-particle correlation
function

G(r1,r2) ≡ Tr b
†
r1br2e

−HBH/T

Tr e−HBH/T
. (2)

We set the hopping parameter t = 1, so that all energies are
expressed in units of t , and the Planck constant h̄ = 1.

The phase diagram of 3D BH models and their crit-
ical behaviors have been much investigated (see, e.g.,
Refs. [25–27,29,52,61]). Their T -μ phase diagram presents
a finite-temperature BEC transition line. This is characterized
by the accumulation of a macroscopic number of atoms in
a single quantum state, which gives rise to a phase-coherent
condensate. See, for example, Fig. 1, which shows a sketch of
the phase diagram of 3D BH models in the hard-core U → ∞
limit, where the occupation site number is limited to the cases
n = 0, 1. The condensate wave function provides the complex
order parameter of the BEC transition, whose critical behavior
belongs to the U(1)-symmetric XY universality class. This
implies that the length scale ξ of the critical modes diverges at
Tc as [62–68]

ξ ∼ (T − Tc)−ν, ν = 0.6717(1). (3)

This has been accurately verified by numerical studies (see,
e.g., Refs. [25–27,29]). The BEC phase extends below the BEC
transition line. In particular, in the hard-core limit U → ∞ and
for μ = 0 (corresponding to half-filling), the BEC transition
occurs at [27,29] Tc = 2.01599(5).

We consider BH lattice gases in anisotropic slablike ge-
ometries, i.e., L2 × Z lattices with Z � L. We consider open
boundary conditions (OBC) along the transverse Z direction;
we label the corresponding coordinate as −(Z − 1)/2 � z �
(Z − 1)/2, so that the innermost plane is the z = 0 plane
(see Fig. 2). This choice is motivated by the fact that OBC
corresponds to gas systems trapped by hard walls, such as
the experimental systems of Refs. [28,30,31,33]. Since the
thickness Z of the slab is generally considered as much smaller
than the size L of the planar directions, and in most cases
we consider the 2D thermodynamic L → ∞ limit keeping
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FIG. 2. Sketch of the L2 × Z slab geometry with L � Z. The
figure shows a slice of the lattice system on the x-z plane (the
y direction runs orthogonal to the x-z plane, along which the system
extends analogously to the x direction). The blobs indicate the lattice
sites whose integer coordinates are limited by 1 � x,y � L and
−(Z − 1)/2 � z � (Z − 1)/2. The one-particle correlation function
g(x) [cf. Eq. (4)] and the corresponding correlation length ξ [cf.
Eq. (6)] are defined along the z = 0 plane.

Z fixed, the boundary conditions along the planar directions
are generally irrelevant for our study around Tc. However,
they become relevant at the BKT transition where the planar
correlation length diverges. In the following, we consider the
most convenient periodic boundary conditions (PBC) along the
large planar dimensions; the corresponding site coordinates are
x = (x1,x2) with x1,2 = 1, . . . ,L.

We want to understand how the phase diagram and critical
behavior change when varying the thickness Z. As we shall
argue, BH systems below Tc are expected to develop quasi-2D
critical modes, leading to a BKT transition with a diverging
planar correlation length, and a low-temperature QLRO phase.

To study this phenomenon, and in particular how the
Z → ∞ limit eventually realizes the 3D critical behavior at Tc,
we focus on the behavior of the correlation function (2) along
the planar directions. In particular, for simplicity reasons, we
study the correlation function between points belonging to the
central z = 0 plane, i.e.,

g(x1 − x2) ≡ G[(x1,0),(x2,0)], (4)

where we have taken into account the invariance of the system
for translations along the x̂ and ŷ directions. In particular, we
consider the corresponding planar susceptibility

χ =
∑

x

g(x), (5)

where the sum is over the sites x of the central plane, and
planar second-moment correlation length ξ

ξ 2 = 1

4χ

∑
x

x2g(x). (6)

More precisely, since we consider PBC along the planar
directions, we use the equivalent definition

ξ 2 ≡ 1

4 sin2(π/L)

g̃(0) − g̃( p)

g̃( p)
, (7)

where g̃( p) is the 2D Fourier transform of g(x), and p =
(2π/L,0).

The helicity modulus ϒ is a measure of the response of
the system to a phase-twisting field along one of the lattice
directions [69]. In the case of bosonic systems, it is related

to the superfluid density [34,69,70]. We consider the helicity
modulus along the planar directions x̂ and ŷ, i.e.,

ϒa ≡ 1

Z

∂2F (φa)

∂φ2
a

∣∣∣∣
φa=0

≡ T

Z
Ya, (8)

where F = −T ln Z is the free energy, φa are twist angles
along one of the planar directions. Note that Y1 = Y2 by
symmetry for L2 × Z systems.

As we shall see, the quantities

Y ≡ Ya, RL ≡ ξ/L (9)

are particularly useful to check the effective spin-wave
behavior along the planar directions for T � TBKT < Tc.

III. DIMENSIONAL CROSSOVER OF BOSE GASES
IN A SLAB GEOMETRY

A. Phase diagram for a finite thickness Z

The 3D scenario sketched in Fig. 1 substantially changes
if we consider a quasi-2D thermodynamic limit, i.e., L → ∞
keeping Z fixed. Indeed, the length scale ξ remains finite at
the BEC transition point when Z is kept fixed. Of course, the
full 3D critical behavior must be somehow recovered when
Z → ∞, for which one expects ξ (Z) ∼ Z. More precisely,
defining

RZ = limL→∞ ξ/Z, (10)

standard FSS arguments [50,51] predict that at the 3D critical
point Tc

RZ(Tc) = R∗
Z + O(Z−ω), (11)

where R∗
Z is a universal constant and ω = 0.785(20) is the

scaling-correction exponent associated with the leading irrel-
evant perturbation at the XY fixed point [62,64,66]. Note that
the universal constant R∗

Z depends on the boundary conditions
along the transverse direction (the boundary conditions along
the planar directions are irrelevant since we assume L � Z

and ξ ∼ Z).
However, we should also take into account that 2D or

quasi-2D systems with a global U(1) symmetry may undergo
a finite-temperature transition described by the BKT theory
[39–42]. The BKT transition separates a high-temperature
normal phase and a low-temperature phase characterized
by QLRO, where correlations decay algebraically at large
distances, without the emergence of a nonvanishing order
parameter [71,72]. When approaching the BKT transition
point TBKT from the high-temperature normal phase, these
systems develop an exponentially divergent correlation length:

ξ ∼ exp(c/
√

τ ), τ ≡ T/TBKT − 1, (12)

where c is a nonuniversal constant. The magnetic susceptibility
diverges as χ ∼ ξ 7/4, corresponding to the critical exponent
η = 1

4 controlling the critical behavior of the two-point
correlation function at the BKT transition [73].

