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Path-integral Monte Carlo study of particles obeying quantum mechanics and classical statistics
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Ultracold atomic systems have been of great research interest in the past, with more recent attention being
paid to systems of mixed species. In this work, we carry out nonperturbative path-integral Monte Carlo (PIMC)
simulations of N distinguishable particles at finite temperature, which can be thought of as an ultracold atomic
system containing N distinct species. We use the PIMC approach to calculate thermodynamic properties of
particles interacting via hard-sphere and hard-cavity potentials. The first problem we study is a two-particle system
interacting via a hard-sphere and hard-cavity interaction in order to test the effectiveness of two approximations
for the thermal density matrix corresponding to these potentials. We then apply the PIMC method to a system
of many hard-sphere particles under periodic boundary conditions at varying temperature in order to calculate
the energy per particle, pressure, and specific heat of the system. We examine how finite-size effects impact the
results of PIMC simulations of hard-sphere particles and when the thermodynamic limit has been reached. Our
results provide microscopic benchmarks for a system containing distinguishable particles, which can be thought
of as a limiting case for ultracold atomic systems of mixed species.

DOI: 10.1103/PhysRevA.96.043619

I. INTRODUCTION

The study of cold atomic systems has been of great
interest over the past century or so, and has provided great
insight into fundamental quantum phenomena. More recently,
experimentalists have been able to probe cold Fermi gases
and even tune the interaction between two atoms via the use
of Feshbach resonances. This allowed unprecedented access
to detailed features or novel aspects of quantum many-body
physics, leading to a confrontation of theory with experiment.
The specific systems probed include homogeneous and trapped
Fermi gases, polarons, optical lattices, Fermi-Fermi and Bose-
Fermi mixtures, lower-dimensional systems, and spin-orbit
coupled gases, among several related settings [1–7].

In the study of quantum many-body physics, an important
feature of the system is the type of statistics that the particles
obey. When the temperature is low enough such that the
thermal de Broglie wavelength of the particles is of the same
order as the interparticle spacing, the particles are said to
be indistinguishable. When this occurs in systems consisting
of one species of particles, Fermi-Dirac statistics (in which
quantum states can only be occupied by one particle and the
wave function is antisymmetric under two-particle exchange)
are needed for fermions, and Bose-Einstein statistics (in which
there is no limit to the number of particles occupying a state and
the wave function is symmetric under two-particle exchange)
are needed for bosons. At larger temperatures, such systems
follow Maxwell-Boltzmann statistics [8].

A current frontier in cold-atom physics is the study of many-
component gases: the leading contenders have been 173Yb and
87Sr [9–20]. The motivation behind such experiments is to use
a large number of atoms N distributed among different states.
The natural extension of this approach is to keep increasing
the number of possible states among which the total number
of particles is distributed. The extreme case of this scenario is
when the number of states equals the number of particles,
namely each component or species is placed in a distinct
state: the particles may still be strongly interacting with each
other, but the fermionic (or bosonic) nature of the underlying
atom is no longer relevant. This is the problem in which

we are interested in this work, namely the study of quantum
boltzmannons, where quantum mechanics plays a significant
role but quantum statistics does not. Since each particle is
taken to be in a different quantum state, the particles are
distinguishable, so they follow Maxwell-Boltzmann statistics
even at low temperature.

Cold atoms have proven to be a good laboratory for studying
nucleonic matter [21–24]. Thus, experiments with two species
of cold Fermi gases probe the physics of strong pairing, which
is very similar to that of low-density neutron matter, found in
the inner crusts of neutron stars. Similarly, the three-species
quantum problem and the related area of Efimov physics
have been of interest to both nuclear and atomic physicists
[25,26]. The obvious extension—the four-species problem—is
of direct relevance to all of nuclear physics, since nuclei on
earth and nucleonic matter in astrophysical settings are all
made up of neutrons and protons (with two spin-projection
states each). As more species are added to the problem, one
can attempt to disentangle the effect of interactions from that of
statistics. This is analogous to the study of gauge theories using
the 1/N expansion [27]. Importantly, one can expect that the
very-many-species cold-atom problem may be experimentally
probed in the not too distant future.

