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Localized Higgs modes of superfluid Bose gases in optical lattices: A Gutzwiller mean-field study
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We study effects of a potential barrier on collective modes of superfluid Bose gases in optical lattices. We
assume that the barrier is created by local suppression of the hopping amplitude. When the system is in a close
vicinity of the Mott transition at commensurate fillings, where an approximate particle-hole symmetry emerges,
there exist bound states of Higgs amplitude mode that are localized around the barrier. By applying the Gutzwiller
mean-field approximation to the Bose-Hubbard model, we analyze properties of normal modes of the system
with a special focus on the Higgs bound states. We show that when the system moves away from the Mott
transition point, the Higgs bound states turn into quasibound states due to inevitable breaking of the particle-hole
symmetry. We use a stabilization method to compute the resonance energy and linewidth of the quasibound
states. We compare the results obtained by the Gutzwiller approach with those by the Ginzburg-Landau theory.
We find that the Higgs bound states survive even in a parameter region far from the Mott transition, where the
Ginzburg-Landau theory fails.
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I. INTRODUCTION

A Higgs mode is a gapful collective mode that exists
generally in a system with approximate particle-hole sym-
metry and spontaneous breaking of continuous symmetry, and
it corresponds to fluctuations of the amplitude of an order
parameter [1,2]. Recently, this type of collective mode has
attracted much attention thanks to experimental observations
in various condensed-matter and quantum-gas systems, such as
superconductors NbSe2 [3–5] and Nb1−xTixN [6–9], quantum
antiferromagnets TlCuCl3 [10,11] and KCuCl3 [12], charge-
density-wave materials [13] K0.3MoO3 [15,16] and TbTe3

[17,18], superfluid B-phase 3He [19,20], and superfluid Bose
gases in optical lattices [21,22]. In contrast to its counterpart
in high-energy physics, namely, the Higgs boson [23], the
Higgs modes in condensed matter and quantum gases can be
a low-energy mode, which plays a crucial role in determining
the thermodynamic and dynamic properties of the system,
especially near quantum critical points.

While most of the previous studies on Higgs modes have
regarded states delocalized in an entire system, the current
authors and co-workers have recently pointed out that in the
presence of a potential barrier there also exist Higgs modes
localized around the barrier whose excitation energy is below
the gap of the delocalized Higgs mode in a bulk [24]. They
derived the fourth-order Ginzburg-Landau (GL) theory from
the Bose-Hubbard model describing an ultracold Bose gas in
an optical lattice and used it to find the Higgs bound states in
the superfluid phase. However, the parameter region in which
the GL theory is valid is limited to a close vicinity of the Mott
transition so that experimental observation of the Higgs bound
states will require rather fine tuning of parameters if they exist
only in the validity region of the GL theory. Although such
fine tuning is available with recent experimental technology, it
is better if the Higgs bound states exist in a broader parameter
region. Moreover, the excitation energies of the Higgs bound
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states are found to be very close to the bulk Higgs gap in
the GL analysis. Since a collective mode is usually detected
in experiment as a resonance peak in response to external
perturbations and such a peak is broadened to some extent by
quantum and thermal fluctuations, this property may prevent
a Higgs bound state from being observed separately from the
delocalized Higgs mode.

In the present paper, we analyze the Higgs bound states
of superfluid Bose gases in optical lattices by applying the
Gutzwiller mean-field approximation to the Bose-Hubbard
model with local suppression of the hopping amplitude. The
Gutzwiller approach allows us to explore the Higgs bound
states in a broader parameter region including the one far
from the validity region of the GL theory. The particle-hole
symmetry of the system is only approximate except at the
Mott-transition points at commensurate fillings, and such
slight breaking of the particle-hole symmetry couples the
Higgs bound states with delocalized Nambu-Goldstone (NG)
modes, converting the former into quasibound states with finite
lifetime. In order to obtain the resonance energy and linewidth
of quasibound states, we use a stabilization method developed
by Mandelshtam et al. [25], in which the density of states
for a quasibound state is constructed from the system-size
dependence of the excitation energies.

Using the methods mentioned above, we investigate how
properties of the Higgs bound states depend on the global
hopping amplitude, the chemical potential, and the spatial
width of the local hopping suppression. We show the presence
of the Higgs bound states even in the extended parameter
region where the GL theory is invalid. We also show that the
number of the bound states increases with the width. Moreover,
we find that by tuning the width and the global hopping
amplitude optimally the energy of the lowest Higgs bound state
can be significantly separated from those of other collective
modes in comparison with the case of the GL prediction.
Such large energy separation is advantageous for observing
the lowest Higgs bound state in experiment.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the Bose-Hubbard model and explain our
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potential barrier created by local suppression of the hopping
amplitude. In Sec. III, we review the GL theory derived
from the Bose-Hubbard model in the presence of a potential
barrier and solutions of the GL equation corresponding to the
Higgs bound states. We also review a numerical method to
analyze normal modes of the Bose-Hubbard model within the
Gutzwiller mean-field approximation. Moreover, we describe
how to utilize a stabilization method in our discrete (lattice)
system. In Sec. IV, varying the global hopping amplitude,
the chemical potential, and the barrier width, we analyze
properties of the Higgs bound states. In Sec. V, we summarize
the results.