Consistently with the above picture, 2D BH systems
[corresponding to the Hamiltonian (1) with Z = 1] undergo
a BKT transition. Figure 3 shows a sketch of the phase
diagram of 2D BH systems in the hard-core U → ∞ limit.
The finite-temperature BKT transition of BH models has
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FIG. 3. Sketch of the phase diagram of the 2D BH model in the
hard-core U → ∞ limit. The normal and superfluid QLRO phases
are separated by a finite-temperature BKT transition line, which
satisfies TBKT(μ) = TBKT(−μ) due to a particle-hole symmetry. Its
maximum occurs at μ = 0, where [73] TBKT(μ = 0) = 0.6877(2).
The superfluid QLRO phase is restricted to a finite region between
μ = −4 and 4, which is narrower than that of the 3D phase diagram
(see Fig. 1). Since we set t = 1 for the hopping parameter of the BH
model, T and μ are expressed in units of t .

been numerically investigated by several studies (see, e.g.,
Refs. [25,73–76]). In particular, TBKT = 0.6877(2) in the
hard-core U → ∞ limit and for μ = 0 [73]. Note that the
2D BH systems do not show a real BEC below the critical
temperature TBKT, but QLRO where the phase-coherence
correlations decay algebraically.

The phase diagram of quasi-2D systems with finite thick-
ness Z > 1 is expected to be analogous to that of 2D BH
systems, with a BKT transition at TBKT depending on the
thickness Z. Analogously to 2D systems, they are expected
to show a QLRO phase below TBKT, where correlation
functions show power-law decays along the planar directions,
as described by the 2D spin-wave theory. In Appendix A,
we summarize some exact results which are expected to
characterize the low-temperature QLRO phase of quasi-2D
interacting bosonic gases up to the BKT transition.

B. Dimensional crossover limit

The above scenario can be interpreted as a dimensional
crossover (DC) from a 3D behavior when T � Tc, and ξ is
finite (in particular the anisotropy of the system is not locally
relevant when ξ � Z), to an effective 2D critical behavior at
T � TBKT(Z) where the planar correlation length ξ diverges.

Such a DC can be described by an appropriate transverse
finite-size scaling (TFSS) limit, defined as δ ≡ 1 − T/Tc → 0
and Z → ∞, keeping δZ1/ν fixed. In this TFSS limit [50,51]

RZ ≡ ξ/Z ≈ R(X), X = Z1/νδ, (13)

where R(X) is a universal function (apart from a trivial
normalization of the argument X), but depending on the
boundary conditions along the Z direction. Scaling corrections
are suppressed as Z−ω, analogously to Eq. (11).

In this TFSS framework, the BKT transition is expected to
appear as an essential singularity of the scaling functionR(X):

R(X) ∼ exp

(
b√

XBKT − X

)
for X → X−

BKT, (14)

where XBKT is the value of the scaling variable X correspond-
ing to the BKT transition point

δBKT(Z) ≡ Tc − TBKT(Z)

Tc

, (15)

i.e.,

XBKT = limZ→∞Z1/νδBKT(Z) > 0. (16)

The constant b in Eq. (14) is a nonuniversal constant depending
on the normalization of the scaling variable X. R(X) is not
defined for X � XBKT. Note that the above scaling equations
predict that

δBKT(Z) ∼ Z−1/ν (17)

in the large-Z limit (see also Refs. [77–79] for analogous
considerations applied to other physical systems).

The TFSS of the planar two-point function (4) is given by

g(x,Z) ≈ Z−(1+η)G(x/Z,X), (18)

where η = 0.0381(2) is the critical exponent of the 3D XY

universality class [64], associated with the power-law decay
of the two-point function at Tc. Equation (18) also implies that
the planar susceptibility defined as in Eq. (5) behaves as

χ ≈ Z1−ηC(X). (19)

It is important to note that the above features are shared with
any quasi-2D system with a global U(1) symmetry, and in
particular standard O(2)-symmetric spin models. Numerical
analyses of DC issues for the XY model are reported in
Refs. [55–58].

IV. NUMERICAL RESULTS FOR THE BH MODEL

In order to check the DC scenario discussed in the previous
section, we present a numerical study of the equilibrium
properties of the BH model (1) in the hard-core U → ∞
limit and at zero chemical potential μ = 0, corresponding to
half-filling, i.e., 〈nr〉 = 1

2 for any T . In the hard-core limit and
for μ = 0, the 3D BEC transition occurs at Tc = 2.01599(5)
and the 2D BKT transition at TBKT = 0.6877(2).

Numerical results are obtained by quantum Monte Carlo
(QMC) simulations using the directed operator-loop algorithm
[80–82]. As already mentioned in Sec. II, we consider a
slab geometry, i.e., L2 × Z lattices with Z � L, with OBC
along the transverse directions, and PBC along the planar
directions. We present numerical results for some values of the
thickness Z, in particular, Z = 5, 9, 13, various planar sizes
up to L ≈ 100, and several values of the temperature T � Tc.
The maximum size Z of our numerical study is limited by the
fact that the computational effort of QMC rapidly increases
because they also require larger values of the planar sizes.

We compute the observables defined in Sec. II. In QMC
simulations, the helicity modulus is obtained from the linear
winding number Wa along the ath direction, i.e.,

Y ≡ Ya = 〈
W 2

a

〉
, Wa = N+

a − N−
a

L
, (20)

where N+
a and N−

a are the numbers of nondiagonal operators
which move the particles, respectively, in the positive and
negative ath direction.
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Figure 4 shows data for the planar second-moment correla-
tion length ξ defined in Eq. (7), for Z = 5, 9, 13, and T � Tc.
We observe that ξ is small for T > Tc, and apparently L and
Z independent (for sufficiently large L and Z), indicating that
it remains finite in the large-L and large-Z limits. Around
Tc the data of ξ appear to converge to a finite value when
increasing L at fixed Z; however, they show that ξ increases
with increasing Z, approximately as ξ ∼ Z at Tc. Then, for
sufficiently small values of T , the data begin showing a
significant dependence on L. At low temperature we observe
ξ ∼ L at fixed T , suggesting that ξ diverges with increasing
L even when keeping Z fixed. In the following, we show that
this apparently complicated behavior can be explained by the
DC scenario put forward in the previous section.