Quantum Monte Carlo (QMC) is a term describing a family
of powerful theoretical simulation techniques applied to sev-
eral different physical systems, including cold-atomic gases.
QMC methods are typically nonperturbative and can probe
both weak coupling and strong coupling, at both zero temper-
ature [28–35] and finite temperature [36–43]. The particular
QMC method used in this work is path-integral Monte Carlo
(PIMC). The path-integral Monte Carlo simulation techniques
described and utilized in this work are suited to systems that
obey Maxwell-Boltzmann statistics (boltzmannons), and they
can be used to calculate thermodynamic properties of systems
composed of distinguishable particles in the quantum regime.
With this technique, it is possible to calculate quantities such
as the energy, pressure, and specific heat (to name a few) of
interacting particles at finite temperatures. The interactions
focused on in this work are those of hard spheres and hard
cavities. These interactions have been a topic of interest in
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PIMC simulations and other computational studies in the
past due to the fact that they can be handled with relative
computational ease, and they provide a standard form for
repulsive interactions between atoms [44].

An important aspect of studying statistical mechanical
properties is the evaluation of the partition function. However,
for a large system of interacting particles, it is extremely
difficult to evaluate the partition function directly. In PIMC, the
partition function is evaluated using a path-integral approach
in which thermal density matrices can be thought of as propa-
gators over discretized imaginary time slices that form a path
in coordinate space. Approximations are utilized to evaluate
the thermal density matrices for the specific interactions found
in the system being studied. For hard-sphere and hard-cavity
interactions, two approximations are commonly used: the
image approximation (IA) [45] and another derived by Cao
and Berne (CB) [46]. These approximations become more
accurate as the path becomes more discretized and the number
of imaginary time slices increases, becoming exact in the limit
of infinite time slices. However, increasing the number of
time slices causes an increase in computational time. Thus,
a good measure for the effectiveness of an approximation is
how quickly its simulation results converge as a function of the
number of time slices. Crucially, boltzmannons do not suffer
from the fermion-sign problem, so a nonperturbative PIMC
calculation for this system is in principle exact (of course, one
must still carefully study finite-size effects, time slice errors,
and so on, as we do below).

In this work, we perform an analytic calculation of the
energy for a two-body system interacting via a hard-sphere,
hard-cavity interaction, and we perform PIMC simulations for
the same system using both the IA and the CB approximations
at varying temperatures. We study the convergence of both
approximations to the analytic value as a function of the
number of time slices. Additionally, we carry out calculations
of the energy, pressure, and specific heat of a system of
N hard-sphere particles under periodic boundary conditions
using the CB density matrix. We investigate finite-size effects
and at what value of N these finite-size effects drop away and
the thermodynamic limit can be said to have been reached.

II. PATH-INTEGRAL MONTE CARLO METHOD

A. Partition function in the path-integral
Monte Carlo formalism

A fundamental quantity in a statistical mechanical descrip-
tion of a system is the thermal density matrix. The thermal
density matrix is defined as

ρ̂ = e−βĤ =
∑

i

|ψi〉〈ψi |e−βEi , (1)

where β = 1/kBT , kB is the Boltzmann constant, T is the
temperature, ψi are the eigenstates of the system, and Ei are
the associated eigenenergies.

One often wishes to compute the partition function because
of its usefulness in deriving other thermodynamic quantities.
The partition function is defined as the trace of the thermal
density matrix. In the PIMC formalism, the trace is performed

in the position basis:

Z = Tr(ρ̂) =
∫

dR〈R|e−βĤ |R〉, (2)

where R represents the set of positions of all N particles
in the system, R = r1,r2, . . . ,rN . The matrix element in the
above integration cannot in general be calculated exactly for
Hamiltonians of interacting many-body systems. To continue
with the evaluation of the partition function, one can expand
the above integral using the following two relations:

e−βĤ = e
−β

2 Ĥ e
−β

2 Ĥ ,
(3)

1̂ =
∫

dR|R〉〈R|.

By using these relations M − 1 times, the partition function
can be written as

Z =
∫

· · ·
∫

dR dR1dR2 · · · dRM−1〈R|e− β

M
Ĥ |R1〉

×〈R1|e− β

M
Ĥ |R2〉 · · · 〈RM−1|e− β

M
Ĥ |R〉. (4)

It can now be seen where the analogy to the Feynman path
integral can be made. The operator e− β

M
Ĥ is analogous to

the time-evolution operator that evolves the system between
subsequent states |Ri〉, except it/h̄ is replaced with β/M . As a
result, β/M is the so-called “imaginary time” and Eq. (4) can
be thought of as a path integral with M imaginary time slices.