II. MODEL

We consider a system of a Bose gas in a hypercubic optical
lattice with lattice spacing a at zero temperature. We assume
that the optical-lattice potential is sufficiently deep so that the
system is well described by the Bose-Hubbard model [26,27],

Ĥ = −
∑
i, j

Ji, j b̂
†
i b̂ j −

∑
i

μi b̂
†
i b̂i + U

2

∑
i

b̂
†
i b̂

†
i b̂i b̂i , (1)

where b̂i (b̂†i ) annihilates (creates) a boson at site i . The vector
i ≡ ∑d

α=1 iαeα denotes the site index, where iα is an integer,
d the spatial dimension, and eα a unit vector in direction α.
U (> 0) and μi represent the on-site repulsion and the local
chemical potential. As the hopping matrix element, we assume
the following nearest-neighbor form:

Ji, j =
∑

α

(
J

(α)
j δi, j+eα

+ J
(α)
j−eα

δi, j−eα

)
, (2)

where J
(α)
j means the hopping amplitude between sites j and

j + eα . We set h̄ = a = 1 throughout the paper except in the
figures.

While the purpose in the present paper is to discuss the effect
of inhomogeneity in J

(α)
j on collective modes in the superfluid

phase, here we briefly review properties of ground states and
collective modes of Bose-Hubbard model (1) in the case that
the system is homogeneous (J (α)

j = J , μ j = μ). When the
filling factor n (the number of atoms per site) is a noninteger,
the ground state is always a superfluid phase. In contrast,
when n is an integer, namely, at commensurate fillings, and
zJ/U is decreased from the superfluid phase, the quantum
phase transition to a Mott-insulating phase occurs [26], where
z denotes the coordination number. The superfluid-to-Mott-
insulator transitions have been experimentally observed by
tuning the optical-lattice depth, corresponding to the control
of the ratio zJ/U [28].

The Mott-insulating phase has particle and hole excitations
[29–31]. The finite energy gap in these excitations reflects
the insulating nature of the phase. In general, the superfluid
phase, in which a global U(1) symmetry of the system is
spontaneously broken, has a gapless NG mode corresponding
to fluctuations of the phase of the superfluid order parameter.
In the vicinity of the Mott transition at commensurate fillings,
an effective particle-hole symmetry emerges such that there
exists an additional collective mode, namely, a gapful Higgs
mode, corresponding to amplitude fluctuations [32,33].

In Ref. [24], the current authors and co-workers studied
effects of barrier potentials on the collective modes in the su-
perfluid phase. In particular, they considered local suppression
of the hopping amplitude in the form

J
(α)
j = J − J ′

j1
δα,1, (3)

and found bound states of the Higgs mode within the GL
theory, which is valid only near the Mott transition. In the
present work, we analyze such Higgs bound states in greater
detail by employing the Gutzwiller variational approximation,
which allows for the numerical analyses of the collective
modes even outside the validity region of the GL theory.
Specifically, we consider the hopping suppression of the
step-function shape,

J ′
j1

=
{
J ′ when |j1 − Lhalf | � w

0 otherwise,
(4)

where

Lhalf =
{
L/2 when L ∈ even

(L + 1)/2 when L ∈ odd.
(5)

J ′ and 2w + 1 represent the height and width of the hopping
suppression. L denotes the number of lattice sites in the
x direction. Figures 1(a) and 1(b) illustrate the external
potential for creating the hopping suppression and the spatial
dependence of the hopping amplitude in the x direction in the
case of w = 0. Such local control of the external potential is
achievable, e.g., with use of a digital micromirror device [34].

In the previous work [24], the effects of local spatial
modulation in the chemical potential μi , which explicitly
breaks the particle-hole symmetry, have been also considered.
As a consequence, it has been shown that the NG mode incident
to the potential barriers exhibits a Fano resonant tunneling.
However, in the present paper, we assume that the chemical
potential is homogeneous, i.e., μi = μ, and focus only on
the potential barrier created by the local suppression of the
hopping amplitude, which does not break the particle-hole
symmetry.

III. METHODS

In this section, we describe two methods for analyzing
collective modes of superfluid Bose gases in optical lattices.
The first method, namely, the GL theory, was used for finding
the Higgs bound states in Ref. [24] and is briefly reviewed in
Sec. III A. While it provides us with useful analytical solutions
of the Higgs bound states, the parameter region in which it is
applicable is limited only to the vicinity of the Mott transition.
The second method is a mean-field approximation based on
the Gutzwiller variational wave function and is explained in
Sec. III B. In contrast to the GL theory, the latter is fully
numerical and can capture properties of the collective modes
even in a region far away from the quantum phase transition. In
this sense, the two methods are complementary to each other.

