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By means of the Boltzmann-Vlasov kinetic equation we investigate dynamical properties of a trapped
one-component Fermi gas at zero temperature, featuring the anisotropic and long-range dipole-dipole interaction.
To this end, we determine an approximate solution by rescaling both space and momentum variables of the
equilibrium distribution, thereby obtaining coupled ordinary differential equations for the corresponding scaling
parameters. Based on previous results on how the Fermi sphere is deformed in the hydrodynamic regime of a
dipolar Fermi gas, we are able to implement the relaxation-time approximation for the collision integral. Then, we
proceed by linearizing the equations of motion around the equilibrium in order to study both the frequencies and the
damping of the low-lying excitation modes all the way from the collisionless to the hydrodynamic regime. Our the-
oretical results are expected to be relevant for understanding current experiments with trapped dipolar Fermi gases.
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I. INTRODUCTION

The experimental achievement of Bose-Einstein conden-
sation (BEC) of atomic chromium [1], which has a magnetic
moment of m = 6μB, where μB stands for the Bohr magneton,
and the subsequent detection of the long-range and anisotropic
dipole-dipole interaction (DDI) in that system [2] paved
the way for a systematic investigation of dipolar quantum
systems. In chromium BECs, the DDI is usually of secondary
importance, as its relative strength in comparison with the
short-range and isotropic contact interaction is only about
15%. However, by using a Feshbach resonance, one can
tune the contact interaction in order to improve the relative
importance of the DDI [3]. Thus, in retrospect, the work with
chromium has turned out to be highly valuable as many specific
achievements have led to a better understanding of bosonic
dipolar systems [4–7]. Among them, one could emphasize
the observation of a d-wave Bose-nova explosion pattern
[8], the strong dipolar character of time-of-flight analysis [9],
and the detection of the influence of the DDI in low-lying
excitations [10,11].

Since then, a few major experimental successes were
obtained, which might lead to even stronger dipolar quantum
systems, consisting of both atomic and molecular systems.
Particularly promising candidates are polar molecules such as
KRb [12–14], LiCs [15,16], and, most recently obtained, NaK
[17], which have a strong electric dipole moment. Their DDI
may be up to 10 000 times stronger than in usual atomic
systems [18] with the additional property of tunability of
strength, sign, and direction [19], thus providing an ideal
testing ground for strong dipolar systems. Moreover, atomic
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systems such as dysprosium, the most magnetic atom with
a magnetic moment of m = 10μB, and erbium, which has
m = 7μB, are currently under intense investigation. Indeed,
the bosonic dysprosium isotope 164Dy was Bose condensed
[20], while its fermionic isotope 161Dy was brought to quantum
degeneracy [21] and shown to display a fermionic suppression
of the inelastic dipolar scattering [22]. On top of that, Bose-
Einstein condensation of 168Er was achieved [23] in which
the long-sought roton mode [24] could recently be observed
[25]. Furthermore, also a quantum degenerate dipolar Fermi
gas of 167Er atoms was created [26] which was used for the
remarkable experimental achievement of demonstrating the
deformation of the Fermi sphere in a dipolar Fermi gas [27].
In this context, fascinating possibilities are brought about by
the recent production of weakly bound molecular states in
Er2 molecules, which have very large dipole moments and
the orientation of which can be changed [28]. Naturally, such
experimental developments have triggered much theoretical
interest such as in dipolar Bose-Fermi mixtures [29], two-
component dipolar Fermi gases [30], exact ground-state [31]
and quasiparticle properties [32], as well as few fermion
quench dynamics in one-dimensional optical lattices [33].

The combination of theoretical and experimental interest in
highly magnetic atoms has also led to a major development
in dipolar quantum gases, which is the demonstration that
a strongly dipolar Bose gas can exhibit phenomena such as
the Rosensweig instability [34] by means of the formation of
quantum droplets in its ground state instead of a mere conden-
sate [35] and that these might even unite into a single large
droplet [36,37]. Indeed, by taking into account the influence
of quantum fluctuations of the ground-state energy [38,39]
within the nonlinear nonlocal Gross-Pitaevskii equation one
can explain both the small droplets in dysprosium [40] and the
large ones in erbium [37] without any fitting parameter. Related
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results were also obtained by using quantum Monte Carlo
simulations regarding droplets [41] but also similar types of
structures such as filaments [42]. Recent experimental results
even suggested that tilting the orientation of the dipoles induces
a phase transition from a BEC to a metastable state of many
tilted droplets [43]. Moreover, further theoretical investigation
led to the nontrivial fact that these droplets are self-bound, i.e.,
remain localized when released in free space [44].

Concerning dipolar systems, one feature, which has re-
ceived considerable attention, is the possibility of magne-
tostriction in momentum space. Indeed, the recent experimen-
tal observation of this effect, realized with atomic erbium sam-
ples [27], provides a long awaited confirmation of theoretical
predictions and, at the same time, paves the way for a plethora
of other related physical phenomena. While being first found
theoretically in the fermionic case [45], it was intensively
investigated in different contexts and also in the bosonic case
[46]. For fermionic dipolar gases, other interesting possibilities
were found such as supersolid [47], ferronematic [48], and
Berezinskii-Kosterlitz-Thouless phases [49] and in addition
also their Fermi-liquid properties were studied [50].

Much theoretical work has also been devoted to the normal
phase of a dipolar Fermi gas. Its equilibrium properties in
the presence of a harmonic trap were considered at both zero
[45,51–53] and finite temperature [54,55]. Also the dynamical
properties of a trapped dipolar Fermi gas were studied at both
zero [52,53,56] and finite temperature [57].

Dynamical properties such as low-lying excitations rep-
resent an important diagnostic tool for ultracold systems.
Moreover, they can be measured with high accuracy, so as to
provide reliable physical information. In the case of nondipolar
unitary Fermi gases, for example, such measurements were
used to discard predictions of the mean-field BCS theory in
favor of the predictions of quantum Monte Carlo simulations
[58] along the BCS-BEC crossover [59]. A more recent
example is that of the experimental support for the lower bound
to the viscosity of a unitary gas [60], which is conjectured to
be universal [61]. The aforementioned detection of the DDI
through observing the hydrodynamic modes of a chromium
BEC should also be recalled in this context [2].

In the first studies, the investigations of the excitations
of dipolar Fermi gases were concentrated on either the
collisionless (CL) regime [56,57], where collisions can be
neglected, or in the hydrodynamic (HD) regime [52,53], where
collisions occur so often that local equilibrium can be assumed.
Recently, also the radial quadrupole mode was studied in
detail in both the CL and the HD regime [62]. Moreover,
numerical studies focusing on a two-dimensional system in
the HD regime were performed [63]. The next natural step is
the investigation of what happens when the system undergoes
a crossover from one regime to the other. Along these lines,
there was recently a thorough investigation of quasi-two-
dimensional dipolar Fermi gases [64]. Indeed, by considering
a linearized scaling ansatz as well as numerical results, the
first eight moments of the collisional Boltzmann-Vlasov (BV)
kinetic equation were analyzed. The resulting graph of the
collision rate against temperature was shown to exhibit an
unexpected plateau, a unique characteristic of dipolar systems,
and also the low-lying modes in this quasi-two-dimensional
case were considered [64]. It is important to remark that,

additionally, the effect of quantum correlations was considered
in this system. Building on a previous study, where quantum
Monte Carlo methods were used to investigate the Fermi-liquid
as well as the crystal phases in strictly two-dimensional
systems [65], a mapping scheme could be constructed, that
allows for investigating correlations in quasi-two-dimensional
spherically trapped dipolar Fermi gases [66].

In the present paper, we focus on a three-dimensional
dipolar Fermi gas at zero temperature and investigate the
transition of both the frequencies and the damping of the
low-lying modes from the CL to the HD regime by applying
the relaxation-time approximation. To this end the paper
is organized as follows. In Sec. II we solve the BV kinetic
equation for a harmonically trapped dipolar Fermi gas by
rescaling the equilibrium distribution and obtain ordinary
differential equations for the respective scaling parameters.
Afterwards, we specialize them in Sec. III at zero temperature
to the relaxation-time approximation for the collision integral
and to a concrete equilibrium distribution. A subsequent
linearization of the equations of motion for the respective
scaling parameters in Sec. IV allows us to determine both
the frequency and the damping of the low-lying excitation
modes. In particular, we investigate how the properties of
the monopole mode, the three-dimensional quadrupole mode,
and the radial quadrupole mode change by varying the
relaxation time from the CL to the HD regime. The conclusion
in Sec. V summarizes our findings and indicates possible
future investigations along similar lines. Furthermore,
the Appendices present a self-contained computation of
the respective relevant energy integrals, as well as technical
details concerning the linearization of the equations of motion.

II. BOLTZMANN-VLASOV EQUATION

We start with describing the dynamic properties of a
trapped dipolar Fermi gas by means of the Wigner function
ν(x,q,t), which represents a semiclassical distribution
function in phase space spanned by coordinate x and wave
vector q [67,68]. It allows us to determine both the particle
density through n(x,t) = ∫ d3q ν(x,q,t)/(2π )3 and the
wave-vector distribution by n(q,t) = ∫ d3x ν(x,q,t)/(2π )3

as well as the expectation value of any observable according
to 〈O〉 = ∫ d3x

∫
d3q O(x,q)ν(x,q,t)/(2π )3. The time

evolution of this Wigner function is determined by the
Boltzmann-Vlasov kinetic equation

∂ν

∂t
+
{

h̄q
M

+ 1

h̄

∂[U (x) + Umf(x,q,t)]

∂q

}
∂ν

∂x

− 1

h̄

∂[U (x) + Umf(x,q,t)]

∂x
∂ν

∂q
= Icoll[ν](x,q,t), (1)

where U (x) = M
∑

i ω
2
i x

2
i /2 is a general harmonic trapping

potential for a particle with mass M and ωi denotes the trap
frequency in the i direction. The mean-field potential

Umf(x,q,t) =
∫

d3x ′n(x′,t)Vd(x − x′)

−
∫

d3q ′

(2π )3
ν(x,q′,t)Ṽd(q − q′) (2)

043608-2



LOW-LYING EXCITATION MODES OF TRAPPED DIPOLAR . . . PHYSICAL REVIEW A 96, 043608 (2017)

contains in the first and second term the Hartree and Fock
contributions, respectively, where Vd(x) represents the
dipole-dipole potential and Ṽd(q) is its Fourier transform. We
consider a system of dipolar fermions with the point dipoles
aligned along the z direction so that Vd(x) reads

Vd(x) = Cdd

4π |x|3 (1 − 3 cos2 ϑ), (3)

with ϑ being the angle between the direction of the polarization
of the dipoles and their relative position. The dipole-dipole
interaction strength is characterized for magnetic atoms by
Cdd = μ0m

2, with μ0 being the magnetic permeability in
vacuum and m denoting the magnetic dipole moment. In the
case of heteronuclear molecules with electric moment d, the
interaction strength is given by Cdd = d2/ε0, with the vacuum
dielectric constant ε0. Note that the Fourier transform of the
dipole-dipole interaction potential (3) is given by [69]

Ṽd(k) =
∫

d3xVd(x)eik·x = Cdd

3

(
3k2

z

k2
− 1

)
. (4)

The collision integral Icoll[ν] includes the dissipative effects
by means of a nonlinear functional of the distribution function
and is of second order of the dipole-dipole potential Vd(x).
Its concrete form and derivation for a general two-body
interaction potential can be found, for instance, in Ref. [70].