To continue the derivation, it is necessary to evaluate the
intermediate density matrix elements that are being integrated
over. To do this, the Trotter-Suzuki formula is used:

e(Â1+Â2)/M ≈ eÂ1/MeÂ2/M, (5)

where M is taken to be large. Here, Â1 and Â2 are operators
that do not necessarily commute. Applying this formula to the
intermediate density matrices yields

〈R′′|e−τĤ |R′〉 ≈ 〈R′′|e−τK̂e−τ V̂ |R′〉, (6)

where, again, M is taken to be large. Also, Ĥ = K̂ + V̂ , where
K̂ is the kinetic operator, V̂ is the potential operator, and
τ = β/M . From Trotter-Suzuki, we see that M must be taken
to be very large in order for this expression to be near exact.
It is now possible to evaluate the matrix element of both the
exponentiated kinetic and potential operators separately:

〈R′′|e−τK̂ |R′〉 =
(

Mm

2πh̄2β

)3N/2

exp

[−Mm

2h̄2β
(R′′ − R′)2

]
,

(7)

〈R′′|e−τ V̂ |R′〉 = exp

[
− β

M
V (R′)

]
δ(R′′ − R′). (8)

Now the path-integral form of the partition function can be
written as

Z =
∫

· · ·
∫

dR1dR2 · · · dRM

(
Mm

2πh̄2β

)3NM/2

× exp

[
−Mm

2h̄2β

M∑
l=1

(Rl−Rl+1)2

]
exp

[
− β

M

M∑
l=1

V (Rl)

]
,

(9)
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which is exact in the limit of M going to infinity. It is important
to realize that in the above expression, the position state
RM is the original state over which the trace in Eq. (2) is
being performed. Additionally, the path integral in the above
expression begins and ends at the same state since the partition
function is an integral over the diagonal thermal density matrix
elements. As a consequence, RM+1 = R1.

It should also be noted that the manner with which the
potential operator component of the density matrix is handled
here is called the “primitive approximation.” The present work
does not use this approximation in calculations, but it is
convenient for introducing and deriving the PIMC technique
[47,48].

B. Calculating thermodynamic averages

As mentioned above, the previous derivation of the partition
function uses the primitive approximation to evaluate thermal
density matrices. In practice, we evaluate density matrices as
follows:

〈R′′|e−τĤ |R′〉 = 〈R′′|e−τK̂ |R′〉
∏
i,j

ρ̃(r′′
i,j ,r

′
i,j ,τ ), (10)

where r′′
i,j = r′′

i − r′′
j , r′

i,j = r′
i − r′

j , and ρ̃(r′′
i,j ,r

′
i,j ,τ ) is the

two-body density matrix, which has replaced the exponenti-
ated potential operator. The two-body density matrix contains
information about the interactions between the particles in the
system. For the hard sphere and hard cavity interactions that
are of interest in this work, there are well-known two-body
density matrices (see Secs. III and IV).

Now that the partition function of the system has been found
(with the use of the appropriate two-body density matrix),
thermodynamic observables can be calculated. In general,
these observables are calculated as

〈Ô〉 = 1

Z
Tr(Ôρ̂). (11)

In the PIMC formalism, Eq. (11) becomes

〈Ô〉 =
∫

dRO(R)W (R), (12)

where R = {R1,R2, . . . ,RM}, which is referred to as the path,
and W (R) can be thought of as a probability distribution of all
possible paths written as

W (R) = 1

Z

(
Mm

2πh̄2β

)3NM/2

exp

[−Mm

2h̄2β

M∑
l=1

(Rl − Rl+1)2

]

×
M∏
l=1

∏
i,j

ρ̃(rl,(i,j ),rl+1,(i,j ),τ ), (13)

where rl,(i,j ) = rl,i − rl,j and rl+1,(i,j ) = rl+1,i − rl+1,j .
For the calculation of specific observables, the functional

form of O(R) must be known. These functions are referred
to as estimators, and they can be derived from the appropriate
derivatives of the partition function. As an example, the energy
of a system is given by

〈E〉 = −∂ ln Z

∂β
. (14)

Carrying out this derivative gives the energy estimator:

E(R) = 3NM

2β
− Mm

2h̄2β2

M∑
l=1

(Rl − Rl+1)2

−
M∑
l=1

∑
i,j

∂ ln (ρ̃(rl,(i,j ),rl+1,(i,j ),τ ))
∂β

, (15)

where 	 is the volume of the simulation box. An estimator
for pressure can be derived in a similar manner. The average
pressure of a system is given by