Except at the quantum critical point, the Higgs bound
states are coupled with NG modes to some extent because
of the higher-order terms in the GL expansion that break
particle-hole symmetry while such couplings are neglected
in the analytical solutions of the GL equation. Due to the
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FIG. 1. Schematic illustration of a potential barrier created by
local suppression of the hopping energy for the case of w = 0.
(a) The external potential for atoms, which consists of a periodic
optical lattice potential and a focused repulsive potential on a single
link. (b) The lattice sites connected via nearest-neighbor hopping,
where the hopping is locally suppressed at the link between Lhalf and
Lhalf + 1 sites. (c) In the GL equation, the hopping suppression can
be approximated as a δ-functional repulsive barrier.

couplings the Higgs bound states can turn into a quasibound
state with a finite lifetime. In order to accurately compute the
resonance energy and the lifetime of the quasibound states,
we combine the Gutzwiller approach with a stabilization
method developed by Mandelshtam et al. [25], as shown
in Sec. III C. A remarkable advantage of the stabilization
method over a standard scattering method [35,36] is that
one does not need to compute the scattering matrix by
solving Lippmann-Schwinger-type equations. We emphasize
that within the Gutzwiller approach one cannot analytically
express the dispersion relation and wave functions of scattering
states even far away from the potential barrier such that it is
especially difficult to construct the scattering matrix. Instead,
using the stabilization method, one needs to compute only the
eigenenergies of the system as functions of the system size L,
which is a very simple task to do in our problem.

It is well known that when d < 3, the two methods, which
neglect effects of quantum fluctuations from the mean fields,
fail to correctly describe collective modes of the superfluid
phase near the Mott transition at commensurate fillings.

Specifically, at the low dimensions, such fluctuations enhance
the decay channel of a Higgs mode into two NG modes so
strongly that the Higgs mode is not necessarily well defined
[32,37–45]. Hence, in the following, we only consider the case
of d = 3, where the Higgs mode is known to be long lived
[32,46,47], so that the use of the two methods is well justified.
We also note that in the Gutzwiller calculations shown below
we assume a periodic boundary condition in the x direction
and homogeneity in the other directions.

A. Ginzburg-Landau theory

When the system is in the superfluid phase in the vicinity
of the Mott transition, the amplitude of the superfluid order
parameter is so small that an effective GL action describing
the dynamics of the superfluid order parameter �(x,t) can be
derived [24,48,49] through a perturbative expansion. Taking
the saddle-point approximation of the action with respect to
�∗(x,t) leads to the time-dependent GL equation,

iK0
∂�

∂t
−W0

∂2�

∂t2
=

(
− ∇2

2m∗
+ r0 + vr (x) + u0|�|2

)
�, (6)

where the coefficients K0, W0, m∗, r0, vr (x), and u0 are
explicitly related to the parameters Ji , j , U , and μ in the original
Bose-Hubbard model (1). At commensurate fillings, K0 � 0
such that the GL equation (6) is particle-hole symmetric;
i.e., it is symmetric with respect to replacing � with �∗. As
shown below, the condition K0 = 0 is necessary for the Higgs
amplitude mode to exist as an independent collective mode.

In order to simplify the notation, we rewrite the variables
in a dimensionless form as follows:

�̄ = �/(−r0/u0)1/2, t̄ = t(−r0/W0)1/2, x̄ = x/ξ,

v̄r = vr/(−r0), K̄0 = K0/(−r0W0)1/2, (7)

where ξ = (−r0m∗)−1/2 denotes the healing length. In this
way, the time-dependent GL equation is converted to a
dimensionless form,

iK0
∂�

∂t
− ∂2�

∂t2
=

(
−∇2

2
− 1 + vr (x) + |�|2

)
�, (8)

where we omitted the bars on the variables for simplicity.
In order to describe collective modes, we separate the

superfluid order parameter into its static value and small
fluctuations:

�(x,t) = �̃(x) + [S(x) + T (x)]e−iωt

+[S∗(x) − T ∗(x)]eiω∗t . (9)

The static part of the order parameter �̃(x) obeys the following
nonlinear equation:[

−∇2

2
− 1 + |�̃(x)|2 + vr (x)

]
�̃(x), (10)

which is identical to the static Gross-Pitaevskii equation [50].
In the fluctuation parts, S(x) and T (x) correspond to phase
and amplitude fluctuations, respectively, and they obey a set
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of linear equations,[
−∇2

2
− 1+|�̃(x)|2 + vr (x)

]
S(x) = ω2S(x) + K0ωT (x),

(11)[
−∇2

2
− 1+3|�̃(x)|2 + vr (x)

]
T (x) = ω2T (x) + K0ωS(x).

(12)

When the system is particle-hole symmetric, i.e., K0 = 0, the
phase and amplitude fluctuations are decoupled from each
other so that the Higgs mode may exist independently in
addition to the NG mode. In the absence of the potential barrier,
the dispersions of the two modes are given by

NG: ω2 = c2k2,
(13)

Higgs: ω2 = c2k2 + �2,

where c = 2−1/2 and � = 21/2 denote the sound speed and the
Higgs gap in the bulk. An approximate particle-hole symmetry
indeed emerges in the vicinity of the Mott-transition points at
commensurate fillings [48]. In the remainder of this section,
we assume K0 = 0 and describe the analytical solution of a
Higgs bound state obtained in Ref. [24].