In order to find an approximate solution of the BV equation
in the vicinity of equilibrium we use the scaling method from
Ref. [71]. To this end, we assume that the distribution function
ν(x,p,t) can be obtained from rescaling the equilibrium
distribution function ν0(r,k), which satisfies{

h̄q
M

+ 1

h̄

∂[U (x) + Umf(x,q)]

∂q

}
∂ν0

∂x

− 1

h̄

∂[U (x) + Umf(x,q)]

∂x
∂ν0

∂q
= 0, (5)

according to

ν(x,q,t) = �ν0(r(t),k(t)). (6)

Thereby we have introduced the scaling parameters bi and 	i

via

ri = xi

bi(t)
, (7)

ki = 1√
	i(t)

[
qi − Mḃi(t)xi

h̄bi(t)

]
, (8)

where the second term in Eq. (8) describes a transformation of
the q vector resulting in a vanishing local velocity field [72].
As the scaling parameters bi and 	i denote the time-dependent
deviation from equilibrium, their equilibrium values are given
by b0

i = 	0
i = 1. Furthermore, the term

� = 1∏
j bj

√
	j

(9)

ensures the normalization of the distribution function ν.
Ordinary differential equations for the scaling parameters

bi and 	i can be obtained by taking moments of the BV
equation, i.e., by integrating it with a prefactor over the whole
phase space. Using the prefactor riki , i.e., performing the

operation
∫

d3rd3k/(2π )3riki × (1), leads to the following
coupled ordinary differential equations for the spatial scaling
parameters bi :

b̈i + ω2
i bi − h̄2

〈
k2
i

〉0
	i

M2bi

〈
r2
i

〉0 + 1

2Mbi

〈
r2
i

〉0
×
[∫

d3k

(2π )3
W̃i(b,k)ñ0(k)ñ0(−k) − 1∏

j bj

×
∫

d3rd3kd3k′

(2π )6
ν0(r,k)ν0(r,k′)W̃i(	,k − k′)

]
= 0, (10)

where 〈•〉0 = ∫ d3rd3k • ν0(r,k)/(2π )3 denotes the phase-
space average in equilibrium and ñ0 is the Fourier
transform of the spatial density in equilibrium n0(r) =∫

d3q ν0(r,q)/(2π )3. Furthermore W̃i(b,k) represents an ab-
breviation for

W̃i(b,k) = F

[
ri

∂Vd(b,r)

∂ri

]
, (11)

where Vd(b,r) stands for the rescaled dipole-dipole potential
and F [•] is the Fourier transform. The other abbreviation
function W̃i(	,k) is defined by

W̃i(	,k − k′)

= F

[
ri

∂Vd(r)

∂ri

](
	

1
2
x (kx − k′

x),	
1
2
y (ky − k′

y),	
1
2
z (kz − k′

z)
)
.

(12)

We observe that Eq. (10) has a Newtonian form stemming
from trapping, kinetic, and Hartree-Fock mean-field energy
terms. Note that the contribution of the collision integral in
Eq. (10) vanishes, because the quantity riki is conserved under
collisions [71]. The effect of collisions is only contained in the
differential equations for the momentum scaling parameters
	i , which can be obtained by taking moments of Eq. (1) with
the prefactor k2

i , leading to

	̇i

	i

+ 2
ḃi

bi

= 1

�
〈
k2
i

〉0
∫

d3rd3k

(2π )3
k2
i Icoll[ν]. (13)

We remark that taking moments of the BV equation weighted
with a prefactor of the form rirj does not provide new
constraints between the scaling parameters bi and 	i [73].

III. EQUILIBRIUM

Before solving the coupled set of Eqs. (10) and (13) we
have to simplify them by explicitly evaluating the respective
integrals. This can be done analytically by determining the
equilibrium distribution function ν0(r,k) in a self-consistent
way within a variational ansatz. In the low-temperature regime
it is appropriate to choose an ansatz which resembles the
Fermi-Dirac distribution of a noninteracting Fermi gas at zero
temperature:

ν0(r,k) = �

(
1 −

∑
j

r2
j

R2
j

−
∑

j

k2
j

K2
j

)
(14)
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with �(x) denoting the Heaviside unit step function. Here
the variational parameters Ri and Ki represent the Thomas-
Fermi radii and momenta, respectively, which describe the
extension of the equilibrium Fermi surface in both coordinate
and momentum space. The dipole-dipole interaction stretches
both the particle density [51] and the momentum distribution
[45] in the direction of the polarization, which is taken into
account by a possible anisotropy of the variational parameters
Ri and Ki . With this ansatz, the normalization of Eq. (14) to
N fermions leads to

48N = R
3
K

3
, (15)

where the bar denotes geometric averaging, i.e., R =
(RxRyRz)

1
3 . In order to be physically self-consistent the ansatz

Eq. (14) has to minimize the total Hartree-Fock energy of the
system as the collision integral vanishes in equilibrium. Hence
the total energy Et of the system consists of the kinetic term

Ek =
∫

d3r

∫
d3k

(2π )3

h̄2k2

2M
ν0(r,k), (16)

the trapping term

Etr =
∫

d3r

∫
d3k

(2π )3

M

2

(∑
j

ω2
j r

2
j

)
ν0(r,k), (17)

the direct Hartree term

Ed = 1

2

∫
d3r

∫
d3r ′

∫
d3k

(2π )3

×
∫

d3k′

(2π )3
Vd(r − r′)ν0(r,k)ν0(r′,k′), (18)

and the Fock exchange term

Eex = −1

2

∫
d3r

∫
d3r ′

∫
d3k

(2π )3

×
∫

d3k′

(2π )3
Vd(r′)ei(k−k′)·r′

ν0(r,k)ν0(r,k′). (19)

Inserting the variational ansatz Eq. (14) for the equilibrium
distribution into the respective energy contributions (16)–(19)
leads to various phase space integrals. Whereas both kinetic
energy (16) and trapping energy (17) yield elementary solvable
integrals, the computation of the Hartree and Fock integrals

(18) and (19) turns out to be more elaborate and is, therefore,
relegated to Appendix A (see also Ref. [45,53]). The resulting
total energy reads

Et = N

8

∑
j

h̄2K2
j

2M
+ N

8

M

2

∑
j

ω2
jR

2
j

− 48N2c0

8R
3 f

(
Rx

Rz

,
Ry

Rz

)
+ 48N2c0

8R
3 f

(
Kz

Kx

,
Kz

Ky

)
(20)

with the constant

c0 = 210Cdd

34 × 5 × 7 × π3
. (21)

The Hartree and Fock terms in Eq. (20) depend on the
aspect ratio of the Thomas-Fermi radii and momenta via
the anisotropy function f (x,y), which is defined through the
integral

f (x,y) = − 1

4π

∫ 2π

0
dφ

∫ π

0
dϑ sinϑ

×
[

3x2y2cos2ϑ

(y2cos2φ + x2sin2φ)sin2ϑ + x2y2cos2ϑ
− 1

]
(22)

and which can also be represented as follows [53,74]:

f (x,y) = 1 + 3xy
E(ϕ,q) − F (ϕ,q)

(1 − y2)
√

1 − x2
, (23)

where F (ϕ,q) and E(ϕ,q) are the elliptic integrals of the first
and second kind, respectively, with ϕ = arcsin

√
1 − x2 and

q2 = (1 − y2)/(1 − x2). The variational parameters Ri and
Ki are now determined by minimizing Eq. (20) under the
constraint of the particle conservation (15). This leads to the
following equations for the momentum parameters Ki :

Kx = Ky, (24)

h̄2K2
z

2M
− h̄2K2

x

2M
= 72Nc0

R
3

[
1 +

(
2K2

x + K2
z

)
fs
(

Kz

Kx

)
2
(
K2

z − K2
x

)
]
, (25)

with the symmetric anisotropy function fs(x) = f (x,x)
[52,75–77], and the spatial parameters Ri :

ω2
xR

2
x − 1

3

∑
j

h̄2K2
j

M2
+ 48Nc0

MR
3

[
f

(
Rx

Rz

,
Ry

Rz

)
− fs

(
Kz

Kx

)
− Rx

Rz

f1

(
Rx

Rz

,
Ry

Rz

)]
= 0, (26)

ω2
yR

2
y − 1

3

∑
j

h̄2K2
j

M2
+ 48Nc0

MR
3

[
f

(
Rx

Rz

,
Ry

Rz

)
− fs

(
Kz

Kx

)
− Ry

Rz

f2

(
Rx

Rz

,
Ry

Rz

)]
= 0, (27)

ω2
zR

2
z − 1

3

∑
j

h̄2K2
j

M2
+ 48Nc0

MR
3

[
f

(
Rx

Rz

,
Ry

Rz

)
− fs

(
Kz

Kx

)
+ Rx

Rz

f1

(
Rx

Rz

,
Ry

Rz

)
+ Ry

Rz

f2

(
Rx

Rz

,
Ry

Rz

)]
= 0, (28)

where f1 and f2 denote the derivatives of the anisotropy
function with respect to the first and second argument,
respectively.

Note that from this result it turns out that the distribution
function ν0 is deformed from a sphere to an ellipsoid in
momentum space due to the Fock term of the dipole-dipole
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interaction as was first clarified by Ref. [45]. One can see
from Eq. (24) that the momentum distribution remains cylinder
symmetric even in the case of an anisotropic harmonic
trap. Furthermore, a more detailed analysis shows that it
always resembles a cigar-shaped form satisfying the inequality
Kz > Kx . This follows from the fact that the dipole-dipole
interaction (3) is attractive for head-to-tail orientations, thus
stretching the system along the z direction in a prolate cloud
shape. The corresponding effect in the particle density has

already been obtained before, by means of a Gaussian ansatz
in real space [51]. A detailed discussion of how the Thomas-
Fermi radii and momenta depend on the trap frequencies
for both cylinder-symmetric and triaxial traps as well as on
the dipole-dipole interaction strength Cdd can be found, for
instance, in Refs. [45,52,53,56,78].