To begin with, we investigate the nature of the low-
temperature behavior where the planar correlation length ξ

appears to diverge with increasing L. At low temperature, BH
systems for any thickness Z should show a quasi-2D QLRO
phase, whose behavior is essentially described by the 2D
spin-wave theory (see in particular Appendix A). As discussed
in Appendix A 1, this implies universal relations among the
ratio RL ≡ ξ/L, the quasi-2D helicity modulus Y , and the
exponent η characterizing the planar two-point correlation
function. In Fig. 5 we plot data of RL versus those of Y ,
comparing them with the universal curve RL(Y) which can
be easily obtained from the spin-wave results reported in
Appendix A 1. This curve ends at the BKT point (Y ∗,R∗

L) =
(0.6365 . . . ,0.7506 . . .). For sufficiently small T , depending
on the value of Z, the data approach the universal spin-wave
curve RL(Y) with increasing L. Extrapolations using the
expected power-law corrections [cf. Eqs. (A9) and (A10)]
turn out to be consistent with the exact spin-wave results.
Therefore, the numerical results nicely support the existence
of a QLRO phase for any Z, with the expected universal
spin-wave behaviors.

We also note that above a given temperature, depending
on the thickness Z, the data do not approach the spin-wave
curve RL(Y) anymore, as it is expected to occur for T > TBKT

where both RL and Y vanish in the large-L limit. Therefore, the
data of Fig. 5 allow us to approximately locate TBKT between
the temperature values of the data closest to the BKT point
(Y ∗,R∗

L) which respectively approach the spin-wave curve
and deviate from it. We already note that TBKT increases
with increasing Z. This can be also inferred from the data
of the helicity modulus Y versus the temperature (see Fig. 6).
They are generally decreasing, and for sufficiently large T they
appear to cross the value Y = Y ∗ ≈ 0.6365 corresponding to
the BKT transition, indicating that those values of T are larger
than TBKT.

More accurate estimates of TBKT can be obtained by looking
for the optimal values of T achieving the matching of the
available data of Y and RL with the finite-size dependence of
the 2D XY model at its BKT transition (see Appendix A 2).
In particular, TBKT(Z) is determined by the value of T

providing the optimal matching of the data of Y (Z,L,T )
with the finite-size dependence of the helicity modulus of the
2D XY model, i.e.,

Y (Z,L,T ) = ỸXY [λ(Z)L] + O(L−2), (21)

1.7 1.8 1.9 2.0T

10

100

ξ 

L=40    Z=5
L=60
L=100

Tc

1.7 1.8 1.9 2.0T

10

100

ξ 

L=40    Z=9
L=60
L=100

Tc

1.7 1.8 1.9 2.0T

10

100

ξ 

L=40    Z=13
L=60
L=100

Tc

FIG. 4. The planar correlation length ξ vs the temperature T

for the hard-core U → ∞ BH model at zero chemical potential.
We plot QMC data for Z = 5 (top), Z = 9 (middle), and Z = 13
(bottom). Note that all figures show the same ranges of T and ξ

values, to favor the comparison of the data for different thickness
Z. Lengths are expressed in units of the lattice spacing, while T is
in units of the hopping parameter. The dashed vertical line indicates
the BEC transition temperature Tc, the dotted vertical lines indicate
our estimates of the Z-dependent BKT transition temperature. The
statistical errors of the data are so small to be hardly visible.
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Y
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L=50
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L=80
L=100
spin wave
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Z = 9

FIG. 5. RL ≡ ξ/L vs Y for Z = 5 (bottom) and Z = 9 (top), and
for several values of L and T . The full line shows the spin-wave
curve RL(Y) which is expected to be asymptotically approached for
L → ∞ within the QLRO phase; its end point corresponds to the
BKT transition. In particular, for Z = 5 the values of T of the data
shown in the bottom figure are (from right to left) T = 1.1858, 1.3518,
1.5179, 1.6, 1.64, 1.65, 1.67, 1.6839, 1.85. The behavior of the data
close to the BKT point suggests TBKT(Z = 5) ≈ 1.65. Analogously
for Z = 9 the data are for T = 1.8, 1.81, 1.82, 1.83, 1.84,1.85, 1.9,
2; they suggest that TBKT(Z = 9) ≈ 1.83. The statistical errors of the
data are so small to be hardly visible.

with ỸXY given by Eq. (A20). This numerical analy-
sis largely suppresses the systematic error because it is
not affected by logarithmic corrections, but only O(L−2)
power-law corrections. For Z = 1 the optimal match-
ing led to the estimate TBKT(Z = 1) = 0.6877(2) and
λ(Z = 1) ≈ 1.5.

We determine the optimal values of T and λ(Z) satisfying
the scaling relation (21). We skip most details of the numerical
matching procedures, which can be found in Ref. [73]. We
only mention that we use QMC data from L = 20 to 100,
for sufficiently close values of T , to obtain reliable estimates
for any T by interpolation (see Fig. 6). Our estimates for the
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FIG. 6. Data of Y vs T (in units of the hopping parameter), for
Z = 9 (bottom) and Z = 13 (top) around the corresponding BKT
temperatures. Analogous results have been obtained for Z = 5. The
dashed horizontal line indicates the BKT value Y ∗ = 0.6365 . . . .
The dotted vertical lines indicate the interval corresponding to our
best estimates of TBKT, i.e., TBKT = 1.829(1) for Z = 9 and TBKT =
1.899(1) for Z = 13, obtained by the matching procedure.

optimal matching parameters are

TBKT(Z = 5) = 1.645(2), TBKT(Z = 9) = 1.829(1),

TBKT(Z = 13) = 1.899(1). (22)

Correspondingly, we obtain λ(Z = 5) = 0.4(2), λ(Z = 9) =
0.20(5), and λ(Z = 13) = 0.14(2). The statistical error of
the analysis is estimated using bootstrap methods. The error
reported above takes also into account the variations of the
results when changing the procedure to obtain the optimal
matching, for example, when considering or not the O(L−2)
scaling corrections, and varying the minimum size L of the
data used in the analysis.