We assume that the healing length ξ is sufficiently large
compared to the width of the hopping suppression 2w + 1. In
this situation, the potential barrier in the GL equation can be
approximated as a δ-function form,

vr (x) = Vrδ(x − Lhalf + 1/2). (14)

When J ′ � J , Vr can be approximately related to J ′ as

Vr = 2J ′(2w + 1). (15)

The potential barrier is schematically depicted in Fig. 1(c).
For simplicity, we hereafter shift the location of the potential
barrier to the origin of our frame; i.e., we set

vr (x) = Vrδ(x). (16)

The analytical solution of static equation (10) with the
potential barrier of Eq. (16) is given by [51]

�̃(x) = tanh (|x| + x0), (17)

where

tanh (x0) = −Vr

2
+

√
V 2

r

4
+ 1. (18)

Substituting Eq. (17) into Eq. (12) and seeking solutions of
the latter with ω < �, we obtain bound-state solutions of the
Higgs mode [24]. Here we explicitly write the one with even
parity,

T (x) = (3�̃2 + 3κ+�̃ + κ2
+ − 1)e−κ+|x|, (19)

where κ+ =
√

4 − 2E2+. The binding energy E+ is determined
as the solution of the boundary condition at x = 0,

dT

dx

∣∣∣∣
x=+0

− dT

dx

∣∣∣∣
x=+0

= 2VrT (0). (20)

This even Higgs bound state always exists when Vr > 0.
Another Higgs bound state, which has odd parity, emerges

when the barrier strength exceeds a certain threshold value
[24]. The emergence of these Higgs bound states can be
attributed to the formation of an effective double-well potential
for T (x) created by the combination of Vrδ(x) and 3�̃(x)2.
Notice that the same bound-state solutions of the GL equation
were discussed also in the context of superconductors [52]. In
Sec. IV A, we compare the analytical solutions (17) and (19)
directly with the results of the Gutzwiller mean-field theory.

B. Gutzwiller mean-field approximation

In the Gutzwiller mean-field approximation, the many-body
wave function of the system is approximated by the following
variational wave function [53]:

|
GW〉 =
∏

i

∑
n

fi,n(t)|n〉i , (21)

which forms a single product of local states. |n〉i represents
the local Fock state at site i . The variational parameter fi,n

satisfies the normalization condition,∑
n

|fi,n|2 = 1, (22)

and the equation of motion,

i
d

dt
fi,n = −

∑
j

Ji, j [
√

nfi,n−1� j + √
n + 1fi,n+1�

∗
j ]

+
[
U

2
n(n − 1) − μin

]
fi,n, (23)

where the superfluid order parameter is given by

�i ≡ 〈
GW|b̂i |
GW〉 =
∑

n

√
nf ∗

i,n−1fi,n. (24)

While the Gutzwiller approach is a simple mean-field approx-
imation, it has been extensively applied to describing various
properties of the Bose-Hubbard model, such as quantum phase
transitions [54–56], collective modes [56–59], the superfluid
critical momentum [59,60], and nonequilibrium dynamics
[21,59–63].

In order to describe collective modes of the system, we
separate fi,n(t) into its static part and small fluctuations,

fi,n(t) = [f̃i,n + δfi,n(t)]e−iω̃i t , (25)

where

δfi,n(t) = ui,ne
−iωt + v∗

i,ne
iω∗t . (26)

The static part f̃i,n and the phase factor ω̃i obey

ω̃i = −
∑

j

Ji, j (�̃
∗
i �̃ j + c.c.)

+
∑

n

[
U

2
n(n − 1) − μin

]
|f̃i,n|2, (27)

where �̃i = ∑
n

√
nf̃ ∗

i,n−1f̃i,n. Solving Eqs. (27) and (22)
simultaneously, one obtains f̃i,n and ω̃i . If the ground state
is only of interest among the static solutions, one may
alternatively solve Eq. (23) in imaginary time [64] to obtain
f̃i,n and substitute it into Eq. (27) to obtain ω̃i . We use the
latter method for the calculations shown below.
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Linearizing equation of motion (23) with respect to the fluctuations, one obtains a set of linear equations,

ωui,n = −
∑
m

∑
j

Ji, j [{
√

nmf̃i,n−1f̃
∗
j ,m−1 +

√
(n + 1)(m + 1)f̃i,n+1f̃

∗
j ,m+1}u j ,m

+{
√

n(m + 1)f̃i,n−1f̃ j ,m+1 +
√

(n + 1)mf̃i,n+1f̃ j ,m−1}v j ,m]

−
∑

j

Ji, j [
√

n�̃ jui,n−1 + √
n + 1�̃∗

jui,n+1] +
[
U

2
n(n − 1) − μin − ω̃i

]
ui,n, (28)

− ωvi,n = −
∑
m

∑
j

Ji, j [{
√

nmf̃ ∗
i,n−1f̃ j ,m−1 +

√
(n + 1)(m + 1)f̃ ∗

i,n+1f̃ j ,m+1}v j ,m

+{
√

n(m + 1)f̃ ∗
i,n−1f̃

∗
j ,m+1 +

√
(n + 1)mf̃ ∗

i,n+1f̃
∗
j ,m−1}u j ,m]

−
∑

j

Ji, j [
√

n�̃∗
jvi,n−1 + √

n + 1�̃ jvi,n+1] +
[
U

2
n(n − 1) − μin − ω̃i

]
vi,n, (29)

which determines the wave function (ui,n,vi,n) and the fre-
quency ω of normal modes. We assume that (ui,n,vi,n) satisfies
the normalization condition,

∑
i

∑
n

(|ui,n|2 − |vi,n|2) = 1. (30)

Notice that in general the imaginary part of ω can be finite,
signaling the dynamical instability of the static solution, and
in such a case (ui,n,vi,n) does not satisfy Eq. (30). However,
in the systems that we consider here, ω is always real because
the static solution is a ground state.