On the basis of the variational ansatz Eq. (14) for the equi-
librium distribution the integrals in Eqs. (10) for the scaling
parameters bi can now be calculated analytically, yielding

b̈i + ω2
i bi − h̄2K2

i 	i

M2biR
2
i

+ 48Nc0

MbiR
2
i

∏
j bjRj

[
f

(
bxRx

bzRz

,
byRy

bzRz

)
− biRi

∂

∂biRi

f

(
bxRx

bzRz

,
byRy

bzRz

)]

− 48Nc0

MbiR
2
i

∏
j bjRj

⎡
⎣f

⎛
⎝	

1
2
z Kz

	
1
2
x Kx

,
	

1
2
z Kz

	
1
2
y Ky

⎞
⎠+ 	

1
2
i Ki

∂

∂	
1
2
i Ki

f

⎛
⎝	

1
2
z Kz

	
1
2
x Kx

,
	

1
2
z Kz

	
1
2
y Ky

⎞
⎠
⎤
⎦ = 0. (29)

We remark that our result (29) reduces to the corresponding
ones obtained in Ref. [56] in the collisionless regime for a
cylinder-symmetric trapping potential.

Let us now turn to the differential equations for the
momentum scaling parameters 	i in Eq. (13), which still
contain the collision integral. In order to simplify the cal-
culation, we model this collision integral within the widely
used relaxation-time approximation [71,73,79,80]

Icoll[ν] ≈ −ν − ν le

τ
. (30)

Here the phenomenological parameter τ denotes the relax-
ation time, which corresponds to the average time between
two collisions. Furthermore, we have introduced the local
equilibrium distribution function ν le, which is defined by the
condition Icoll[ν le] = 0 and represents the limiting function of
the relaxation process for infinitely large times. The relaxation-
time approximation (30) reflects the fact that dissipation should
be absent in both HD and CL regimes, where, thus, one expects
the collision integral to vanish [71].

We assume that the collisions only change the momentum
distribution of ν le [71]. This is justified by deriving the collision
integral within a gradient expansion of the distribution function
and by considering only the first term [70]. Similar arguments
have been used before in the context of the local-density
approximation for bosonic dipolar gases [38,39]. Therefore,
ν le is determined from rescaling the equilibrium distribution
ν0 via an ansatz similar to Eq. (6), i.e.,

ν le(x,q,t) = �leν0(r(t),kle(t)), (31)

with the old scaling parameters bi in real space according to
Eq. (7), but new scaling parameters 	le

i in momentum space

kle
i = 1√

	le
i (t)

[
qi − Mḃi(t)xi

h̄bi(t)

]
, (32)

thus yielding the corresponding normalization

�le = 1∏
j bj

√
	le

j

. (33)

Inserting the ansatz (30) into Eq. (13) finally leads to

	̇i + 2
ḃi

bi

	i = − 1

τ

(
	i − 	le

i

)
. (34)

The physical meaning of this equation is that dissipation occurs
in the system outside of local equilibrium in each direction
separately as long as there are collisions, i.e., as long as the
relaxation time τ remains finite. As a matter of fact, in order to
obtain a closed set of equations we have yet to find additional
equations which determine the momentum scaling parameters
	le

i . In the case of a Fermi gas with contact interaction only,
a relation between the scaling in local equilibrium 	le

i for
different directions can be obtained as in Ref. [71] and they
turn out to be all equal, due to the isotropy of the system. For a
dipolar gas, however, this is not valid anymore and a different
approach must be followed. Indeed, due to the presence
of the DDI, the Fermi sphere is deformed, thus reducing
the symmetry in the momentum scaling from spherical to
ellipsoidal. To overcome this issue, we build on the fact that a
hydrodynamic theory was already worked out in Refs. [52,53]
in which local equilibrium is always ensured [71]. To this
end, we study the relation between the momentum scaling
parameters in the framework of the hydrodynamic theory and
evaluate the respective energy contributions Eqs. (16)–(19) in
local equilibrium in Eq. (31), where again the collision integral
vanishes by definition. With this we obtain

Ele
t = −N

8

M

2

∑
i

ḃ2
i R

2
i + N

8

∑
i

h̄2K2
i 	le

i

2M
+ N

8

M

2

×
∑

i

ω2
i b

2
i R

2
i − 48N2c0

8
∏

j bjRj

f

(
bxRx

bzRz

,
byRy

bzRz

)

+ 48N2c0

8
∏

j bjRj

f

⎛
⎝(	le

z

) 1
2 Kz(

	le
x

) 1
2 Kx

,

(
	le

z

) 1
2 Kz(

	le
y

) 1
2 Ky

⎞
⎠. (35)

However, when determining the momentum scaling parame-
ters 	le

i by minimizing Eq. (35), we have to consider that they
turn out to be not independent of one another. Summing all
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three of Eqs. (34) yields in local equilibrium the constraint

∏
j

bj

√
	le

j = 1. (36)

With this the minimization of the energy (35) leads to

	le
x = 	le

y , (37)

h̄2	le
z K2

z

2M
− h̄2	le

x K2
x

2M

= 3

2

48Nc0∏
j bjRj

⎧⎪⎪⎨
⎪⎪⎩1 +

(
2	le

x K2
x + 	le

z K2
z

)
fs

[
(	le

z )
1
2 Kz

(	le
x )

1
2 Kx

]
2
(
	le

z K2
z − 	le

x K2
x

)
⎫⎪⎪⎬
⎪⎪⎭.

(38)

These two equations show the deformation of the local
equilibrium distribution function in momentum space, which
disappears if we set the dipole-dipole interaction to zero. Again
we obtain a cylinder-symmetric configuration in momentum
space satisfying

√
	le

z Kz >
√

	le
x Kx . Furthermore, we note

that the right-hand side of Eq. (38) originates from the Fock
term, hence the momentum distribution remains cylinder
symmetric even in the case of an anisotropic harmonic trap.
In the absence of the DDI, more precisely in the absence of
the Fock exchange term of the DDI, the momentum scaling
parameters in local equilibrium assume the same values in all
three directions. This resembles the case of a two-component
Fermi gas featuring contact interaction only [71].

Finally, we remark that a solution in the hydrodynamic
regime, where the relaxation time goes to zero, i.e., τ → 0,
must have the same momentum symmetry as in the case of
local equilibrium. This is a common feature in both cases
of contact and dipolar interactions. Thus, the hydrodynamic
theory in Refs. [52,53] turns out to be crucial for the
determination of the momentum scaling parameters in this
regime, as given by Eqs. (36)–(38).

IV. LOW-LYING EXCITATION MODES

Having solved the Hartree-Fock Boltzmann-Vlasov theory
with a scaling ansatz involving the local equilibrium solution,
which is properly linked to the hydrodynamic regime, we can
address various dynamical properties of interest. Whereas the
time-of-flight dynamics of a dipolar Fermi gas has recently
been studied along the same lines developed in the present
paper [78], here we analyze the low-lying excitations of the
system. To this end, we use the equations of motion (29),
(34), and (36)–(38) for the scaling parameters bi , 	i , and 	le

i

and calculate the various properties of the low-lying excitation
modes via a linearization around the respective equilibrium
values.

A. Linearization

In order to obtain the low-lying excitation frequencies,
one has to linearize the equations of motion for the scaling
parameters. To this end, we decompose all spatial and

momentum scaling parameters according to

bi = b0
i + δbi, 	i = 	0

i + δ	i, 	le
i = 	

le,0
i + δ	le

i ,

(39)

with the equilibrium values b0
i = 	0

i = 	
le,0
i = 1 for all i.

This decomposition leads to cumbersome equations for the
respective elongations δbi , δ	i , and δ	le

i out of equilibrium,
which are relegated to Appendix B. For now, it suffices to
consider the following physical aspects.

The first aspect we would like to point out is the cylinder
symmetry of the momentum distribution which implies for
local equilibrium δ	le

x − δ	le
y = 0, as follows directly from

the linearization process in Eq. (B1). This can be traced
back to the anisotropy of the DDI. Indeed, the momentum
distribution of a Fermi gas at low temperatures is dominated
by the Fermi pressure, which is isotropic. In turn, the DDI
singles out the z direction, as the dipoles are aligned along
that direction. This is in contrast to the case of Bose gases at
zero temperature, since the occupation of a single one-particle
mode suppresses the Fock term [81] and the momentum
distribution is dominated by the anisotropy in real space.
For finite temperature Bose gases, on the other hand, the
momentum distribution is correspondingly deformed [81].

Proceeding with the linearization, one obtains with
Eqs. (B7) and (B8) a set of two equations relating the
elongations in momentum space in local equilibrium δ	le

x ,δ	le
z

to the elongations in real space δbi in all three directions
j = x,y,z. The remaining six parameters δbi and δ	i are
determined by Eqs. (B9)–(B12).

In order to apply the theory developed here, let us restrict
our calculations to the cylinder-symmetric case, which is
capable of displaying the physical properties accessible in
actual experiments. Thus, from now on, we adopt a cylinder-
symmetric trapping potential with ωx = ωy = ωρ and ωz =
λωρ , where λ denotes the trap aspect ratio. To this end, we use

lim
y→x

xf1(x,y) = lim
y→x

yf2(x,y) = −1 + (2 + x2)fs(x)

2(1 − x2)
, (40)

so that the derivatives of the anisotropy function can be
reexpressed as algebraic functions containing fs . This function
first appeared in the study of dipolar BECs with a Gaussian
density distribution [82] and has been found to be characteristic
of the DDI for dipolar quantum gases. For example, it occurs
in the case of an exact Thomas-Fermi solution of the Gross-
Pitaevskii equation [83] and in the context of determining the
DDI shift of the BEC critical temperature [76,77].