The quality of the matching can be appreciated looking at
Fig. 7, which shows the data for the optimal matching values
of TBKT versus the ratio L/�(Z) with �(Z) = �XY /λ(Z), so
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FIG. 7. Finite-size dependence of Y at the BKT transition. We
plot data for Z = 5, 9, 13 at their best estimates of TBKT, i.e.,
T = 1.645, 1.829, 1.899, respectively, versus L/�(Z) with �(Z) =
�XY /λ(Z) = 0.6, 1.5, 2.4, respectively. The dashed line shows the
XY curve (A20). The inset shows data of RL, with the corresponding
XY curve (dashed line) taken from Ref. [73].

that all data of Y , for any Z, are expected to follow the same
curve ỸXY versus L/�XY with �XY = 0.31. This is indeed
what we observe, apart from some scaling corrections at the
smallest values of L, which are expected to get suppressed as
O(L−2). We consider the results of the matching analysis of
the Y data as our best estimates of TBKT. Note also that the
values of λ(Z) are decreasing, as expected because the value
λ(Z)L is somehow related to the equivalent planar size of
the lattice, and for a slab geometry one may expect that this is
approximately given by the aspect ratio L/Z, thus λ(Z) ∼ 1/Z

roughly.
An analogous numerical analysis can be done using the

data of RL. However, it turns out to be less accurate. As also
observed in Ref. [73], RL is subject to larger power-law scaling
corrections, which decrease as L−7/4. The XY curve of RL

is reported in Ref. [73]. Note that once TBKT and λ(Z) are
determined, there are no other free parameters to optimize
the matching. The inset of Fig. 7 shows the data and their
comparison with the XY curve using the values of TBKT and
λ(Z) obtained from the analysis of the data of Y . The data
appear to approach the asymptotic curve with increasing L,
therefore, they are consistent with the theoretical predictions.
However, as already mentioned, we note that the approach to
the expected asymptotic behavior is characterized by larger
scaling corrections, thus requiring larger lattice sizes to obtain
independent estimates of TBKT as accurate as those obtained
using the data of Y .

Figure 8 shows δBKT(Z) ≡ 1 − TBKT(Z)/Tc versus Z−1/ν ,
as obtained from the above estimates of TBKT. The data turn
out to be consistent with the expected asymptotic behavior
δBKT(Z) ∼ Z−1/ν . We also estimate

XBKT = limZ→∞Z1/νδBKT = 3.2(1) (23)

0.00 0.05 0.10

Z -1/ν
0.0

0.1

0.2

δBKT

0 0.1 0.2 0.3

Z -ω

1

2

3

Z1/
ν  δ

BK
T

FIG. 8. Estimates of δBKT(Z) ≡ 1 − TBKT(Z)/Tc vs Z−1/ν with
ν = 0.6717 (the transverse size is reported in units of the lattice
spacing). The data are compatible with the expected behavior
δBKT(Z) ∼ Z−1/ν . The inset shows the product Z1/νδBKT(Z) vs Z−ω

with ω = 0.785 (the dashed line is obtained by a linear fit), which is
the expected behavior of the leading scaling corrections.

by extrapolating the available data for the product Z1/νδBKT

using the ansatz

Z1/νδBKT = XBKT + c Z−ω, (24)

where ω = 0.785(20) is the leading scaling-correction expo-
nent of the 3D XY universality class (see the inset of Fig. 8).

Finally, we check the TFSS of RZ around Tc in the
planar thermodynamic limit, i.e., when ξ,Z � L, reported by
Eq. (13). As argued in Sec. III B, the scaling function fξ (X)
is expected to have an essential singularity at XBKT ≈ 3.2
[cf. Eq. (14)]. In Fig. 9 we show data of RZ around Tc

-2 -1 0 1

X
0

1

2

RZ

Z=5
Z=9
Z=13
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Z -ω

0

0.2

0.4

0.6

0.8

R Z (T
c , 

Z)

FIG. 9. Scaling of RZ around Tc. Most data are taken for L = 120,
which is sufficiently large to provide a good approximation of the
L → ∞ limit in the range of Z and X values considered, within
about 1%. We plot the data versus X ≡ Z1/νδ with ν = 0.6717 and
δ ≡ 1 − T/Tc. The inset shows the data of RZ at Tc vs Z−ω which is
the expected behavior of the leading scaling corrections (the dashed
line is obtained by a linear fit).
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FIG. 10. Scaling of the planar susceptibility χ around Tc. We
plot Z−1+ηχ vs X ≡ Z1/νδ. The data support the asymptotic TFSS
χ ≈ Z1−ηC(X).

versus X ≡ δZ1/ν . They support the TFSS behavior of RZ .
Scaling corrections are expected to decrease as Z−ω. They
appear significantly larger for X > 0, when approaching the
singularity at XBKT. By extrapolating the available data at
Tc using RZ(Z,Tc) = R∗

Z + c Z−ω (see the inset of Fig. 9),
we estimate R∗

Z = 0.372(3) for the universal large-Z ratio
RZ ≡ ξ/Z characterizing the TFSS of the critical planar
correlation length. An analogous scaling behavior is expected
for the planar susceptibility defined as in Eq. (5). The data
shown in Fig. 10 nicely support the corresponding TFSS
relation (19).

V. BOSE GASES CONFINED BY A TRANSVERSE
HARMONIC TRAP

We now discuss the case of quasi-2D gases trapped by a
harmonic potential along the transverse direction, analogously
to the experimental setup of Ref. [31].

A. BH model in a transverse harmonic trap

In the case of the BH model, the presence of a space-
dependent trapping potential can be taken into account by
adding a further Hamiltonian term to Eq. (1), i.e.,

HhBH = HBH +
∑

i

V (zi)ni, (25)

V (z) = |z/�|p, (26)

where zi is the distance of the site i from the central plane,
p > 0, and � can be considered as the transverse trap size.
The harmonic potential corresponds to p = 2. The transverse
trapping potential coupled to the particle density can also
be interpreted as an effective chemical-potential parameter
depending on the transverse coordinate z,

μe(μ,z) ≡ μ − V (z). (27)

Far from the central z = 0 plane, the potential V (z) diverges,
thus, μe → −∞ therefore 〈ni〉 vanishes and the particles are
trapped along the transverse direction.

We discuss the behavior of the system in the limit of infinite
size of the planar dimensions, along which the system appears
as homogeneous. For practical realizations, this regime may
be realized by considering hard-wall traps along the planar
directions with size L � � (more precisely L � �θ where the
exponent θ < 1 is given below), such as the experimental setup
of Ref. [31].

The planar correlation functions, for example along the
z = 0 plane, are expected to behave similarly to the case of
transverse hard-wall traps. With decreasing T from the high-
temperature normal phase, the length scale ξ gets large around
the BEC transition temperature Tc (i.e., the critical temperature
of the BEC transition of the corresponding homogeneous 3D
system). But, it does not diverge since ξ ∼ �θ where θ is an
appropriate exponent (see below). Then, one may observe a
BKT transition to a QLRO phase around the z = 0 plane, at
TBKT < Tc depending on �. In particular, in the extreme � → 0
limit, where all particles are confined within the z = 0 plane,
we recover the homogeneous 2D BH model, i.e., the model
(1) with Z = 1. On the other hand, in the opposite � → ∞
limit, we again expect that TBKT(�) → T −

c , analogously to the
homogeneous case. Therefore, similarly to the homogeneous
case, the system passes from a high-temperature 3D behavior
to a quasi-2D critical behavior at low temperature. This change
of regime may be also related to a transverse condensation
phenomenon [31,33,38,83,84].