Since one of our purposes in the present paper is to make a
comparison between the results obtained by the analytical GL
theory and the numerical Gutzwiller formalism in connection
with the Higgs bound states, we need to relate (ui,n,vi,n) with
the fluctuations in the phase and amplitude of the superfluid
order parameter. Substituting Eq. (25) into Eq. (24) and
linearizing the latter with respect to the fluctuations, we obtain

�i � �̃i + αi cos (ωt) + i�̃iϕi sin (ωt), (31)

1.0

0
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j1Position:

n j 1
,

j 1

FIG. 2. Spatial distributions of nj1 (dashed green line) and �̃j1

(solid black line) for the ground state, where zJ/U = 0.18 [or
equivalently (J − Jc)/Jc = 0.04912], μ/U = μc/U , J ′/J = 0.5,
w = 0, and L = 200.

where

αi =
∑

n

[f̃i,n−1(ui,n + vi,n) + f̃i,n(ui,n−1 + vi,n−1)], (32)

�̃iϕi =
∑

n

[f̃i,n−1(vi,n − ui,n) + f̃i,n(ui,n−1 − vi,n−1)]. (33)

αi and ϕi correspond to the phase and amplitude fluctuations.
As an example of the computation using the above

Gutzwiller formalism, we show the spatial distributions of
the density nj1 = 〈n̂j1〉 and the order-parameter amplitude �̃j1

for a ground state in Fig. 2 and those of the amplitude and
phase fluctuations, αj1 and �̃j1 × ϕj1 , for a normal mode
corresponding to a Higgs bound state with even parity in
Fig. 3. There we set zJ/U = 0.18 [or equivalently (J −
Jc)/Jc = 0.04912], μ/U = μc/U , J ′/J = 0.5, and L =
200, where (zJc/U,μc/U ) = (3 − 2

√
2,

√
2 − 1) denotes the

critical point of the Mott transition at unit filling in the
(zJ/U,μ/U ) plane within the mean-field approximation [30].

FIG. 3. Spatial distributions of αj1 (solid black line) and �̃j1ϕj1

(dashed red line) for a normal mode corresponding to a Higgs qua-
sibound state with even parity, where zJ/U = 0.18 [or equivalently
(J − Jc)/Jc = 0.04912], μ/U = μc/U , J ′/J = 0.5, w = 0, and
L = 200. The normal-mode frequency is given by h̄ω = 0.1384 U

while the bulk Higgs gap is � = 0.1568 U .
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In Fig. 2, we see that while �̃j1 clearly diminishes near the
potential barrier, nj1 remains almost constant in space. This
manifests the approximate particle-hole symmetry emerging
in the vicinity of the critical point. In other words, both particle
and hole fluctuations contribute equally to the formation of the
superfluid order parameter such that the spatial modulation of
the order-parameter amplitude does not lead to that of the
density.

In Fig. 3, we see that αj1 is localized around the position
of the potential barrier and this property is a clear signature
of the Higgs bound state. However, the phase fluctuation
delocalized in the entire system is small but finite, and such
mixing with the delocalized mode means that this state is not
a true bound state but a quasibound state, in which the initial
localized state decays into the coupled delocalized mode at
finite time. In contrast, the Higgs bound-state solution shown in
Sec. III A is purely an amplitude mode because μ/U = μc/U

implies K0 = 0; i.e., the time-dependent GL equation (6) is
particle-hole symmetric. Hence, this slight mixing of the Higgs
mode with the NG mode is due to higher-order corrections
breaking the particle-hole symmetry, such as the third-order
time-derivative term ∂3�

∂t3 that is proportional to ω3.

C. Stabilization method

In Fig. 4, we show the excitation energies of the normal
modes with even parity versus the system size L computed by
the Gutzwiller method. When L increases, most of the energies
decay like ∼ O(L−1) or ∼ � + O(L−2), corresponding to
delocalized NG or Higgs modes. In contrast, there is a mode
whose excitation energy is almost constant with increasing
L. This indicates that the mode is localized at a short range.
Looking at the phase and amplitude fluctuations shown in
Fig. 3 for specific L(= 200), we indeed see that the amplitude
fluctuation is localized around the potential barrier. However,
in Fig. 4(b) where a magnified view of the excitation energy
of the localized mode is depicted, we see that the energy of
this mode slightly depends on L by making several avoided
crossings with delocalized NG modes. In other words, the
localized state is not a true bound state but a quasibound
state as was discussed in the previous section. In this section,
we explain a stabilization method [25] for determining the
resonance energy ωres and the linewidth � of the localized
mode, which are independent of L.