The differential equations relating the momentum space
and real-space elongations according to Eqs. (B9)–(B12) can
be solved by assuming that all deviations from equilibrium
oscillate with one and the same frequency �:

δbi = ξie
i�t , δ	i = χie

i�t . (41)

Due to the inclusion of the collisional term within the
relaxation-time approximation, we obtain complex frequen-
cies �, the real parts of which represent the eigenfrequencies
of the low-lying modes of the system and the imaginary parts
of which describe the corresponding damping rates. Simple
algebraic manipulations allow us due to Eqs. (B9)–(B11) at
first to reexpress the amplitudes in momentum space χi as
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functions of the ones in real space via

χi = τ

1 + i�τ

(
−2i�ξi + gi

τ

∑
j

ξj

)
, (42)

where the coefficients gi are given by

gx = A − 2C

B + 2C
, gz = −2

A + B

B + 2C
. (43)

Equation (42) allows us to deduce directly from the amplitudes
of the oscillations in real space the corresponding amplitudes in
momentum space. Inserting Eq. (42) into Eq. (B12) we then ob-
tain three coupled equations for the amplitudes ξi in real space:

− �2ξi +
∑

j

(
Oıj − 2i�τ

1 + i�τ
Dıj + αi

1 + i�τ

)
ξj = 0,

(44)

where we have introduced the abbreviations

αx = A − 2C

B + 2C
(Dxx + Dxy) − 2

A + B

B + 2C
Dxz, (45)

αz = 2
A − 2C

B + 2C
Dzx − 2

A + B

B + 2C
Dzz, (46)

while the abbreviations A,B,C,Oıj , and Dıj are defined in
Appendix B as functions of the Thomas-Fermi radii and
momenta.

The key feature here is to notice that Eq. (44) has non-
trivial solutions, provided that the corresponding determinant
vanishes:

0 =
[
Oxx − Oxy − 2i�τ

1 + i�τ
(Dxx − Dxy) − �2

]

×
{
− 2

(
Oxx − 2i�τDxz −αx

1 + i�τ

)(
Ozz − 2i�τDzx − αz

1 + i�τ

)

+
[
Oxx + Oxy − 2i�τ (Dxx + Dxy) − 2αx

1 + i�τ
− �2

]

×
(

Ozz − 2i�τDzz − αz

1 + i�τ
− �2

)}
. (47)

This can be put in a compact form which is similar to one for
a Bose gas with contact interaction [71](

P [�] + 1

i�τ
Q[�]

)(
S[�] + 1

i�τ
T [�]

)
= 0, (48)

where the respective polynomials are given by

P [�] = (
�2 − �2

+;CL

)(
�2 − �2

−;CL

)
,

(49)
Q[�] = (

�2 − �2
+;HD

)(
�2 − �2

−;HD

)
,

S[�] = �2 − �2
rq;CL, T [�] = �2 − �2

rq;HD. (50)

The explicit expressions for the low-lying oscillation fre-
quencies can be obtained for the limiting cases in which the
relaxation time either diverges, i.e., in the collisionless regime
[45,56,57],

�2
rq;CL = Oxx − Oxy + 2(Dxy − Dxx), (51)

�2
+;CL = 1

2 (−2Dxx − 2Dxy − 2Dzz

+Oxx + Oxy + Ozz +
√

R1), (52)

�2
−;CL = 1

2 (−2Dxx − 2Dxy − 2Dzz

+Oxx + Oxy + Ozz −
√

R1), (53)

or vanishes, i.e., in the hydrodynamic regime [52,53]:

�2
rq;HD = Oxx − Oxy, (54)

�2
+;HD = 1

2 (2αx + αz + Oxx + Oxy + Ozz +
√

R2), (55)

�2
−;HD = 1

2 (2αx + αz + Oxx + Oxy + Ozz −
√

R2). (56)

Here the subscripts rq, +, and − denote the radial quadrupole
mode, the monopole mode, and the three-dimensional
quadrupole mode, respectively, and we have introduced the
additional abbreviations

R1 = (2Dxx + 2Dxy + 2Dzz − Oxx − Oxy − Ozz)
2

− 4(−8DxzDzx + 4DxxDzz + 4DxyDzz − 2DzzOxx

−2DzzOxy + 4DzxOxz + 4DxzOzx − 2OxzOzx

− 2DxxOzz − 2DxyOzz + OxxOzz + OxyOzz), (57)

R2 = (2αx + αz + Oxx + Oxy + Ozz)
2

− 4(αzOxx + αzOxy − 2αzOxz − 2αxOzx − 2OxzOzx

+ 2αxOzz + OxxOzz + OxyOzz). (58)

We conclude that Eq. (48) represents the main result of
the present paper: it allows us to obtain both the excitation
frequencies and the corresponding damping rates of the low-
lying excitation of all three low-lying excitation modes of a
dipolar Fermi gas in a triaxial harmonic trap all the way from
the collisionless to the hydrodynamic regime. Thereby, the
special limits in the HD and CL regimes are made explicit. Our
main result (48) opens the road to study low-lying collective
frequencies in the different collisional regimes, which should
be measurable in the near future.

B. Collisionless and hydrodynamic regimes

Although it is not possible to determine analytically from
Eq. (48) the complex frequencies � of the low-lying excitation
modes for an arbitrary relaxation time τ , explicit results
have been obtained for the limiting cases for the monopole
�+, the three-dimensional quadrupole �−, and the radial
quadrupole �rq frequencies, according to Eqs. (51)–(56). In the
present section we gain some physical insight in light of these
analytical expressions and the corresponding graphs featuring
the dependence of the collective excitation frequencies on the
DDI for different types of trapping potentials.

In order to set the stage for the discussion of the physical
properties of the system, let us introduce dimensionless vari-
ables by referring to the noninteracting case, which provides
adequate units for all quantities of interest such as the Thomas-

Fermi radius R0
i =

√
2EF /Mω2

i and the corresponding Fermi

momentum KF =
√

2MEF /h̄2 . The latter, in turn, depends on
the Fermi energy EF = h̄ω(6N )

1
3 . Here, the geometric mean

of the trap frequencies reads ω = ωρλ
1/3, where λ = ωz/ωρ

denotes the trap aspect ratio. Using these physical dimensions
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FIG. 1. Low-lying collective excitation frequencies within a cylinder-symmetric trap for the monopole (�+), the three-dimensional
quadrupole (�−), and the radial quadrupole modes (�rq). They are presented in both the collisionless regime (upper/red curves) and the
hydrodynamic regime (lower/blue curves) as a function of the dimensionless dipolar interaction strength εdd for cigar-shaped (λ < 1) and
pancake-shaped (λ > 1) traps.

leads to the dimensionless dipole-dipole interaction strength

εdd = Cdd

4π

(
M3ω

h̄5

) 1
2

N
1
6 . (59)

At first, we discuss the frequencies of all three low-lying
modes in the limiting cases of the collisionless regime (τ →
∞) and the hydrodynamic regime (τ → 0), which are depicted
in Fig. 1 as a function of εdd for the trap aspect ratios λ = 0.8
and 4. We observe at first that the collisionless frequencies turn
out to be always larger than the corresponding hydrodynamic
frequencies. This can be most illustratively explained in the
case of the radial quadrupole mode. The eigenvector in real
space (ξ1,ξ2,ξ3) takes the general form (1,−1,0) so the mode
oscillates in x and y directions out of phase and no oscillation
occurs in the z direction. The corresponding amplitudes in
momentum space χi turn out to vanish in the hydrodynamic
regime. This means that no oscillation in k space occurs in
the hydrodynamic limit, which stems from the fact that the
high collision rate ensures local equilibrium. In contrast, in
the collisionless regime the amplitudes in momentum space χi

turn out to have values with opposite sign to the amplitudes
in real space ξi . Thus, intuitively, since the collisionless
oscillation involves both real and momentum amplitudes, one
expects it to have a higher energy than in the hydrodynamic
regime, which involves only real amplitudes. Indeed, this
can be further analyzed with the frequencies �rq;HD and

�rq;CL from Eqs. (51) and (54), which reduce to the concise
expressions

�2
rq;HD

ω2
x

= 2 + 3λ2εddcd

4
∏

j R̃j

×
2
(
R̃2

z − λ2R̃2
x

)− (4R̃2
z + λ2R̃2

x

)
fs

(
λR̃x

R̃z

)
(
R̃2

z − λ2R̃2
x

)2 , (60)

�2
rq;cl

ω2
x

= �2
rq;HD

ω2
x

+ 2 K̃2
x

R̃2
x

+ K̃2
z

R̃2
x

(
4+ K̃2

z

K̃2
x

)(
2+ K̃2

z

K̃2
x

)
fs

(
K̃z

K̃x

)
+4
(

1− K̃2
z

K̃2
x

)
2
(

2+ K̃2
z

K̃2
x

)[(
2+ K̃2

z

K̃2
x

)
fs

(
K̃z

K̃x

)
−2
(

1− K̃2
z

K̃2
x

)] ,
(61)

where the dimensionless Thomas-Fermi radii and momenta
read R̃i = Ri/R

0
i and K̃i = Ki/KF and we have introduced

the constant cd = 2
38
3 /3

23
6 × 5 × 7 × π2. Note, however, that

our result (60) and (61) differs significantly from the corre-
sponding one of Ref. [71], where the Fock exchange term and,
thus, the deformation of the Fermi sphere to an ellipsoid is not
taken into account. Note that Eq. (61) reveals explicitly that the
radial quadrupole mode frequency in the collisionless regime
is larger than in the hydrodynamic regime. The first additional
term corresponds to twice the kinetic energy in momentum
space and the second additional term is due to the deformation
of the Fermi sphere and turns out to be always positive.
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(a) (b)

FIG. 2. Low-lying excitation mode frequencies within a cylinder-symmetric trap with respect to the relaxation time τ for the trap aspect
ratio λ = 5 and the dimensionless interaction strength εdd = 1.33: (a) monopole mode (red curve) and (b) radial quadrupole (lower/green curve)
and three-dimensional quadrupole mode (upper/blue curve).

Physically, the frequencies of all the three modes in the
hydrodynamic regime are expected to be lower due to the
fact that the kinetic energy is negligible in this regime in
comparison to the collisionless case. This analysis shows an
agreement of the present case of a dipolar Fermi gas with
the Bose gas with contact interaction only, as discussed in
Ref. [71], in the sense that collisionless frequencies are usually
higher than the hydrodynamic ones.

We would like to remark that our results for the three-
dimensional modes, in both regimes, and for the radial
quadrupole mode in the HD regime and with dipolar induced
Fermi sphere deformation do agree with the ones previously
found in literature [52,53,56].

Furthermore, the overall picture that the frequencies in
both regimes tend to coincide as the kinetic energy becomes
negligible in comparison with the mean-field contribution,
found for Bose gases with contact interaction [71], is also seen
here, but only for very oblate traps. Consider, for instance, the
case of a trap with λ = 4, as shown in the right column of
Fig. 1. In the hydrodynamic regime of a dipolar Fermi gas,
the excitation frequency of the monopole mode for a gas in
a pancakelike trap increases [52,53] and could, in principle,
reach the higher value assumed in the collisionless regime,
as indicated by the upper right plot. These values will not,
however, coincide for any value of εdd due to the fact that the
DDI is partially attractive and increasing εdd will necessarily
lead to a collapse of the system. Moreover, the values of
the other two frequencies decrease and actually vanish, as
the dipolar interaction strength εdd reaches a given threshold
value [52,53]. For prolate traps, which are more vulnerable
to collapse as they favor attraction between the dipoles, such
a convergence between the frequencies in collisionless and
hydrodynamic regimes does not appear at all, as one can see
in the left column of Fig. 1.