B. Transverse trap-size scaling

Like homogeneous systems with transverse hard-wall
boundary conditions, the 3D critical behavior must be some-
how recovered in the large-� limit, in a spatial region suffi-
ciently close to the central z = 0 plane. We argue that this limit
can be described by a universal transverse-trap-size scaling
(TTSS), similar to the TFSS limit discussed in Sec. III B. To
derive the TTSS laws for the case at hand, we can exploit
the same arguments used to derive the trap-size scaling for
isotropic or 1D traps [14,24,26,85].

The trapping potential (26) coupled to the particle density
significantly affects the critical modes, introducing another
length scale �. Like general critical phenomena (see, e.g.,
Ref. [62]), the asymptotic scaling behavior of the length scale
at Tc is expected to be characterized by a power law:

ξt ∼ �θ . (28)

The exponent θ can be determined by a scaling analysis of the
perturbation associated with the external potential coupled to
the particle density. Its derivation is identical to that reported
in Refs. [14,26] for isotropic traps. The exponent θ turns
out to be related to the correlation-length exponent ν of the
universality class of the critical behavior of the homogeneous
BEC transition, i.e.,

θ = pν

1 + pν
, (29)
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where ν = 0.6717(1) is the correlation-length exponent of the
3D XY universality class. For harmonic transverse traps, i.e.,
p = 2, θ = 0.57327(4).

On the basis of these TTSS arguments, we expect that
the asymptotic large-� behavior of the two-point function
around the central z = 0 plane, and in particular the correlation
function defined as in Eq. (4), behaves as

g(x,�) ≈ ξ
−(1+η)
t Gp

(
x/ξt ,δξ

1/ν
t

)
, (30)

where ξt ∼ �θ , δ ≡ 1 − T/Tc, and we have assumed that the
planar sizes are infinite. Actually, one may also take into
account the planar size L by adding a further scaling variable
L/�θ ; the L → ∞ scaling behavior (30) is recovered when
L/�θ � 1.

The TTSS of the two-point function implies that the planar
second-moment correlation length along the z = 0 plane,
defined as in Eq. (7), behaves asymptotically as

ξt ≈ �θRp(X ), X ≡ δ�θ/ν . (31)

In particular, we recover ξt ∼ �θ at Tc. Note that this scaling
behavior is analogous to that of the hard-wall traps [cf.
Eq. (13)], with the transverse size Z replaced by �θ . The
leading corrections to the above asymptotic TTSS are O(�−ωθ ).

Note also that the trap exponent θ reported in Eq. (29) is
identical to that of isotropic traps [26], i.e., it does not depend
on the number of coordinates entering the space dependence of
the inhomogeneous power-law potential coupled to the particle
density. However, the scaling functions Gp and Rp, entering
Eqs. (30) and (31), must definitely differ. Actually, in the p →
∞ limit we must recover the TFSS behavior, i.e., that of the
homogeneous conditions along the transverse direction with
OBC (see Sec. III B). Since θ → 1 for p → ∞, � ≈ Z of the
transverse hard-wall conditions.

The TTSS functions must present a singularity related to
the BKT transition for TBKT < Tc, unlike those of the isotropic
TSS because no such transition occurs for isotropic traps. In
particular, TTSS implies that

δBKT(�) ≡ 1 − TBKT(�)/Tc ∼ �−θ/ν, (32)

and the TTSS function Rp(X ) of Eq. (31) must show a BKT-
like singularity at

XBKT = lim�→∞ δBKT(�) �θ/ν, (33)

such as that reported in Eq. (14).
We finally mention that other interesting features emerge at

the boundary of the BEC region in atomic gases confined by a
transverse harmonic trap. If the trap is sufficiently large and the
temperature is sufficiently low, i.e., T < Tc, different phases
may coexist in different space regions, when moving from the
central z = 0 plane of the trap. Indeed, due to the fact that
the effective chemical potential μe(z) [cf. Eq. (27)] decreases
with increasing z, the BEC region is generally spatially limited.
When moving from the z = 0 plane, the quantum gas passes
from the BEC phase around the center of the trap (where
space coherence is essentially described by spin waves) to
a normal phase far from the center. The gas is expected to
develop a peculiar critical behavior at the boundary of the
BEC region, with a nontrivial scaling behavior controlled by
the universality class of the homogenous BEC transition in the

presence of an effective linear external potential coupled to the
particle density [32]. Some details are reported in Appendix B.

VI. OFF-EQUILIBRIUM SLOW DYNAMICS AND
DIMENSIONAL CROSSOVER

The dynamical behavior of statistical systems driven across
phase transitions is a typical off-equilibrium phenomenon.
Indeed, the large-scale modes present at the transition are
unable to reach equilibrium as the system changes phase,
even when the time scale ts of the variation of the system
parameters is very large. Such phenomena are of great interest
in many different physical contexts, at both first-order and
continuous transitions, where one may observe hysteresis
and coarsening phenomena, the Kibble-Zurek (KZ) defect
production, etc. (see, e.g., Refs. [30,33,59,60,86–97]). The
correlation functions obey general off-equilibrium scaling
(OS) laws in the limit of large time scale ts of the variations
across the transition, which are controlled by the universal
static and dynamic exponents of the equilibrium transition
[89,91,97].

We now consider the off-equilibrium behavior arising from
slow time variations of the temperature T across the BEC
transition. We assume a standard linear protocol, varying T so
that

δ(t) ≡ 1 − T (t)/Tc = t/ts, (34)

starting at a time ti < 0 in the high-T phase and ending at
tf > 0 in the low-T phase. ts is the time scale of the tempera-
ture variation. The BEC transition point corresponds to t = 0
(however, this is not strictly required, it is only convenient
for our discussion). Several experiments implementing off-
equilibrium time-dependent protocols in cold-atom systems
have been reported (see, e.g., Refs. [30,31,33,98–100]).

Aside from the static critical exponent [64] ν = 0.6717(1)
of the 3D XY universality class, we also need information on
the critical dynamic behavior at the BEC transition. This is
characterized by the dynamic exponent z = d/2, thus z = 3

2
in 3D, associated with the model-F dynamics [101,102] which
is conjectured to describe the dynamic universality class of the
3D BEC transition.