Let us write symbolically the density of states for normal
modes ρ(ω) as

ρ(ω) = ρQ(ω) + ρP (ω), (34)

where ρQ(ω) and ρP (ω) represent the contribution from the
quasibound state and that from the delocalized modes in the
background. In the stabilization method, we utilize the general
facts that the density of quasibound states takes the Lorentzian
form [25]

ρQ(ω) ∝ 1

(ωres − ω)2 + �2/4
, (35)

and that the Lorentzian peak is more pronounced than ρP (ω)
in the background. In other words, once ρ(ω) is numerically
given, one can obtain ωres and � through a Lorentzian fit.

(a)

(b)

FIG. 4. Excitation energies of the normal modes with even
parity as functions of the system size L, where zJ/U = 0.18 [or
equivalently (J − Jc)/Jc = 0.04912], μ/U = μc/U , J ′/J = 0.5,
and w = 0. (b) Magnified view of the region indicated by the dotted
square in (a). The dashed line in (b) marks the resonance energy
h̄ωres = 0.1385U .

To construct ρ(ω) numerically, we start with the density of
states at a fixed value of L,

ρL(ω) =
∑

ζ

δ(ωζ (L) − ω), (36)

where ωζ (L) denotes the eigenvalue of Eqs. (28) and (29) with
quantum number ζ . Since ρQ(ω), in which we are interested,
is expected to be independent of L at sufficiently large L

compared with ξ , averaging ρL(ω) with respect to L should not
spoil the Lorentzian peak stemming from ρQ(ω). The average
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ρ
(ω
)

L
U

h  /Uω h  /Uω h  /Uω

(a) )c()b(

h  /U = 0.13848ω res

h  /U = 0.00020475Γ res

h  /U = 0.13847ω res

h  /U = 0.00017935Γ res

h  /U = 0.13848ω res

h  /U = 0.00019737Γ res

L= 40Δ L= 100Δ L= 400Δ 

FIG. 5. Averaged density of states 〈ρL(ω)〉 for the normal modes with even parity at several values of �L, where L = 300, zJ/U = 0.18
[or equivalently (J − Jc)/Jc = 0.04912], μ/U = μc/U , J ′/J = 0.5, and w = 0. The solid black line represents the best fit to the data with
the fitting function of Eq. (41).

of ρL(ω) is defined as

〈ρL(ω)〉 = 1

�L

∫ L+�L/2

L−�L/2
dL̃ ρL̃(ω). (37)

Using a well-known formula,∫
dx δ(f0 − f (x)) =

∣∣∣∣dfdx

∣∣∣∣
f (x)=f0

, (38)

Eq. (37) can be rewritten as

〈ρL(ω)〉 = 1

�L

∑
ζ

(∣∣∣∣dωζ (L̃)

dL̃

∣∣∣∣
ωζ (L̃)=ω

)−1

. (39)

The summation with respect to ζ in the right-hand side
of Eq. (39) is taken only for L̃ satisfying L − �L/2 �
L̃ � L + �L/2. The formula of Eq. (39) converts the L

dependence of the excitation energies, which is shown in
Fig. 4, to the averaged density of states. However, since
we are working in a discrete system on a lattice, we need
to replace the condition ωζ (L̃) = ω with ωζ (L̃ + 1) < ω <

ωζ (L̃). Moreover, the derivative by L̃ in the discrete system is
defined as

dωζ (L̃)

dL̃
= ωζ (L̃ + 1) − ωζ (L̃). (40)

With these slight modifications, we can apply the formula of
Eq. (39) for evaluating the density of states for normal modes
in our discrete Bose-Hubbard system.

In Fig. 5, we show 〈ρL(ω)〉 by varying �L at fixed
L(= 300). In order to extract the resonance energy ωres and
the linewidth � from 〈ρL(ω)〉, we use the following fitting
function:

f (x) = A

(B − x)2 + C2/4
+ D, (41)

where A, B, C, and D are free parameters. The extracted values
of B and C correspond to ωres and �, respectively. In Fig. 5,
we see that when �L increases, 〈ρL(ω)〉 becomes smoother
and its shape approaches the Lorentzian form. We also show
the L dependence of 〈ρL(ω)〉 for fixed �L in Fig. 6. We see
that the result at L = 200 and �L = 200 is already converged
up to the fifth place of decimals. Hence, we take L = 200
and �L = 200 for the calculations shown below as long as
zJ/U � 0.18. On the other hand, when zJ/U < 0.18, we
take L = 300 and �L = 400 for the following reason. When
zJ/U decreases and approaches the critical value zJc/U , ωres

decreases and approaches zero such that the density of states
for delocalized NG modes near ω = ωres also decreases. This
means that at fixed L and �L the number of states contributing
to the summation in Eq. (39) also decreases. Hence, in order
to keep a sufficient number of samples in the averaging, the

ρ
(ω
)

L
U

h  /Uω h  /Uω h  /Uω

(a) )c()b(

h  /U = 0.13848ω res

h  /U = 0.00021132Γ res

h  /U = 0.138481ω res

h  /U = 0.000197837Γ res

h  /U = 0.138481ω res

h  /U = 0.00020382Γ res

L= 200 L= 300 L= 400

FIG. 6. Averaged density of states 〈ρL(ω)〉 for the normal modes with even parity at several values of L, where �L = 200, zJ/U = 0.18
[or equivalently (J − Jc)/Jc = 0.04912], μ/U = μc/U , J ′/J = 0.5, and w = 0. The solid black line represents the best fit to the data with
the fitting function of Eq. (41).