C. From the collisionless to the hydrodynamic regime

Let us now turn to the interpolation between the two limiting
regimes. This can be studied by numerically solving Eq. (48)
for different values of the relaxation time τ , ranging all the
way from very low values, corresponding to the HD regime,
to very large ones, which correspond to the CL regime.

As a matter of fact, we have found that the excitation
frequencies of the low-lying modes exhibit a characteristic

qualitative dependence on the relaxation time τ , even when the
trap anisotropy λ and the DDI strength εdd take a wide range of
values. Let us, therefore, consider exemplarily the frequencies
of the low-lying modes for the trap anisotropy parameter
λ = 5, which corresponds to a pancakelike cloud, and for the
relative dipolar strength εdd = 1.33 as shown in Fig. 2.

According to the previous subsection, we have observed
that the frequencies of all eigenmodes have smaller values
in the HD than in the CL regime. Moreover, they increase
monotonously with the relaxation time and, eventually, reach
a plateau for larger values of the relaxation time, in which the
system can be well described as completely CL. Despite these
qualitative features, which are common to all three modes, it is
interesting to remark that the passage from the HD to the CL
regime with increasing relaxation time occurs differently for
the respective modes. Indeed, comparing the graphs in Fig. 2,
we see that the transition from the HD to the CL regime with
increasing relaxation time τ is most abrupt for the monopole
mode, while being quite smooth for the radial quadrupole
mode. As for the three-dimensional quadrupole, the transition
happens in an intermediate way between the other two.

From an experimental point of view, this behavior has
important consequences. In fact, an actual sample with given
dipolar strength, particle number, and trap frequencies would
correspond to a given relaxation time. Take, for example, the
value or the relaxation time for which ωτ = 0.8 holds, with
the mean harmonic frequency ω. For the monopole mode, on
the one hand, there would be nearly no distinction between
the frequency value and the one in the CL limit (ωτ → ∞).
For the other two modes, on the other hand, one would obtain
frequency values, which correspond to the transition region
between the two regimes.

This overall picture of how the transition from the colli-
sional to the hydrodynamic regime occurs is confirmed if one
also analyzes the imaginary parts of the complex frequencies
�, which represent the damping rates of the low-lying
collective modes. First of all, we note that they vanish in
the limiting cases of the hydrodynamic and the collisionless
regime, as depicted in Fig. 3. This is compatible with the fact
that dissipation occurs neither in the HD nor in the CL regime.
Furthermore, from comparing the real with the imaginary parts
of the frequencies, we read off two important conclusions.

At first, both the position and the width of the damping
peaks reveal the respective regions, where the main change
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FIG. 3. Damping of monopole mode (upper/red curve), radial-
quadrupole mode (middle/green curve), and three-dimensional
quadrupole mode (lower/blue curve) plotted with the same values
for the trap aspect ratio and the dimensionless interaction strength as
in Fig. 2.

of the real part of the frequencies occurs. This enables us
to determine the crossover regions as well as the regions in
which the system behaves mainly as either hydrodynamic or
collisionless. Accordingly, one recognizes in Fig. 3 that the
transition for the monopole mode is at first most abrupt, i.e.,
the oscillation frequency changes by a large amount, while
the ones for the other two modes take place for larger values
of the relaxation times and their frequency change is not so
large. We offer an interpretation of this fact based on the
observation that the monopole mode is the only one in which
the oscillations in the different directions are in phase with
one another, i.e., the cloud is either compressed or expanded
in all three directions at the same time, therefore this mode
is also called the breathing mode. Consider, for example, the
period in which the gas is compressed. Since collisions affect
the way in which the cloud can be compressed, one should
expect them to have a larger impact when the compression
occurs in all three directions at the same time, in comparison
with cases in which a compression in one direction takes place
simultaneously with an expansion in other directions. Thus,
according to this reasoning, the breathing mode should, indeed,
be more sensible to the collisional regime than the other two.
And this explains why the transition from the CL to the HD
regime is remarkably different for this mode.

The second conclusion is that the damping of the oscilla-
tions exhibits a peak for an intermediate relaxation time. A
quantitative analysis reveals that the height of this peak is in
good approximation proportional to the difference between
the real parts of the frequencies in the hydrodynamic and the
collisionless regime [84]. However, detailed numerical studies
show small deviations from this general behavior. Therefore,
we analyzed the dependence of the peak height from the
limiting frequencies analytically for the radial quadrupole
mode, the frequency of which follows from Eq. (48). Splitting
the complex frequency � into its respective real and imaginary
part allows us to derive an analytic formula for the peak
height, which turns out to depend on the limiting frequencies
as follows:

Im�(τ ∗) = 1

4

(
�rq;CL

�rq;HD
+ 1

)
(�rq;HD − �rq;CL), (62)

FIG. 4. Ratio of dissipative peak height and difference of colli-
sionless and hydrodynamic frequency for the radial quadrupole mode
(green/upper curve) according to Eq. (62), the three-dimensional
quadrupole mode (blue/middle curve), and the monopole mode
(red/lower curve) as a function of the trap aspect ratio λ at the
dimensionless interaction strength εdd = 1.33.

where τ ∗ denotes the relaxation time at the peak in the
imaginary part, which is determined from dIm�(τ )

dτ
|τ=τ ∗ = 0.

Equation (62) shows that the peak height of the imaginary
part of the radial quadrupole mode changes approximately
linearly with the difference between the limiting frequencies.
This represents an important result of our analysis as it allows
us to infer collisionless and hydrodynamic frequencies of the
low-lying modes from measuring the maximal damping. A
similar procedure allows for homogeneous Fermi gases to
determine the velocities of zero sound [85]. However, the
prefactor in Eq. (62) leads to a small deviation from this
linear dependence for the radial quadrupole mode. In order
to reveal this deviation graphically, one has to choose a large
value for the relative dipolar interaction strength εdd, which,
however, excludes a cigarlike cloud due to the instability
of the dipolar interaction [52,53]. According to Fig. 4 the
ratio of dissipative peak height and difference of collisionless
and hydrodynamic frequencies decreases 5.7%, once the trap
aspect ratio λ increases from 2 to 9 for εdd = 1.33. Numerically
we find that also the other two modes reveal a similar small
deviation from the linear dependence of the imaginary peak
height from the difference of the limiting frequencies, which
turns out to be most pronounced for the three-dimensional
quadrupole mode.

D. Experimental prospects

Let us now consider the experimental prospects for the
observation of the collisional properties of dipolar Fermi
gases. We have presented quantitative results for the low-
lying excitations of Fermi gases, ranging all the way from
the collisionless to the hydrodynamic regimes. All these
detailed predictions warrant a quantitative comparison with
experimental results. To this end, there are some quite
promising candidates. For instance, the fermionic isotope of
53Cr [86], which has a magnetic moment of m = 6 Bohr
magnetons, the fermionic isotope of 167Er [26,27] with m = 7
Bohr magnetons, or the fermionic isotope of 161Dy [21]
which has an even larger magnetic moment of m = 10 Bohr
magnetons. Among these, 167Er [26,27] seems to be most
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adequate to experimentally detect the effect of the Fermi
sphere deformation in terms of the low-lying excitation modes.
Indeed, time-of-flight experiments have been investigated with
the help of a theoretical background developed along the lines
of the present paper [78]. In fact, it has been found by means of
a time-of-flight analysis that this deformation in momentum
space is of the order of some percent [27,78]. Indeed, the
combination of large magnetic moment and large mass in
167Er leads to a high value of its relative dipolar interaction
strength. For example, under the circumstances such as particle
numbers and trap frequencies as in Ref. [27], one would have
εdd = 0.15 for 167Er, while for 53Cr εdd = 0.02 would hold.
The experimental analysis presented in Ref. [27], however, is
based on the possibility of carrying out the experiment for
an arbitrary orientation of the dipoles, a feature which has
not been considered in the present paper for the low-lying
excitation modes, as it represents a whole line of investigation
by itself.

Further possibilities for studying systems with even
stronger dipole-dipole interactions can be achieved via ul-
tracold heteronuclear molecules such as 23Na40K. These
molecules could be cooled into their absolute rovibrational and
hyperfine ground state by applying the stimulated Raman adi-
abatic passage process [87]. They are particularly interesting
for experimental studies of dipolar quantum gases due to some
peculiar features. For example, they possess a large electric
dipole moment of about 0.8 D, leading to the substantial
value of εdd = 5.44 for the dipolar interaction strength,
provided the same particle numbers and trap frequencies
from Ref. [27] could be realized. Moreover, they are also
chemically stable [17], allowing for relatively long lifetimes.
Indeed, lack of chemical stability proved a prohibiting hurdle
for KRb molecules, which were otherwise quite promising
candidate systems for dipolar experiments [12,14,18]. At this
point, it is important to mention the recent development
of an experimental technique allowing for the manipulation
of ultracold rovibrational ground-state NaK molecules [19].
Thereby the strength, the sign, and the direction of the induced
DDI becomes tunable, opening the road to experimentally
probe a whole range of values of εdd.

The knowledge gained with a theoretical prediction of the
real and imaginary parts of the low-lying excitation frequencies
might also be used for an estimative of the number of
oscillations that can be experimentally observed for a system
with finite τ . For atomic magnetic systems, for example, which
are deeply in the CL regime due to the low values of εdd, this
bears not much significance. For molecular systems, however,
this can be useful. Indeed, even for magnetic dipolar interaction
a molecular gas of erbium might lead to εdd = 1.76 [28,78],
which is considerably larger than the ones for the typical
atomic magnetic systems discussed above.

We have considered εdd = 1.33, which can either be
achieved by changing trap and atom number parameters or
by tuning the interaction strength [19]. Indeed, one oscil-
lation takes place in T = 2π/Re� s. On the other hand,
the oscillations decay with a time scale which is given
by T = 1/Im�. Thus, one can expect to observe about
n = log(4)Re�/(2π Im�) oscillations before the amplitude
is reduced, for example, to one-fourth of its initial value.
Combining results from Figs. 2 and 3, we can estimate that

the monopole mode will take around four oscillations to decay
by one-fourth in its most damped regime, around ωτ ≈ 0.2,
whereas more than 20 oscillations are due in a regime of
finite relaxation time such as ωτ ≈ 3.0. For the other two
modes, our result is that the most damped regime leads to
a corresponding decay in just a few oscillations, and takes
place at ωτ ≈ 0.9 for the radial quadrupole mode and at
ωτ ≈ 0.6 for the three-dimensional quadrupole mode. For a
regime of finite relaxation time such as ωτ ≈ 3.0, both modes
are still strongly damped and only about a few, i.e., around
five for the three-dimensional quadrupole and three for the
radial quadrupole mode, oscillations take place before the
amplitudes decay to one-fourth of its initial value. For this
reason, we summarize by stressing that observing modes with
a high oscillation frequency might be more promising than the
ones with low damping rates.