〈P 〉 = 1

β

∂ ln Z

∂	
, (16)

leading to

P (R) = NM

β	
− Mm

3h̄2β2	

M∑
l=1

(Rl − Rl+1)2

+ 1

β

M∑
l=1

∑
i,j

∂ ln (ρ̃(rl,(i,j ),rl+1,(i,j ),τ ))
∂	

. (17)

With these estimators, the average energy and pressure can be
calculated by plugging Eqs. (15) and (17) into the integral
of Eq. (12). However, these integrals cannot be evaluated
analytically. Instead, a standard METROPOLIS algorithm is
used to sample configurations from the set {R} according to
the probability distribution W (R). The estimators are then
evaluated at each sampled configuration and the average is
taken. Therefore, the final expressions for the average energy
and pressure of a system are

〈E〉 =
〈

3NM

2β
− Mm

2h̄2β2

M∑
l=1

(Rl − Rl+1)2

−
M∑
l=1

∑
i,j

∂ ln (ρ̃(rl,(i,j ),rl+1,(i,j ),τ ))
∂β

〉
, (18)

〈P 〉 =
〈

NM

β	
− Mm

3h̄2β2	

M∑
l=1

(Rl − Rl+1)2

+ 1

β

M∑
l=1

∑
i,j

∂ ln (ρ̃(rl,(i,j ),rl+1,(i,j ),τ ))
∂	

〉
, (19)

where 〈· · · 〉 denotes an average over configurations sampled
with the METROPOLIS algorithm. As mentioned previously, the
number of time slices, or M , in the above expressions is an
arbitrary parameter that can be set to any positive integer value.
However, as discussed, the approximations that were needed
to derive these expressions require large M to be accurate.
As a result, calculations of the energy and pressure in PIMC
simulations will converge, over increasing M , to the correct
value [47,48].
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III. TWO-PARTICLE HARD-SPHERE AND HARD-CAVITY
SYSTEM

A. Analytic calculation of energy

An objective of this work was to test the effectiveness of two
well-known approximations for two-body density matrices
used in hard-sphere and hard-cavity interactions. To do this, we
first analytically calculated the energy of a system consisting
of two particles that have a hard-sphere radius of σ and cannot
be separated by a distance greater than a specified hard-cavity
radius rcav. Once this calculation was performed for various
temperatures, PIMC simulations were also performed for
the same system using both of the two-body density matrix
approximations. The convergence of these simulations to the
analytic results as a function of M was then observed.

When the potential is a function of the distance between the
particles, the two-body Schrödinger equation can be separated
into the following differential equations:

− h̄2

2M
∇2

Rψ = EMψ, (20)

− h̄2

2μ
∇2

r ψ + V (|r1 − r2|)ψ = Eμψ, (21)

where we use |r1 − r2| and r interchangeably. Our task has
now been separated into two problems: one is a free particle
of mass M = 2m in the center-of-mass position, Eq. (20), and
the other is a particle of reduced mass μ = m/2 whose radial
component is that of the separation distance in the original
problem, Eq. (21). EM denotes the center-of-mass energy, and
Eμ is the separation distance energy.

To solve for the expectation value of the energy at a finite
temperature, the energy levels of the system must be solved
for and then averaged using Boltzmann statistics. The center-
of-mass energy is continuous since it is a free particle and can
be calculated as

〈EM〉 = 	m3/2

√
2π2h̄3Z

∫ ∞

0
E3/2e−βEdE,

(22)

Z = 	m3/2

√
2π2h̄3

∫ ∞

0
E1/2e−βEdE,

which can now be solved for a general inverse temperature β.
The potential for the two-particle system we are studying,

V (|r1 − r2|), is defined in the following way:

V (|r1 − r2|) =
{

0 if σ � |r1 − r2| � rcav,

∞ otherwise.

This leads to the following differential equation for the radial
component of the wave function in the separation distance:

d2R

dr2
+ 2

r

dR

dr
+

(
k2 − l(l + 1)

r2

)
R = 0,

(23)

k =
√

2mEμ

h̄
.