043606-7



IPPEI DANSHITA AND SHUNJI TSUCHIYA PHYSICAL REVIEW A 96, 043606 (2017)

j 1

0.5

0.4

0.3

0.2

0.1

0.0
80 90 100 110 120

0.25

0.20

0.15

0.10

0.05

0.00

0.15

0.10

0.05

0.00

j1Position:

j 1
j 1

zJ/U = 0.2

zJ/U = 0.18

zJ/U = 0.175

(a)

(b)
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FIG. 7. Comparison between the results by the GL and Gutzwiller
methods regarding the spatial distribution of the static order parameter
�̃j1 in the ground state, where L = 200, μ/U = μc/U , J ′/J = 0.5,
and w = 0. zJ/U = 0.175, 0.18, and 0.2 imply (J − Jc)/Jc =
0.01997, 0.04912, and 0.1657. The solid red line and the black dots
represent the GL and Gutzwiller results.

closer the system is to the critical point, the larger we need to
make L and �L.

IV. RESULTS

A. Comparison between GL and Gutzwiller results

In Figs. 7 and 8, we show the spatial distribution of the static
superfluid order parameter for the ground state and that of the
amplitude fluctuation from the ground state. There we compare
the results of the Gutzwiller approach (black dots) to those
of the GL theory (solid red lines). We clearly see that when
zJ/U approaches its critical value, the GL results approach
the Gutzwiller results. The agreement is quantitative already
at zJ/U = 0.18. These quantitative comparisons corroborate

0.8

0.6

0.4

0.2

0.0
60 80 100 120 140

j1Position:

0.8

0.6

0.4

0.2

0.0

1.0

T (
x )

×

α
j 1
,

co
ns

t.

0.8

0.6

0.4

0.2

0.0

1.0

T (
x )

×

α
j 1
,

co
ns

t.
T (

x )

×

α
j 1
,

co
ns

t.

(a)
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zJ/U = 0.175

zJ/U = 0.18
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FIG. 8. Comparison between the Gutzwiller and GL regarding
the spatial distribution of the amplitude fluctuation from the ground
state in the Higgs quasibound state with even parity, where L = 200,
μ/U = μc/U , J ′/J = 0.5, and w = 0. zJ/U = 0.175, 0.18, and
0.2 imply (J − Jc)/Jc = 0.01997, 0.04912, and 0.1657. The solid
red line and the black dots represent the GL and Gutzwiller results,
namely, T (x) of Eq. (19) and αj1 of Eq. (32). We multiply T (x) with
a constant such that the maximum value of T (x) becomes equal to
that of αj1 .

that the Gutzwiller approach can correctly capture the physics
of Higgs bound states.

B. Varying z J/U

In Fig. 9, we show the binding energies versus (J − Jc)/Jc

for the Higgs bound states with even and odd parities
along the line of μ/U = μc/U , which corresponds to K0 =
0. When (J − Jc)/Jc increases, the binding energies for
both states monotonically increase. As for the even bound
state, we compare the Gutzwiller result with the GL result,
which is plotted by the dotted green line in Fig. 9(b).

043606-8



LOCALIZED HIGGS MODES OF SUPERFLUID BOSE . . . PHYSICAL REVIEW A 96, 043606 (2017)

(a)

(b)

E
xt

ic
at

io
n 

en
er

gi
es

  (
un

its
 o

f  
  )

E
xt

ic
at

io
n 

en
er

gi
es

  (
un

its
 o

f  
  )

FIG. 9. Binding energies as functions of (J − Jc)/Jc for μ/U =
μc/U , J ′/J = 0, and w = 0. The black circles (red squares)
represent the energy of the Higgs bound state with even (odd) parity
calculated by the Gutzwiller approach. The solid symbols represent
the resonance energy h̄ωres of quasibound states computed by the
stabilization method while the open symbols represent the excitation
energy of true bound states at L = 200. The solid lines are guides to
the eye. The dashed purple line represents the gap of the delocalized
Higgs mode �. In (b), where a magnified view of (a) around the
critical point is depicted, the dotted green line represents the energy
of the Higgs bound state with even parity evaluated from the GL
theory.

At (J − Jc)/Jc < 0.05, they precisely agree. They start to
deviate noticeably around (J − Jc)/Jc = 0.05 and the devia-
tion becomes larger when (J − Jc)/Jc increases. Nevertheless,
our Gutzwiller analysis clearly shows that the (quasi)bound
states survive even in a parameter region where the GL theory
completely fails.