V. CONCLUSION

We studied the low-lying excitations of a harmonically
trapped three-dimensional Fermi gas featuring the long-range
and anisotropic dipole-dipole interaction all the way from the
collisionless to the hydrodynamic regime. Within the realm of
the relaxation-time approximation, we were able to include the
effects of collisions in the Boltzmann-Vlasov kinetic equation.
In particular, we introduced the local equilibrium distribution,
which corresponds to the hydrodynamic regime [52,53],
and we treated the relaxation time as a phenomenological
parameter. Furthermore, we followed Ref. [71] and solved
the BV equation by rescaling appropriately both space and
momentum variables of the equilibrium distribution. With this,
we obtained ordinary differential equations of motion for the
scaling parameters, the linearization of which yields both the
frequencies and the damping rates of the oscillations from the
real and imaginary parts of complex frequencies, respectively.

In order to access the radial quadrupole mode in addition
to the monopole and three-dimensional quadrupole mode, we
started our calculation with a triaxial configuration, which
was later on specialized to the case of a cylinder-symmetric
trap. The values of the frequencies that we found interpolate,
as expected, between the values obtained previously in both
the hydrodynamic regime [52,53] and the collisionless regime
[56,57], by increasing the relaxation time from zero to infinity.

By considering different values of the relaxation time,
which could be achieved experimentally by means of different
interaction strengths, for example, our analysis was able to
identify both qualitative and quantitative features of the tran-
sition from the hydrodynamic to the collisionless regime. For
particular values of the trap anisotropy and of the interaction
strength, the transition might be smooth for one mode while
being abrupt for another one. In view of the great precision
with which measurements of the excitation frequencies in
cold atomic systems are carried out nowadays, the present
theoretical analysis could provide important information on
the collisional properties of such systems.

A few questions remain open, which could be addressed
with the help of the present theoretical framework. For
example, the influence of the collisional term on the time-
of-flight dynamics of the system could be considered, as this
is a major diagnostic tool for cold atomic gases. To this
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end, however, it would be of major importance to determine
microscopically the phenomenological introduced relaxation
time [88]. Moreover, the inclusion of finite-temperature effects
on the analysis could also be of interest, as actual experiments
are always performed at some finite, though very low,
temperature.

Note added. Recently, an extensive study of the time-of-
flight dynamics of a dipolar Fermi gas all the way from the
collisionless to the hydrodynamic regime has been published,
which is based on the theory presented here [78].
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APPENDIX A: COMPUTATION OF THE ENERGY
INTEGRALS

In order to make the paper self-contained, we present in
Appendix A the relevant steps for evaluating the Hartree-Fock
energy integrals Eqs. (18) and (19) with the equilibrium
distribution (14). This leads to explicit expressions which only
depend on the Thomas-Fermi radii and momenta Ri and Ki

(see also Refs. [45,53]). A detailed derivation can also be found
in Ref. [89].

1. Hartree energy

Here, we sketch the calculation of the Hartree energy in
the case of an equilibrium Wigner function of the form of
Eq. (14). The basic idea behind the calculation of the Hartree
integral (18) is to decouple the distribution functions and the
interaction potential with respect to their spatial arguments via
Fourier transforms. Thus, we rewrite the Hartree term by using
the Fourier transform of the potential Ṽd(k) according to

Ed = 1

2

∫
d3k′′

(2π )3
Ṽd(k′′)

∫
d3k

(2π )3
ν̃0(−k′′,k)

×
∫

d3k′

(2π )3
ν̃0(k′′,k′). (A1)

The first step is to compute the Fourier transform of the equi-
librium Wigner function (14). This is done by performing the
integration in Cartesian coordinates over the six-dimensional

sphere, which leads to

ν̃0(−k′′,k) = (2π )
3
2 R

3
h(k)

3
4 	[h(k)](

k′′2
x R2

x + k′′2
y R2

y + k′′2
z R2

z

) 3
4

J 3
2

× [h(k)
1
2
(
k′′2
x R2

x + k′′2
y R2

y + k′′2
z R2

z

) 1
2
]
, (A2)

where h(k) = 1 −∑j k2
j /K

2
j is a suitable abbreviation and

Ji(x) is the ith Bessel function of first kind.
The next step is to integrate over the second variable in the

Fourier-transformed Wigner function (A2), which corresponds
to the last two integrations in the threefold three-dimensional
integral in Eq. (A1). To this end we perform a scaling
transformation such that the problem becomes spherically
symmetric and the angular part becomes trivial. The radial
part can be dealt with by means of a trigonometric substitution
and subsequent use of the identity [[90], (6.683)], leading to∫

d3k

(2π )3
ν̃0(k′′,k) = R

3
K

3

(
k′′2
x R2

x + k′′2
y R2

y + k′′2
z R2

z

) 3
2

J3

× [(k′′2
x R2

x + k′′2
y R2

y + k′′2
z R2

z

) 1
2
]
. (A3)

Notice that the function on the right-hand side of Eq. (A3) is
even with respect to the components of k′′.

In order to be able to perform the last three-dimensional
integration, one can proceed by means of a scaling which leads
to a spherically symmetric argument of the Bessel function in
Eq. (A3). In this case, the radial part can be evaluated with
the help of the identity [[90], (6.574.2)], while the angular
part corresponds to the definition of the anisotropy function in
Eq. (22). Then, the dipolar interaction energy can be cast in
the final form

Ed = −48N2c0

8R
3 f

(
Rx

Rz

,
Ry

Rz

)
, (A4)

with the constant (21).

2. Fock energy

It is possible to compute the Fock integral (19) along similar
lines. Indeed, we start by rewriting the Fock term in the
following form:

Eex = −1

2

∫
d3x ′

∫
d3k′

(2π )3

∫
d3k′′

(2π )3
ν̃

0
(k′′,x′)ν̃0

× (−k′′, − x′)Ṽd(k′)eix′ ·k′
, (A5)

where ν̃
0
(−k′′,x′) denotes the Fourier transform of ν0(x,k)

with respect to both variables:

ν̃
0
(−k′′,x′) =

∫
d3k

(2π )3
eik·x′

ν̃0(−k′′,k). (A6)

By using Cartesian coordinates, all three k integrals can be
solved by a trigonometric substitution together by using the
identity [[90], (6.688.2)]. The final results then yields

ν̃
0
(−k′′,x) = R

3
K

3

[
g(k′′) + z2K2

z + y2K2
y + x2K2

x

] 3
2

J3

× {[g(k′′) + z2K2
z + y2K2

y + x2K2
x

] 1
2
}
, (A7)
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where g(k′′) = k′′2
x R2

x + k′′2
y R2

y + k′′2
z R2

z is a suitable abbrevi-
ation.

It is clear that ν̃
0
(k′′,x) is an even function with respect

to k′′, which simplifies further calculations. The next step is
to calculate the x′ integral in Eq. (A5). In order to avoid a
quadratic Bessel function, we use the integral representation
[[90], (6.519.2.2)], thus leading to an integral over a Bessel
function:

J 2
3

{[
x2K2

x + y2K2
y + z2K2

z + g(k′′)
] 1

2
}

= 2

π

∫ π
2

0
dtJ6

{
2 sin t

[
x2K2

x + y2K2
y + z2K2

z + g(k′′)
] 1

2
}
.

(A8)

Now, let us consider the three spatial integrals. They can all
be solved with the help of a linear scaling together with the
identity [[90], (6.726.2)]. Thus, the solution of the x′ integral
reads

∫
d3x ′ν̃0

(k′′,x′)2eik′ ·x′

= 2(2π )
3
2

π
R

6
K

3
∫ π

2

0

dt

(2 sin t)6

(
4 sin2 t − k′2

z

K2
z

− k′2
y

K2
y

− k′2
x

K2
x

) 9
4

g(k′′)
9
4

× J 9
2

⎡
⎣g(k′′)

1
2

(
4 sin2 t − k′2

z

K2
z

− k′2
y

K2
y

− k′2
x

K2
x

) 1
2

⎤
⎦

	

(
2 sin t −

√
k′2
z

K2
z

+ k′2
y

K2
y

+ k′2
x

K2
x

)
. (A9)

The next step is to integrate the k′′ integral. Using the spherical
symmetry the calculation of this integral can be done by
substituting ui = k′′

i Ri and by transforming afterwards these
new integration variables into spherical coordinates. This

enables us to use the identity [[90], (6.561.17)] and leads to∫
d3k′′

∫
d3x ′ν̃0

(k′′,x′)2eik′ ·x′

= π2

3

∫ π
2

0

dt

(2 sin t)6

(
4 sin2 t − k′2

z

K2
z

− k′2
y

K2
y

− k′2
x

K2
x

)3

×	

(
2 sin t −

√
k′2
z

K2
z

+ k′2
y

K2
y

+ k′2
x

K2
x

)
. (A10)

The last step of the calculation of the Fock term is to solve the
k′ integral. To this end we substitute ui = k′

i/Ki and switch to
spherical coordinates. The integrals over the angular variables
lead to the anisotropy function (22), and the radial and t

integrals can be solved in an elementary way, thus leading
to the final result

Eex = 48N2c0

8R
3 f

(
Kz

Kx

,
Kz

Ky

)
, (A11)

for the Fock exchange contribution to the total energy of the
system.