The solutions to this differential equation are the spherical
Bessel functions of the first and second kind, therefore the
radial wave functions are taken to be

Rl(r) = Ajl(kr) + Bnl(kr), (24)

where the jl’s are the first kind and the nl’s are the second. The
k values are solved for by imposing the boundary conditions
of the problem: R(σ ) = 0 and R(rcav) = 0. This results in the
following transcendental equation that k must satisfy:

jl(rcavk) − jl(σk)

nl(σk)
nl(rcavk) = 0. (25)

Once the solutions for k have been determined, the energy lev-
els for the reduced mass component of the energy are given by

Eμ,l,i = h̄2k2
l,i

2μ
, (26)

where l is the lth spherical Bessel function and i is the ith
k value associated with the lth spherical Bessel function.
According to Boltzmann statistics, the expectation value of
the energy becomes

〈Eμ〉 = 1

Z

∞∑
l=0

l∑
ml=−l

∞∑
i=1

Eμ,l,ie
−βEμ,l,i ,

(27)

Z =
∞∑
l=0

l∑
ml=−l

∞∑
i=1

e−βEμ,l,i ,

where ml is the regular magnetic quantum number introduced
in the 3D Schrödinger equation solved in spherical
coordinates. Since the potential has no angular dependence,
ml introduces a 2l + 1 degeneracy in the energy levels.

Now the total energy can be calculated as

〈E〉 = 〈EM〉 + 〈Eμ〉. (28)

B. PIMC calculation of energy

The two-body density matrices used in this work are the
IA and the CB density matrix. The image approximation is
a simple way of meeting the requirement of going to zero
as r goes to σ or rcav. On the other hand, the CB two-body
density matrix is based on the partial-wave scattering solution
of hard-sphere potentials and is a more general formula (which
reduces to the IA one under specific conditions). Because of
this, it is expected that the CB density matrix will yield better
convergence. The functional forms of the two-body density
matrices used in this work are given as [46]

ρ̃IA(r,r′) = {1 − exp[−(Mm/βh̄2)(r − σ )(r′ − σ )]}
×{1 − exp[−(Mm/βh̄2)(rcav − r)(rcav − r′)]},

(29)

ρ̃CB(r,r′) =
(

1 − σ (r + r′) − σ 2

rr′ exp[−(Mm/2βh̄2)(r−σ )

× (r′ − σ )(1 + cos χ )]

)(
1 − 2rcav − r

r

× exp{−(Mm/4βh̄2)[(r−1 + r′)2 − (r − r′)2]}
)

,

(30)

r−1 = (r − 2rcav)r̂, (31)
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FIG. 1. PIMC results for the two-particle hard-sphere, hard-
cavity system using both the IA and CB density-matrix approxi-
mations compared to analytic results. The temperature of the system
is T (h̄2/mσ 2kB )−1 = 1.0 and rcav/σ = 6. Convergence of the PIMC
results to the analytic energy occurred at approximately the same rate
for both density matrices.

where we have defined r to always be the larger of the two
vector magnitudes, i.e., r � r′, and χ is the angle between r
and r′. Both ρ̃IA and ρ̃CB are set to zero if r or r′ is less than σ

or greater than rcav.
Calculations of the energy of the system were performed

at five different temperatures for an increasing number of
time slices. The results are presented in reduced units,
where σ is the unit of length and h̄2/mσ 2 is the unit of
energy.

Convergence studies for the two density matrices using the
two-particle calculation were carried out at varying tempera-
tures, T (h̄2/mσ 2kB)−1 = 0.5,1.0,1.6,2.0,2.5. The results for
the convergence study at T (h̄2/mσ 2kB)−1 = 1.0 are presented
in Fig. 1. It was found that in all cases of varying temperature,
the general behavior of the PIMC results versus temperature
as a function of time slices remains fairly constant. For this
system, PIMC simulations converge rather quickly to the
analytic result regardless of the density matrix approximation
that is used. It could be argued that the image approx-
imation density matrix gives slightly quicker convergence
over the CB density matrix, but the difference is fairly
insignificant.

PIMC results for the energy versus temperature for both
thermal density matrices and analytic results are plotted
in Fig. 2. Both thermal matrices are in close agreement
with each other, and both agree very well with the linear
relation seen from the analytic results over all temperatures
studied.

Even though a significant difference between the conver-
gence of the density matrices was not observed, it was decided
that the CB density matrix should be used in the many-body
system calculations moving forward. This is because, as
mentioned earlier, the CB form was more rigorously derived
based on the partial-wave scattering solution for the hard-
sphere interaction.

0 0.5 1 1.5 2 2.5 3
T [units of h_2/mσ2kB]

2

3

4

5

6

7

8

Analytic Calculation
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Cao-Berne
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2 /m

un
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 o
f

σ2
]

FIG. 2. PIMC results of the energy for two-particle hard-sphere,
hard-cavity interaction for both image approximation and CB thermal
density matrices.