In the standard thermodynamic limit of cubiclike boxes,
with L1 ∼ L2 ∼ L3 ∼ L and L → ∞, one defines the OS
limit as the large-time-scale limit ts → ∞, keeping the OS
scaling variables

T ≡ t/tκs , xs ≡ x/tζs (35)

fixed. Scaling arguments allow us to determine the appropriate
exponents κ and ζ , obtaining [59,60,91]

κ = zν

1 + zν
, ζ = ν

1 + zν
, (36)

where ν and z are the static correlation-length and dynamic
exponents. In particular, by inserting the known values of ν

and z, we obtain κ = 0.50188(4) and ζ = 0.33459(3).
We may apply these OS arguments to the equal-time two-

point correlation function, measured after a time t and averaged
over the initial Gibbs distribution at a given initial temperature
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T > Tc. Standard scaling arguments lead to the OS asymptotic
behaviors [91]

G(x,t,ts) ≈ t−ζ (1+η)
s Go(xs ,T ). (37)

Moreover, we expect

ξ (t,ts) ≈ t ζs Ro(T ) (38)

for any length scale associated with the critical modes.
Experimental studies of this dynamic behavior, and the related
KZ defect production, led to the estimate [30] ζ = 0.35(4),
which is in good agreement with the theoretical result (36).

We now discuss how this off-equilibrium behavior may
change in quantum gases confined within a slab geometry with
Z � L, and in particular with a finite thickness Z and infinite
L → ∞ planar sizes. Analogous experiments with quasi-
2D cold-atom systems constrained in a slab geometry have
been reported in Refs. [31,33] (homogeneous hard-wall traps
along the planar directions and harmonic along the transverse
direction). They observe the emergence of coherence when
cooling the atomic gas through the BEC temperature.

The off-equilibrium behavior arising from the slow varia-
tion of the temperature across the BEC transition point is made
particularly complex by the presence of the quasi-2D BKT
transition. Thus, disentangling the behaviors corresponding to
BEC and BKT is quite hard in experimental or numerical anal-
yses. The authors of [31,33] interpreted the observed behavior
as a transverse condensation phenomenon [31,33,83,84]. In the
following, we put forward an alternative framework to describe
the DC in a slab geometry, based on an off-equilibrium FSS
(OFSS).

As already said, for a finite thickness Z, even though L →
∞, the system does not develop a diverging correlation length
at the 3D BEC transition temperature Tc, but ξ remains of the
order of the transverse size Z. Thus, the systems can evolve
adiabatically, i.e., its evolution can be performed by passing
through quasiequilibrium states for a sufficiently large time
scale ts of the variation of T (t) around Tc. This is possible until
it reaches the BKT transition at the time t > 0 corresponding
to TBKT, i.e., when t/ts = δBKT ≡ 1 − TBKT/Tc.

Of course, the OS at the BKT transition is expected to
substantially differ from that at the 3D BEC transition, such
as Eqs. (37) and (38), because it must be controlled by
the 2D universality class of the BKT transition in quantum
gases. At the BKT transition the relevant exponents for
KZ off-equilibrium protocols are expected to be ν = ∞
(related to the exponential increase of the correlation length
when T → T +

BKT) and z = 1 (2D model F of the dynamics).
Thus, the power laws of the off-equilibrium scaling vari-
ables (35) at the BKT transition lead to κ = 1, apart from
logarithms.

However, things become quite involved when the thickness
Z becomes large because the BKT transition gets very close to
the BEC temperature Tc [cf. Eq. (15)]. Therefore, the analysis
of numerical and experimental data may become hard, and
straightforward power-law fits may turn out to be misleading.

In order to describe the time-dependent DC of a slab
geometry under the protocol (34), we consider an OFSS
framework involving the size Z of the transverse direction. The

appropriate OFSS limit is defined by introducing the scaling
variables

Xo = Z1/νδ(t), Wo = Z−1/ζ ts . (39)

The OFSS limit of the planar correlation length defined in
Eq. (7) is expected to be described by the scaling relation

ξ (Z,t,ts) ≈ Z So(Xo,Wo), (40)

where So is a universal OFSS function.
In this OS framework, the equilibrium FSS around Tc is

recovered in the limit Wo → ∞, i.e.,

So(Xo,Wo → ∞) = R(Xo), (41)

where R(Xo) is the equilibrium FSS function [cf. Eq. (13)]. In
particular, at t = 0 corresponding to T (t) = Tc, we expect to
recover the equilibrium result ξ ∼ Z when ts � Z1/ζ . Note,
however, that the equilibrium limit is not well defined for
any Xo because it diverges when Xo � XBKT [cf. Eq. (16)],
corresponding to the BKT transition. Around XBKT the
behavior of the scaling functions must somehow show the
off-equilibrium singularities associated with a slow passage
through a BKT transition.

The above scaling behaviors can be straightforwardly
extended to the case of a transverse harmonic trap, using the
same TTSS arguments of Sec. V. Apart from replacing Z with
�θ , the main features of the OS behavior remain the same.

We mention that experiments under analogous time-
dependent protocols crossing the BEC transition have been
performed with atomic gases confined in slablike traps with a
transverse harmonic trapping potential [31,33]. They were able
to check the initial 3D behavior, without a clear identification
of the subsequent quasi-2D behavior. The computation of the
defect production arising from the KZ mechanism is further
complicated by later-time coarsening phenomena [87,91,93].

VII. SUMMARY

We have studied the phase-coherence properties of Bose
gases confined within slablike boxes of size L2 × Z with
Z � L, at the 3D BEC transition temperature Tc and at
lower temperatures. Unlike systems confined within cubiclike
geometries, i.e., boxes with L ∼ Z, the low-temperature
behavior of gases confined within a slab geometry is also char-
acterized by the possibility of undergoing a finite-temperature
quasi-2D BKT transition at TBKT < Tc with TBKT depending
on the thickness Z. Below TBKT the planar one-particle
correlations decay algebraically, as predicted by the QLRO
of the 2D spin-wave theory.