APPENDIX B: LINEARIZATION

In Appendix B we work out the linearization of the
equations of motion (29), (34), and (36)–(38) for the re-
spective scaling parameters bi,	i, and 	le

i . To this end, we
decompose all spatial and momentum scaling parameters
around the equilibrium values b0

i = 	0
i = 	

le,0
i = 1 for all i

according to Eq. (39). We start with summarizing the linearized
equations for the local equilibrium Eqs. (36)–(38), which leads
to

δ	le
x − δ	le

y = 0, (B1)

∑
j

δbj + δ	le
x + 1

2
δ	le

z = 0, (B2)

A
∑

j

δbj − Bδ	le
x + Cδ	le

z = 0, (B3)

where A, B, and C represent the following abbreviations:

A = − 48Nc0

2
∏

j Rj

[
2
Kz

Kx

f1

(
Kz

Kx

,
Kz

Ky

)
+ Kz

Ky

f2

(
Kz

Kx

,
Kz

Ky

)]
, (B4)

B = h̄2K2
x

2M
+ 48Nc0

2
∏

j Rj

[
Kz

Kx

f1

(
Kz

Kx

,
Kz

Ky

)
+ K2

z

K2
x

f11

(
Kz

Kx

,
Kz

Ky

)

+1

2

K2
z

KxKy

f21

(
Kz

Kx

,
Kz

Ky

)
+ K2

z

KxKy

f12

(
Kz

Kx

,
Kz

Ky

)
+ 1

2

Kz

Ky

f2

(
Kz

Kx

,
Kz

Ky

)
+ 1

2

K2
z

K2
y

f22

(
Kz

Kx

,
Kz

Ky

)]
, (B5)

C = h̄2K2
z

2M
+ 48Nc0

2
∏

j Rj

[
Kz

Kx

f1

(
Kz

Kx

,
Kz

Ky

)
+ K2

z

K2
x

f11

(
Kz

Kx

,
Kz

Ky

)
+ K2

z

KxKy

f12

(
Kz

Kx

,
Kz

Ky

)

+1

2

Kz

Ky

f2

(
Kz

Kx

,
Kz

Ky

)
+ 1

2

K2
z

KxKy

f21

(
Kz

Kx

,
Kz

Ky

)
+ 1

2

K2
z

K2
y

f22

(
Kz

Kx

,
Kz

Ky

)]
. (B6)
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Here, we have introduced the short-hand notations f1(x,y) =
∂f (x,y)/∂x, f2(x,y) = ∂f (x,y)/∂y, and fij standing for per-
forming the i and the j derivative, respectively. From the lin-
earized versions of the local equilibrium condition (B1)–(B3)
we obtain formulas, which reveal how the elongations for the
scaling parameters δ	le

i and δbi are related to each other:

δ	le
x = A − 2C

B + 2C

(∑
j

δbj

)
, (B7)

δ	le
z = −2

A + B

B + 2C

(∑
j

δbj

)
. (B8)

Notice that, in the absence of the dipolar interaction, one would
have A = 0 and B = C, thus yielding δ	le

x = δ	le
z .

Inserting Eqs. (B7) and (B8) into the linearization of
Eqs. (29) and (34) the six parameters δbi and δ	i are
determined by six algebraic equations. At first we mention the
analytical expressions for the elongations of the momentum

scaling parameters δ	i , which turn out to yield

δ	x = δ	y (B9)

due to the cylinder symmetry in momentum space, with the
equation for δ	x being given by

δ	̇x + 2δḃx = − 1

τ

{
δ	x −

[
A − 2C

B + 2C

(∑
j

δbj

)]}
,

(B10)

whereas the equation for δ	z reads

δ	̇z + 2δḃz = − 1

τ

[
δ	z + 2

A + B

B + 2C

(∑
j

δbj

)]
. (B11)

The equations for the elongations of the spatial scaling
parameters δbi finally read

δb̈i +
∑

j

Oıj δbj +
∑

j

Dıj δ	j = 0, (B12)

where we have defined

Oxx = ω2
x + h̄2K2

x

M2R2
x

− 48Nc0

MR2
x

∏
j Rj

E1, Oxy = − 48Nc0

MR2
x

∏
j Rj

F12, Oxz = − 48Nc0

MR2
x

∏
j Rj

G12,

Oyx = − 48Nc0

MR2
y

∏
j Rj

F21, Oyy = ω2
y + h̄2K2

y

M2R2
y

− 48Nc0

MR2
y

∏
j Rj

E2, Oyz = − 48Nc0

MR2
y

∏
j Rj

G21,

Ozx = − 48Nc0

MR2
z

∏
j Rj

I12, Ozy = − 48Nc0

MR2
z

∏
j Rj

I21, Ozz = ω2
z + h̄2K2

z

M2R2
z

− 48Nc0

MR2
z

∏
j Rj

J,

Dxx = − h̄2K2
x

M2R2
x

− 48Nc0

MR2
x

∏
j Rj

1

2

K2
z

K2
x

f11

(
Kz

Kx

,
Kz

Ky

)
, Dxy = − 48Nc0

MR2
x

∏
j Rj

H12, (B13)

Dxz = 48Nc0

MR2
x

∏
j Rj

[
1

2

K2
z

K2
x

f11

(
Kz

Kx

,
Kz

Ky

)
+ H12

]
, Dyx = − 48Nc0

MR2
y

∏
j Rj

H21,

Dyy = − h̄2K2
y

M2R2
y

− 48Nc0

MR2
y

∏
j Rj

1

2

K2
z

K2
y

f22

(
Kz

Kx

,
Kz

Ky

)
, Dyz = 48Nc0

MR2
y

∏
j Rj

[
1

2

K2
z

K2
y

f22

(
Kz

Kx

,
Kz

Ky

)
+ H21

]
,

Dzx = 48Nc0

MR2
z

∏
j Rj

M12, Dzy = 48Nc0

MR2
z

∏
j Rj

M21, Dzz = − h̄2K2
z

M2R2
z

− 48Nc0

MR2
z

∏
j Rj

(M12 + M21).

Here, we have introduced the following abbreviations:

Ei = 2f

(
Rx

Rz

,
Ry

Rz

)
− 2

Ri

Rz

fi

(
Rx

Rz

,
Ry

Rz

)
− 2f

(
Kz

Kx

,
Kz

Ky

)
+ 2

Kz

Ki

fi

(
Kz

Kx

,
Kz

Ky

)
+ R2

i

R2
z

fıı

(
Rx

Rz

,
Ry

Rz

)
,

Fıj = f

(
Rx

Rz

,
Ry

Rz

)
− Ri

Rz

fi

(
Rx

Rz

,
Ry

Rz

)
− f

(
Kz

Kx

,
Kz

Ky

)
+ Kz

Ki

fi

(
Kz

Kx

,
Kz

Ky

)
− Rj

Rz

fj

(
Rx

Rz

,
Ry

Rz

)
+ RiRj

R2
z

fıj

(
Rx

Rz

,
Ry

Rz

)
,

Gıj = f

(
Rx

Rz

,
Ry

Rz

)
− Ri

Rz

fi

(
Rx

Rz

,
Ry

Rz

)
− f

(
Kz

Kx

,
Kz

Ky

)
+ Kz

Kx

fi

(
Kz

Kx

,
Kz

Ky

)
+ Rj

Rz

fj

(
Rx

Rz

,
Ry

Rz

)

−R2
i

R2
z

fıı

(
Rx

Rz

,
Ry

Rz

)
− RiRj

R2
z

fıj

(
Rx

Rz

,
Ry

Rz

)
,

Hıj = −1

2

Kz

Kj

fj

(
Kz

Kx

,
Kz

Ky

)
+ 1

2

K2
z

KiKj

fıj

(
Kz

Kx

,
Kz

Ky

)
,
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Iıj = f

(
Rx

Rz

,
Ry

Rz

)
+ Rj

Rz

fj

(
Rx

Rz

,
Ry

Rz

)
− f

(
Kz

Kx

,
Kz

Ky

)
− Kz

Ki

fi

(
Kz

Kx

,
Kz

Ky

)

−Kz

Kj

fj

(
Kz

Kx

,
Kz

Ky

)
− Ri

Rz

fi

(
Rx

Rz

,
Ry

Rz

)
− R2

i

R2
z

fıı

(
Rx

Rz

,
Ry

Rz

)
− RjRi

R2
z

fjı

(
Rx

Rz

,
Ry

Rz

)
,

J = 2f

(
Rx

Rz

,
Ry

Rz

)
+ 4

Rx

Rz

f1

(
Rx

Rz

,
Ry

Rz

)
+ 4

Ry

Rz

f2

(
Rx

Rz

,
Ry

Rz

)

−2f

(
Kz

Kx

,
Kz

Ky

)
− 2

Kz

Kx

f1

(
Kz

Kx

,
Kz

Ky

)
− 2

Kz

Ky

f2

(
Kz

Kx

,
Kz

Ky

)
+ R2

x

R2
z

f11

(
Rx

Rz

,
Ry

Rz

)

+RxRy

R2
z

f12

(
Rx

Rz

,
Ry

Rz

)
+ RxRy

R2
z

f21

(
Rx

Rz

,
Ry

Rz

)
+ R2

y

R2
z

f22

(
Rx

Rz

,
Ry

Rz

)
,

Mıj = Kz

Ki

fi

(
Kz

Kx

,
Kz

Ky

)
+ 1

2

K2
z

K2
i

fıı

(
Kz

Kx

,
Kz

Ky

)
+ 1

2

K2
z

KiKj

fjı

(
Kz

Kx

,
Kz

Ky

)
, (B14)

where R1 = Rx,R2 = Ry,K1 = Kx , K2 = Ky , and i,j ∈ {1,2}.
Thus, we conclude that the elongations δbi , δ	i , and δ	le

i out of equilibrium are determined by Eqs. (B1) and (B7)–(B12).
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[69] K. Goral, K. Rzążewski, and T. Pfau, Phys. Rev. A 61, 051601(R)

(2000).
[70] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics

(Benjamin, New York, 1962).
[71] P. Pedri, D. Guéry-Odelin, and S. Stringari, Phys. Rev. A 68,

043608 (2003).
[72] Y. Castin and R. Dum, Phys. Rev. Lett. 77, 5315 (1996).
[73] K. Dusling and T. Schäfer, Phys. Rev. A 84, 013622 (2011).
[74] A. R. P. Lima, Ph.D. thesis, Freie Universität Berlin, 2010.
[75] C. Eberlein, S. Giovanazzi, and D. H. J. O’Dell, Phys. Rev. A

71, 033618 (2005).
[76] K. Glaum, A. Pelster, H. Kleinert, and T. Pfau, Phys. Rev. Lett.

98, 080407 (2007).
[77] K. Glaum and A. Pelster, Phys. Rev. A 76, 023604 (2007).
[78] V. Veljic, A. Balaz, and A. Pelster, Phys. Rev. A 95, 053635

(2017).
[79] H. Haug, Statistische Physik (Springer-Verlag, New York, 2006).
[80] A. Griffin, T. Nikuni, and E. Zaremba, Bose-Condensed Gases

at Finite Temperatures (Cambridge University, Cambridge,
England, 2009).

[81] D. Baillie and P. B. Blakie, Phys. Rev. A 86, 041603(R) (2012).
[82] S. Yi and L. You, Phys. Rev. A 63, 053607 (2001).
[83] D. H. J. O’Dell, S. Giovanazzi, and C. Eberlein, Phys. Rev. Lett.