IV. MANY HARD-SPHERE PARTICLE SYSTEM

A. Noninteracting boltzmannon gas

In this section, we discuss the calculation of the energy and
specific heat of a system composed of many noninteracting
boltzmannons under periodic boundary conditions. Periodic
boundary conditions (PBCs) in simulations are meant to
approximate an infinite system in which a relatively small
simulation box is repeated in all directions, and particles that
leave one side of the box reenter from the opposite side. PBCs
can be mathematically expressed as

ψ(x,y,z) = ψ(x ± Lx,y ± Ly,z ± Lz), (32)

where Lx,y,z are the lengths of the simulation box in the x,y,z

directions. Often times, and in the case of our simulations, the
geometry of the simulation box is taken to be a cube, therefore
Lx = Ly = Lz = L.

PBCs are useful as a simulation can be performed with a
computationally manageable number of particles (10–1000),
but they can simulate the properties of macroscopic systems
at the thermodynamic limit when N → ∞ and 	 → ∞,
while the number density n = N/	 is a constant. An issue
with PBCs is inaccuracies, which are a result of finite-size
effects. Finite-size effects are a result of the system within
the simulation box being too small (i.e., too few particles).
Finite-size effects can be observed by increasing the particle
number and volume while maintaining a constant density and
observing if intensive properties (i.e., independent of particle
number) change. An example of finite-size effects can be seen
in calculations of the energy per particle and the specific heat
of a system of noninteracting boltzmannons. To begin, the
eigenvalues of energy for a system of noninteracting particles
under PBCs are given as

En = h̄2

2m
|kn|2,

kn = 2π

L
(nx x̂ + ny ŷ + nz ẑ),

(33)
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FIG. 3. Energy per particle of noninteracting gas of distinguish-
able particles vs temperature for increasing particle number. At small
values of N , finite-size effects cause a deviation from the expected
E/N = 3

2 kBT ; as N is increased, the expected behavior is observed
at lower T . Inset: energy per particle of noninteracting gas vs N at
T (h̄2/mσ 2kB )−1 = 0.1, nσ 3 = 0.2063. As the particle number rises,
E/N approaches a constant value.

where L is the length of our simulation box and nx,ny,nz

are integers. The energy of the system at a specific tem-
perature is calculated by averaging the eigenenergies over
the usual Maxwell-Boltzmann factor e−βEn . This calculation
was performed at a constant density of nσ 3 = 0.2063 at
increasing particle number values. The results are plotted
in Fig. 3. The expected behavior of a noninteracting gas
that obeys Boltzmann statistics is given by the equiparti-
tion theorem. For a 3D system where particles only have
translational degrees of freedom, energy is related to temper-
ature by

E

N
= 3

2
kBT . (34)

In Fig. 3 it can be seen that as the particle number is de-
creased, finite-size effects cause a deviation from the equipar-
tition theorem at increasingly higher temperatures. E/N is
plotted against T for N = (60,100,250,500,1000,10 000),
and it can be seen that as N increases, finite-size effects fall
away and the results eventually converge. Finite-size effects
are more prominent at lower T . For N = 100, the results
only begin to match what is expected at T ≈ 0.3, which is
drastically improved by the increase of the system size to
N = 250, and as N is further increased the expected result
is found at lower and lower temperatures. The inset in Fig. 3
shows the reduction of finite-size effects at T (h̄2/mσ 2kB)−1 =
0.1 as N is increased, and E/N eventually reaches the
expected 0.15 (h̄2/mσ 2) and then stays constant as N is further
increased.

The specific heat of this system was calculated by the
derivative of E/N with respect to T at all values of N

previously used. Figure 4 again shows the convergence to the
equipartition theorem at lower and lower T as N is increased.
At lower T , cv increases from the expected values of 1.5kB ,
as predicted by the equipartition theorem, and then quickly
decreases as T is further decreased. This behavior becomes
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FIG. 4. Specific heat of noninteracting gas of distinguishable
particles vs temperature for increasing particle number, nσ 3 =
0.2063. At small values of N , a spike is observed in cv at lower
temperatures; as N is increased, this spike becomes smaller and is
seen at lower T as finite-size effects fall away.

less and less prominent as N is increased, and cv eventually
converges to the expected value.

Because of finite-size effects, care must be taken to
ensure that simulations are being performed with an adequate
system size such that the results are representative of the
thermodynamic limit. In the next section, we explore at what
system size the thermodynamic limit is reached for simulations
of hard-sphere boltzmannons using the CB thermal density
matrix.