Therefore, Bose gases in a slab geometry experience DC
with decreasing T , from 3D behaviors for T � Tc to a quasi-
2D critical behavior for T � TBKT. However, in the limit of
large thickness Z the quasi-2D BKT transition temperature
approaches that of the 3D BEC transition, i.e., TBKT → Tc for
Z → ∞. The interplay of 3D and quasi-2D critical modes
can be described by the TFSS limit for systems on a slab
geometry: Z → ∞ and T → Tc keeping the product (T −
Tc)Z1/ν fixed (the planar sizes are assumed to be infinite),
where ν is the correlation-length exponent at the 3D BEC
transition. The corresponding TFSS functions must present an
essential singularity due to the quasi-2D BKT transition below
Tc. A similar TTSS behavior is also put forward in the case the
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particles are trapped by a transverse harmonic potential in the
limit of large transverse trap size �. In the TTSS framework, the
length scale ξt = �θ , where θ = 2ν/(1 + 2ν) = 0.57327(4),
plays the same role of the transverse size Z of the TFSS.

To provide evidence of the DC scenario in interacting
bosonic gases, we present a numerical study of the BH model
(1) in anisotropic slablike lattices L2 × Z with Z � L. With
decreasing T from the high-temperature normal phase, we first
observe a quasi-BEC transition where the critical length scale ξ

gets large, but it does not diverge, being limited by ξ ∼ Z

(keeping Z fixed). Then, a BKT transition occurs to a QLRO
phase, where the system develops planar critical correlations
essentially described by the 2D Gaussian spin-wave theory. We
show that the 3D → 2D DC scenario explains the apparently
complex dependence on T , Z, and L of the one-particle
correlation functions and the corresponding length scale, when
decreasing the temperature from T > Tc to T < TBKT < Tc.
The results turn out to be consistent with the predictions of the
TFSS at the BEC transition.

The DC scenario is expected to apply to any quantum
gas of interacting bosonic particles constrained in boxes or
lattice structures with slab geometry. Analogous arguments
apply to 4He systems in film geometries [54], and to 3D XY

spin models defined in lattices with slab geometries [55–58].
We also mention that some issues related to DC in quasi-2D
nonrelativistic boson systems have been also investigated in
Ref. [103], in particular the dependence of the 2D superfluid
critical temperature on the transverse size in the case of
periodic boundary conditions along the transverse direction.

We also extend the discussion to off-equilibrium phenom-
ena of interacting Bose gases confined in a slab geometry,
arising from slow time variations of the temperature T across
the BEC transition. In particular, we consider the linear pro-
tocol δ(t) ≡ 1 − T (t)/Tc = t/ts where ts is a time scale. The
corresponding off-equilibrium behavior is made particularly
complex by the presence of the close quasi-2D BKT transition
at TBKT < Tc, which is also crossed during the time-dependent
protocol. Thus, disentangling the behaviors corresponding to
BEC and BKT is quite hard in experimental or numerical
analyses. We argue that the off-equilibrium behavior in the
limit of large ts can be described by an off-equilibrium FSS
theory for bosonic gases confined within a slab geometry,
extending the TFSS of the equilibrium properties.

We conclude stressing that the above issues related to the
DC scenario are of experimental relevance since cold-atom
systems confined within slab geometries can be effectively
realized (see, e.g., Refs. [28,30,31,33]). These experimental
setups offer the possibility of investigating the dependence of
the phase-coherence properties on the geometry of the cold-
atom system. Our study provides a framework to interpret the
experimental or numerical data related to the 3D → 2D DC of
Bose gases confined within slab geometries, and in particular
their complicated dependence on the thickness Z.

APPENDIX A: LOW-TEMPERATURE BEHAVIOR OF
QUASI-2D BOSONIC GASES

We present some exact results which are expected to
characterize the low-temperature QLRO phase of quasi-2D
interacting bosonic gases up to the BKT transition.

1. QLRO phase below the BKT transition

The universal features of the QLRO phase of quasi-2D
systems with a U(1) symmetry are described by the Gaussian
spin-wave theory

Hsw = β

2

∫
d2x (∇ϕ)2. (A1)

For β � 2/π , corresponding to values 0 � η � 1
4 for the

exponent of the power-law decay of the two-point function,
this spin-wave theory describes the QLRO phase. The values
β = 2/π and η = 1

4 correspond to the BKT transition [104].
The spin-wave correlation function

Gsw(x1 − x2) = 〈e−iϕ(x1)eiϕ(x2)〉 (A2)

is expected to provide the asymptotic large-L behavior of the
two-point function of 2D interacting bosonic gases within the
QLRO phase. For |x1 − x2| � L,

Gsw(x1,x2) ∼ 1

|x1 − x2|η , (A3)

where the exponent η is related to the coupling β by

η = 1

2πβ
. (A4)

The general size dependence of Gsw on a square L2 box
with PBC is also known [73,104–106]:

Gsw(x,L) = C(x,L)η × E(x,L),

C(x,L) = eπy2
2 θ ′

1(0,e−π )

|θ1[π (y1 + iy2),e−π ]| ,

E(x,L) =
∑∞

n1,n2=−∞ W (n1,n2) cos[2π (n1x1 + n2x2)]∑∞
n1,n2=−∞ W (n1,n2)

,

W (n1,n2) = exp
[ − π

(
n2

1 + n2
2

)
/η

]
, (A5)

where x ≡ (x1,x2), yi ≡ xi/L, θ1(u,q) and θ ′
1(u,q) are θ

functions [107].
Using Eq. (A5), one can easily compute the universal large-

L relation RL(η) between RL ≡ ξ/L and η, where ξ is the
second-moment correlation length defined as

ξ 2 = L2

4π2

(
χ

χ1
− 1

)
, (A6)

where

χ =
∫

d2x Gsw(x),

χ1 =
∫

d2x cos

(
2πx1

L

)
Gsw(x). (A7)

Analogous results are obtained for the helicity modulus
[106]

Y(η) = 1

2πη
−

∑∞
n=−∞ n2 exp(−πn2/η)

η2
∑∞

n=−∞ exp(−πn2/η)
. (A8)
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The above asymptotic large-L behaviors (at fixed T or η) are
approached with power-law corrections, indeed

RL(L,η) ≡ ξ/L = RL(η) + aL−ε, (A9)

Y (L,η) = Y(η) + aL−ζ , (A10)

respectively, where ε and ζ are the exponents associated with
the expected leading corrections [108,109]:

ε = Min[2 − η,κ], ζ = Min[2,κ], (A11)

κ = 1/η − 4 + O[(1/η − 4)2]. (A12)

With increasing T within the QLRO phase, the critical
exponent η of the two-point function [cf. Eq. (A3)] increases
up to η = 1

4 corresponding to the BKT transition. Therefore,
close to the BKT transition, i.e., for T � TBKT, we may expand
the universal curves RL(η) and Y(η) around η = 1

4 , obtaining

RL(η) = 0.7506912222 + 1.699451

(
1

4
− η

)
+ · · · , (A13)

Y(η) = 0.6365081782 + 2.551196

(
1

4
− η

)
+ · · · . (A14)

We expect that the above universal behaviors are also
realized in the low-temperature phase of BH models within
a slab geometry, for T < TBKT, by the two-point functions
g(x) [cf. Eq. (4)] and the quantities RL ≡ ξ/L and Y defined
in Eq. (9).