92, 250401 (2004).
[84] S. Stringari, 2012 (private communication).
[85] D. Vollhardt and P. WölfleThe Superfluid Phases of Helium 3

(Taylor & Francis, London, 1990).
[86] R. Chicireanu, A. Pouderous, R. Barbé, B. Laburthe-Tolra, E.

Maréchal, L. Vernac, J.-C. Keller, and O. Gorceix, Phys. Rev. A
73, 053406 (2006).

[87] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann,
Rev. Mod. Phys. 89, 015006 (2017).

[88] K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, J. L. Bohn,
D. S. Jin, G. M. Bruun, and F. Ferlaino, Phys. Rev Lett. 113,
263201 (2014).

[89] F. Wächtler, Diploma thesis, Universität Potsdam, 2011.
[90] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,

and Products, 5th ed. (Academic, New York, 1994).

043608-16

https://doi.org/10.1038/nature16485
https://doi.org/10.1038/nature16485
https://doi.org/10.1038/nature16485
https://doi.org/10.1038/nature16485
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevA.94.033619
https://doi.org/10.1103/PhysRevA.94.033619
https://doi.org/10.1103/PhysRevA.94.033619
https://doi.org/10.1103/PhysRevA.94.033619
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1103/PhysRevA.84.041604
https://doi.org/10.1103/PhysRevA.84.041604
https://doi.org/10.1103/PhysRevA.84.041604
https://doi.org/10.1103/PhysRevA.84.041604
https://doi.org/10.1103/PhysRevA.86.063609
https://doi.org/10.1103/PhysRevA.86.063609
https://doi.org/10.1103/PhysRevA.86.063609
https://doi.org/10.1103/PhysRevA.86.063609
https://doi.org/10.1103/PhysRevA.93.061603
https://doi.org/10.1103/PhysRevA.93.061603
https://doi.org/10.1103/PhysRevA.93.061603
https://doi.org/10.1103/PhysRevA.93.061603
https://doi.org/10.1103/PhysRevLett.117.205301
https://doi.org/10.1103/PhysRevLett.117.205301
https://doi.org/10.1103/PhysRevLett.117.205301
https://doi.org/10.1103/PhysRevLett.117.205301
http://arxiv.org/abs/arXiv:1610.03119
http://arxiv.org/abs/arXiv:1706.09388
https://doi.org/10.1103/PhysRevA.94.021602
https://doi.org/10.1103/PhysRevA.94.021602
https://doi.org/10.1103/PhysRevA.94.021602
https://doi.org/10.1103/PhysRevA.94.021602
https://doi.org/10.1103/PhysRevA.77.061603
https://doi.org/10.1103/PhysRevA.77.061603
https://doi.org/10.1103/PhysRevA.77.061603
https://doi.org/10.1103/PhysRevA.77.061603
https://doi.org/10.1103/PhysRevA.86.023605
https://doi.org/10.1103/PhysRevA.86.023605
https://doi.org/10.1103/PhysRevA.86.023605
https://doi.org/10.1103/PhysRevA.86.023605
https://doi.org/10.1103/PhysRevA.83.053629
https://doi.org/10.1103/PhysRevA.83.053629
https://doi.org/10.1103/PhysRevA.83.053629
https://doi.org/10.1103/PhysRevA.83.053629
https://doi.org/10.1103/PhysRevLett.103.205301
https://doi.org/10.1103/PhysRevLett.103.205301
https://doi.org/10.1103/PhysRevLett.103.205301
https://doi.org/10.1103/PhysRevLett.103.205301
https://doi.org/10.1103/PhysRevLett.101.245301
https://doi.org/10.1103/PhysRevLett.101.245301
https://doi.org/10.1103/PhysRevLett.101.245301
https://doi.org/10.1103/PhysRevLett.101.245301
https://doi.org/10.1103/PhysRevA.81.023602
https://doi.org/10.1103/PhysRevA.81.023602
https://doi.org/10.1103/PhysRevA.81.023602
https://doi.org/10.1103/PhysRevA.81.023602
https://doi.org/10.1103/PhysRevA.63.033606
https://doi.org/10.1103/PhysRevA.63.033606
https://doi.org/10.1103/PhysRevA.63.033606
https://doi.org/10.1103/PhysRevA.63.033606
https://doi.org/10.1103/PhysRevA.81.021606
https://doi.org/10.1103/PhysRevA.81.021606
https://doi.org/10.1103/PhysRevA.81.021606
https://doi.org/10.1103/PhysRevA.81.021606
https://doi.org/10.1103/PhysRevA.81.063629
https://doi.org/10.1103/PhysRevA.81.063629
https://doi.org/10.1103/PhysRevA.81.063629
https://doi.org/10.1103/PhysRevA.81.063629
https://doi.org/10.1103/PhysRevA.81.063624
https://doi.org/10.1103/PhysRevA.81.063624
https://doi.org/10.1103/PhysRevA.81.063624
https://doi.org/10.1103/PhysRevA.81.063624
https://doi.org/10.1103/PhysRevA.81.033617
https://doi.org/10.1103/PhysRevA.81.033617
https://doi.org/10.1103/PhysRevA.81.033617
https://doi.org/10.1103/PhysRevA.81.033617
https://doi.org/10.1088/1367-2630/11/5/055017
https://doi.org/10.1088/1367-2630/11/5/055017
https://doi.org/10.1088/1367-2630/11/5/055017
https://doi.org/10.1088/1367-2630/11/5/055017
https://doi.org/10.1103/PhysRevA.83.053628
https://doi.org/10.1103/PhysRevA.83.053628
https://doi.org/10.1103/PhysRevA.83.053628
https://doi.org/10.1103/PhysRevA.83.053628
https://doi.org/10.1103/PhysRevLett.95.030404
https://doi.org/10.1103/PhysRevLett.95.030404
https://doi.org/10.1103/PhysRevLett.95.030404
https://doi.org/10.1103/PhysRevLett.95.030404
https://doi.org/10.1103/PhysRevLett.98.040401
https://doi.org/10.1103/PhysRevLett.98.040401
https://doi.org/10.1103/PhysRevLett.98.040401
https://doi.org/10.1103/PhysRevLett.98.040401
https://doi.org/10.1126/science.1195219
https://doi.org/10.1126/science.1195219
https://doi.org/10.1126/science.1195219
https://doi.org/10.1126/science.1195219
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevA.85.033639
https://doi.org/10.1103/PhysRevA.85.033639
https://doi.org/10.1103/PhysRevA.85.033639
https://doi.org/10.1103/PhysRevA.85.033639
https://doi.org/10.1103/PhysRevA.90.043621
https://doi.org/10.1103/PhysRevA.90.043621
https://doi.org/10.1103/PhysRevA.90.043621
https://doi.org/10.1103/PhysRevA.90.043621
https://doi.org/10.1103/PhysRevA.86.063638
https://doi.org/10.1103/PhysRevA.86.063638
https://doi.org/10.1103/PhysRevA.86.063638
https://doi.org/10.1103/PhysRevA.86.063638
https://doi.org/10.1103/PhysRevLett.109.200401
https://doi.org/10.1103/PhysRevLett.109.200401
https://doi.org/10.1103/PhysRevLett.109.200401
https://doi.org/10.1103/PhysRevLett.109.200401
https://doi.org/10.1209/0295-5075/103/16002
https://doi.org/10.1209/0295-5075/103/16002
https://doi.org/10.1209/0295-5075/103/16002
https://doi.org/10.1209/0295-5075/103/16002
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRevA.61.051601
https://doi.org/10.1103/PhysRevA.61.051601
https://doi.org/10.1103/PhysRevA.61.051601
https://doi.org/10.1103/PhysRevA.61.051601
https://doi.org/10.1103/PhysRevA.68.043608
https://doi.org/10.1103/PhysRevA.68.043608
https://doi.org/10.1103/PhysRevA.68.043608
https://doi.org/10.1103/PhysRevA.68.043608
https://doi.org/10.1103/PhysRevLett.77.5315
https://doi.org/10.1103/PhysRevLett.77.5315
https://doi.org/10.1103/PhysRevLett.77.5315
https://doi.org/10.1103/PhysRevLett.77.5315
https://doi.org/10.1103/PhysRevA.84.013622
https://doi.org/10.1103/PhysRevA.84.013622
https://doi.org/10.1103/PhysRevA.84.013622
https://doi.org/10.1103/PhysRevA.84.013622
https://doi.org/10.1103/PhysRevA.71.033618
https://doi.org/10.1103/PhysRevA.71.033618
https://doi.org/10.1103/PhysRevA.71.033618
https://doi.org/10.1103/PhysRevA.71.033618
https://doi.org/10.1103/PhysRevLett.98.080407
https://doi.org/10.1103/PhysRevLett.98.080407
https://doi.org/10.1103/PhysRevLett.98.080407
https://doi.org/10.1103/PhysRevLett.98.080407
https://doi.org/10.1103/PhysRevA.76.023604
https://doi.org/10.1103/PhysRevA.76.023604
https://doi.org/10.1103/PhysRevA.76.023604
https://doi.org/10.1103/PhysRevA.76.023604
https://doi.org/10.1103/PhysRevA.95.053635
https://doi.org/10.1103/PhysRevA.95.053635
https://doi.org/10.1103/PhysRevA.95.053635
https://doi.org/10.1103/PhysRevA.95.053635
https://doi.org/10.1103/PhysRevA.86.041603
https://doi.org/10.1103/PhysRevA.86.041603
https://doi.org/10.1103/PhysRevA.86.041603
https://doi.org/10.1103/PhysRevA.86.041603
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1103/PhysRevLett.92.250401
https://doi.org/10.1103/PhysRevLett.92.250401
https://doi.org/10.1103/PhysRevLett.92.250401
https://doi.org/10.1103/PhysRevLett.92.250401
https://doi.org/10.1103/PhysRevA.73.053406
https://doi.org/10.1103/PhysRevA.73.053406
https://doi.org/10.1103/PhysRevA.73.053406
https://doi.org/10.1103/PhysRevA.73.053406
https://doi.org/10.1103/RevModPhys.89.015006
https://doi.org/10.1103/RevModPhys.89.015006
https://doi.org/10.1103/RevModPhys.89.015006
https://doi.org/10.1103/RevModPhys.89.015006
https://doi.org/10.1103/PhysRevLett.113.263201
https://doi.org/10.1103/PhysRevLett.113.263201
https://doi.org/10.1103/PhysRevLett.113.263201
https://doi.org/10.1103/PhysRevLett.113.263201