B. Hard-sphere boltzmannons

In this section, we study systems of hard-sphere particles
using the PIMC methods described in the previous sections.
As opposed to the two-particle calculation, this system does
not have hard-cavity interactions present. As a result, the CB
two-body density matrix takes the form

ρCB(r,r′) =
(

1 − σ (r + r′) − σ 2

rr′ exp[−(Mm/2βh̄2)

×(r−σ )(r′−σ )(1 + cos χ )]

)
. (35)

Figure 5 shows the energy for a simulation of a 20-particle sys-
tem with T (h̄2/mσ 2kB)−1 = 1.0, nσ 3 = 0.2063, and M = 41
at each configuration sampled by the METROPOLIS algorithm.
An important detail of these simulations is to account for the
equilibration time, which can be seen in the inset of Fig. 5.
When evaluating averages, one should only include values
taken after the system has equilibrated.

We perform our calculations for the energy per particle
and pressure using the PIMC method at varying temperatures
and particle numbers while maintaining a constant density.
As stated earlier, intensive properties such as the energy per
particle or pressure are not affected by the number of particles
in the system, but rather the number density (N/	). That is,
a system of varying particle number, but constant density, will
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FIG. 5. Energy of a 20-particle system produced by PIMC vs
the number of steps in the METROPOLIS algorithm. When taking the
average of these results, equilibration time must be taken into account.
This calculation was performed at T (h̄2/mσ 2kB )−1 = 1.0, nσ 3 =
0.2063, and M = 41. Inset: a closer look at the equilibration of the
system over the early steps.

have a constant E/N and P . In our simulations, it is expected
that as the number of particles in our simulation box increases,
E/N and P will vary at small values of N but will eventually
reach a constant value, analogously to the noninteracting
case.

In our PIMC calculations, the particle number was
increased until the results for energy per particle and
pressure reached a final value. These calculations were
performed at varying temperatures [T (h̄2/mσ 2kB)−1 =
0.5,1.0,1.5,2.0,2.5,3.0] and varying particle numbers (N =
20,60,108,200,300,400) at a density nσ 3 = 0.2063. This
density was chosen such that the Wigner-Seitz radius r0 =
(3/4πn)1/3 ≈ 1.05σ , which ensures the system is strongly
interacting via the hard-sphere potential. At all the above-listed
points in the (N,T ) plane, simulations were performed in
which M was increased in steady increments until the results
no longer varied by a statistically significant amount. When
the converged values of E/N and P at specific values of N no
longer vary with increasing N , the thermodynamic limit has
been reached.

Figure 6 shows our calculation of E/N for
T (h̄2/mσ 2kB)−1 = 2.0. The general trends observed at
T (h̄2/mσ 2kB)−1 = 2.0 are seen at all temperature values we
studied. As the particle number is increased, E/N decreases
monotonically at all values of time slices, eventually settling
at a constant value. It was also observed that convergence
in M was slower at lower values of N . This can be seen in
Fig. 6, where the value M needed to be taken to 81 in order
to observe convergence in N = 20,60, and only M = 61
was needed for the larger values of N . The inset of Fig. 6
shows the final converged values of E/N at varying N for
T (h̄2/mσ 2kB)−1 = 2.0, where the monotonic decreasing of
the energy to a constant value can be clearly observed.

The pressure of the same system is plotted in Fig. 7.
The pressure also follows the general trend of decreasing as
the number of particles is increased, eventually converging
to a final value. However, unlike E/N , this does not occur

0 10 20 30 40 50 60 70 80 90
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7.8

8

8.2

8.4

8.6

8.8
N=20
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N=300
N=400
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FIG. 6. PIMC results of energy for a system of hard-sphere
particles under periodic boundary conditions at varying particle
number for T (h̄2/mσ 2kB )−1 = 2.0 and nσ 3 = 0.2063. For each value
of N , the value of M was increased until E/N converged sufficiently.
N was increased until the thermodynamic limit was reached; this was
found to be in the N = 300–400 range. Inset: the converged values
of E/N for all values of N at T (h̄2/mσ 2kB )−1 = 2.0.