2. Finite-size behavior at the BKT transition

The BKT transition is characterized by logarithmic cor-
rections to the asymptotic behavior, due to the presence
of marginal renormalization-group (RG) perturbations at the
BKT fixed point [106,108,110–113]. The asymptotic behav-
iors at the BKT transition for RL and Y can be obtained by
replacing [106,108]

1/4 − η ≈ 1

8w
, w = ln

L

�
+ 1

2
ln ln

L

�
(A15)

into Eqs. (A13) and (A14). The nonuniversal details that
characterize the model (such as the thickness Z of the quasi-2D
BH models) are encoded in the model-dependent scale �.
Thus, one obtains the asymptotic large-L behavior

R(L,TBKT) = R∗ + CRw−1 + O(w−2) (A16)

for both R = Y,RL, with

Y ∗ = 0.6365081789, CY = 0.31889945, (A17)

R∗
L = 0.7506912222, CRL

= 0.21243137 (A18)

for PBC.
In numerical analyses, Eq. (A16) may be used to locate

the BKT transition point, i.e., by requiring that the finite-size
dependence of the data matches it. However, we note that
this straightforward approach is subject to systematic errors
which get suppressed only logarithmically with increasing L.
This makes the accuracy of the numerical or experimental
determination of the critical parameters quite problematic.

This problem can be overcome by the so-called matching
method [58,73,106,111,112,114,115], which allows us to
control the whole pattern of the logarithmic corrections,
leaving only power-law corrections.

The matching method exploits the fact that the finite-
size behavior of RG invariant quantities R, such as RL

and Y , of different models at their BKT transition shares
the same logarithmic corrections apart from a nonuniversal
normalization of the scale. Indeed, the L dependence of two
models at their BKT transition is related by the asymptotic
relation

R(1)
(
L1,T

(1)
BKT

) ≈ R(2)
(
L2 = λL1,T

(2)
BKT

)
, (A19)

apart from power-law corrections, which are O(L−2) for
the helicity modulus Y and O(L−7/4) for the ratio RL. The
matching parameter λ is the only free parameter, but it does not
depend on the particular choice of the RG invariant quantity.
The matching method consists in finding the optimal value of
T matching the finite-size behavior of Y and RL of the 2D
XY model whose value of TBKT is known with high accuracy
[106,112]. The complete expression of RL and Y of the 2D
XY model have been numerically obtained by high-precision
numerical studies [106,114] and by extrapolations using RG
results for the asymptotic behavior. For example, the L

dependence of the helicity modulus Y at the BKT transition of
the 2D XY model is accurately reconstructed by the following
expression [29]:

ỸXY (L) ≡ YXY (TBKT,L) = 0.6365081782

+ 0.318899454 w−1 + 2.0319176 w−2

− 40.492461 w−3 + 325.66533 w−4

− 874.77113 w−5 + 8.43794 L−2

+ 79.1227 L−4 − 210.217 L−6, (A20)

where w is given in Eq. (A15) with � = �XY = 0.31.
The matching method has been already applied [73] to the

2D BH models (1), obtaining the accurate estimate TBKT =
0.6877(2) in the hard-core U → ∞ limit and at half-filling
(μ = 0).

APPENDIX B: CRITICALITY AT THE BOUNDARY OF
THE BEC REGION IN BOSE GASES TRAPPED BY A

TRANSVERSE HARMONIC POTENTIAL

Due to the fact that the effective chemical potential μe(z)
[cf. Eq. (27)] decreases with increasing z, the BEC region in
the presence of a transverse harmonic trap is generally spatially
limited. When moving from the z = 0 plane, the quantum gas
passes from the BEC phase around the center of the trap (where
space coherence is essentially described by spin waves) to a
normal phase far from the center. The atomic gas develops
a critical behavior at the boundary of the BEC region, with
a nontrivial scaling behavior controlled by the universality
class of the homogeneous BEC transition in the presence of
an effective linear external potential coupled to the particle
density. This occurs around the planes where the distance |z|
from the z = 0 plane is such that T [μe(μ,z)] is equal to the
BEC transition temperature at the local chemical potential

043623-12
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μe(μ,z) = μ − (z/�)2, i.e., when

Tc[μe(μ,z)] ≈ T < Tc(μ). (B1)

For example, consider the hard-core BH lattice gas (25) for
μ � 0 and T < Tc(μ) (see Fig. 1). Since Tc(μ) decreases
with decreasing μ, a plane exists at distance z = zb such that
Tc[μe(μ,zb)] = T , thus,

zb = �
√

μ − μ̄, (B2)

where Tc(μ̄) = T . This plane separates the superfluid region
from the normal-fluid region. As argued in Ref. [32], in the
limit of large �, the correlation functions around the surface
where Tc[μe(r)] = T are expected to develop a peculiar
critical behavior in the presence of an external effectively linear
potential coupled to the particle density. The scaling behavior
around the critical plane z = zb can be derived using the
same arguments of Ref. [32], applying them to the particular
case of a slab geometry where the harmonic potential is only
applied along the transverse direction, while the system is
translationally invariant along the planar directions.

Around z = zb,

V (z) = V (zb) + �z/�b + O[(�z/�b)2] (B3)

with

�b = �

2
√

μ − μ̄
. (B4)

The critical behavior at the critical planes z = zb is essentially
determined by the linear term

Vb = �z/�b, �z ≡ z − zb, (B5)

where �b provides the length scale of the spatial variation.
High-order terms of the expansion of the potential around zb

do not affect the asymptotic behavior [32]. Since
√

μ − μ̄ > 0
is assumed finite and fixed, �b ∼ �. Of course, an analogous
behavior occurs on the opposite side, i.e., for z = −zb. The
system develops critical correlations around the planes z = zb,
with a length scale

ξb ∼ �
θb

b , θb = ν

1 + ν
= 0.40181(3). (B6)

For example, the one-particle correlation function along a
transverse direction is expected to scale as

G[(x,z1),(x,z2)] ≈ ξ
−1−η

b Gb(�z1/ξb,�z2/ξb). (B7)

Of course, such a scaling behavior at the critical planes is
anisotropic, distinguishing the planar and transverse direc-
tions. However, both length scales along planar and transverse
directions are expected to scale as �

θb

b .
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