monotonically at all temperatures, as can be seen in the higher
time-slice values of N = 20 and 60 for the T (h̄2/mσ 2kB)−1 =
2.0 case in which the pressure increases between the two values
of N . It can also be observed that convergence in M is slower
at smaller particle numbers, similar to the E/N calculations.
The converged values of P for each value of N are shown in
the inset of this plot. Again, unlike the E/N case, we do not see
a monotonically decreasing convergence to a final value, but
instead an oscillatory convergence. After the above analysis
was performed at each of the previously listed temperatures, it
was found that a system size of N = 300–400 was sufficient
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FIG. 7. PIMC results of pressure for a system of hard-sphere
particles under periodic boundary conditions at varying particle
number for T (h̄2/mσ 2kB )−1 = 2.0 and nσ 3 = 0.2063. For each value
of N , the value of M was increased until P converged sufficiently. N
was increased until the thermodynamic limit was reached; this was
found to be in the N = 300–400 range. Inset: the converged values
of P for all values of N at T (h̄2/mσ 2kB )−1 = 2.0.
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FIG. 8. Energy per particle of a system of hard-sphere particles
at the thermodynamic limit for density nσ 3 = 0.2063. At higher
temperatures, E/N is linear in T , while this relationship falls off
as temperature is decreased. This shows that at high T this system
reaches the classical limit, while at low T quantum effects take over.

to have reached the thermodynamic limit at all temperatures
studied.

The results for E/N at all values of T that were studied are
plotted in Fig. 8. These values are for N = 400 as this satisfies
the thermodynamic limit. At larger T , E/N becomes linear, as
would be expected from a classical system. At lower values of
T , the system moves away from this classical behavior as the
curve begins to flatten and the slope decreases. This behavior is
expected as T becomes smaller, causing the thermal de Broglie
wavelength to grow and quantum effects begin to dominate the
system’s behavior.

Figure 9 shows the specific heat of the system, which
was calculated via the numerical derivative of E/N at many
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_
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FIG. 9. Specific heat of a system of hard-sphere particles at the
thermodynamic limit with density nσ 3 = 0.2063. As T is raised, cv

approaches the 1.5kB limit predicted by the equipartition theorem. In
the range plotted, cv decreases with T as a consequence of the third
law of thermodynamics.
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FIG. 10. Pressure of a system of hard-sphere particles at the
thermodynamic limit for density nσ 3 = 0.2063. Similar to results
for E/N , at higher temperatures P is linear in T , while this again
stops being the case as T is decreased.

values of T for N = 300, which was still verified to be within
the thermodynamic limit for T > 0.5. At high T we again
observe classical behavior as cv approaches 1.5, given by
the equipartition theorem. At low T we can again observe
behavior that deviates from classical expectations as cv begins
to decrease. By the third law of thermodynamics we expect cv

to go to 0 as T goes to 0, however cv was calculated at values
in the T < 0.5 range and a rapid increase in cv was observed
as the temperature was decreased in this lower range. Given
the third law of thermodynamics, these results appear to be
unphysical and could be the result of finite-size effects. This is
considered a strong possibility due to the fact that an increase
in cv as the temperature was lowered was also seen for the
noninteracting case in Fig. 4, which was also shown to be the
result of finite-size effects.

The pressure results plotted against temperature are shown
in Fig. 10. These results are also for the N = 400 system. In
a similar manner to the E/N results, at high T the pressure
shows a linear relation to the temperature, as expected from
a classically behaving system. As temperature is lowered, we
again see the linear relation begin to flatten and move away
from the classical behavior.

V. SUMMARY AND CONCLUSIONS

In summary, we performed path-integral Monte Carlo simu-
lations for systems of distinguishable particles that interact via
hard-sphere and hard-cavity potentials. To begin, we studied
a system of two hard-sphere particles trapped inside a hard
cavity. We analytically calculated the energy of the system
at varying temperatures by solving the Schrödinger equation
and finding the thermodynamic average using the Boltzmann
distribution. We calculated the energy of the same system
using the PIMC method with two distinct approximations
to the thermal density matrix: the image approximation and
the CB thermal density matrix. For all temperatures stud-
ied, T (h̄2/mσ 2kB)−1 = 0.5,1.0,1.6,2.0,2.5, we found that
convergence of the PIMC energy to the analytic energy in
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the number of time slices for both density matrices was
approximately the same. We then studied a system of N hard-
sphere particles placed under periodic boundary conditions.
We performed calculations of the energy per particle, pressure,
and specific heat of the system for a range of temperatures.
We established when the thermodynamic limit of the system
was reached and the finite-size effects caused by the PBC
had been eliminated. A range of N ≈ 300–400 was found
to be sufficient. We found that E/N , P , and cv approached
classical behavior in the upper limit of the temperature range
we studied and deviated from this behavior at lower T . These
results constitute nonperturbative microscopic benchmarks for
strongly interacting quantum boltzmannons, and they can

guide further theoretical work as well as comparison with
experiment.
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