In Fig. 10, we show the linewidth � versus (J − Jc)/Jc

for the even and odd Higgs bound states along the line of
μ/U = μc/U . When (J − Jc)/Jc increases near zero, � also
increases from zero. However, � remains much smaller than
ωres so that the resonance can be identified as a sharp peak in the
density of states. � is maximized around (J − Jc)/Jc = 0.3
and it approaches zero when (J − Jc)/Jc increases further.

h

1.0

0.0 0.1 0.2 0.3 0.4

10-3

0.0

0.5

1.5

2.0

FIG. 10. Linewidths of the resonant states � as functions of (J −
Jc)/Jc for μ/U = μc/U , J ′/J = 0.5, and w = 0. The black circles
(red squares) represent the width of the Higgs bound state with even
(odd) parity. The solid lines are guides to the eye.

This indicates that the quasibound states with finite lifetime
turn into true bound states for large (J − Jc)/Jc.

In Fig. 11, we show the spatial distributions of the amplitude
and phase fluctuations for the Higgs bound state with even
parity at (J − Jc)/Jc = 0.5154. In contrast to Fig. 3, where the
system is much closer to the critical point as (J − Jc)/Jc =
0.04912, we clearly see that the phase fluctuation is also
localized around the potential barrier. Nevertheless, since the
amplitude fluctuation dominates over the phase fluctuation,
we still call this bound state a Higgs mode. In Fig. 9(a),
the excitation energies of the true bound states are plotted
by the open symbols. They are smoothly connected with the
resonance energy of the quasibound state.

The physical origin of the transition from quasibound to
true bound state is rather simple. When (J − Jc)/Jc increases,
the resonance energy of the quasibound state increases and it
exceeds the maximum energy of the branch of the delocalized
NG mode above a certain threshold value of (J − Jc)/Jc.

0.8
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0.4

0.2
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j 1
,

j 1
φ

j 1
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001020 60 80
j1Position:

40

FIG. 11. Spatial distributions of αj1 (solid black line) and
�̃j1ϕj1 (dashed red line) for the Higgs bound state with even
parity, where zJ/U = 0.26 [or equivalently (J − Jc)/Jc = 0.5154],
μ/U = μc/U , J ′/J = 0.5, w = 0, and L = 100.
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FIG. 12. Binding energies as functions of (μ − μc)/U for
zJ/U = 0.18, J ′/J = 0.5, and w = 0. The black circles (red
squares) represent the energy of the bound state with even (odd)
parity calculated by the Gutzwiller approach. The solid symbols
represent the resonance energy of quasibound states computed by the
stabilization method while the open symbols represent the excitation
energy of true bound states at L = 100. The solid lines are guides to
the eye. The dashed purple line represents the gap � of the normal
mode that becomes the delocalized Higgs mode at μ/U � μc/U .

Since there is no delocalized mode with the energy equal
to the resonance energy, the bound state cannot decay into
delocalized modes and it stands as a true bound state.

It is worth emphasizing that the transition from quasibound
to true bound state is an artifact of the Gutzwiller approach
and should not be observed in exact theoretical analyses
of the three-dimensional (3D) Bose-Hubbard model or in
experiments. Specifically, we neglect effects of interactions
between collective modes and quantum fluctuations in the
Gutzwiller approximation. These effects allow Higgs modes to
decay into multiple NG modes and such decay channels should
exist for the Higgs bound states, thus making their lifetimes
finite.

C. Varying μ/U

In Figs. 12 and 13, we show the binding energies and
the linewidths for the bound states versus (μ − μc)/U at
zJ/U = 0.18. In Fig. 12, we see that the binding energies are
minimized at (μ − μc)/U � 0. When |μ − μc|/U increases
and exceeds certain threshold values, � becomes zero as shown
in Fig. 13. This means that the quasibound states turn into true
bound states for the reason discussed in Sec. IV B. The increase
in (μ − μc)/U corresponds to the increase in |K0| such that, in
a parameter region far apart from the line of μ/U = μc/U , the
bound states are not dominated by amplitude fluctuations. In
other words, they cannot be interpreted as a Higgs amplitude
mode but as a mode corresponding to a single-particle (or
hole) excitation. For instance, in Fig. 14, we show the
spatial distributions of the amplitude and phase fluctuations
at (μ − μc)/U = 0.2, where the contributions from the two
kinds of fluctuation are indeed comparable. This implies that
the particle-density fluctuation dominates this mode.

Within the GL theory shown in Sec. III A, at K0 = 0, which
corresponds to μ/U = μc/U , there is no coupling between the

h
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FIG. 13. Linewidths of the resonant states � as functions of (μ −
μc)/U for zJ/U = 0.18 [or equivalently (J − Jc)/Jc = 0.04912],
and w = 0. The black circles (red squares) represent the width of the
Higgs bound state with even (odd) parity. The solid lines are guides
to the eye.

NG and Higgs modes such that the linewidth � is minimized
and equal to zero at μ/U = μc/U . However, in Fig. 13, the
value of (μ − μc)/U , which gives minimum �, is slightly
shifted from zero. The shifted minimum can be interpreted
as the point where the K0 term cancels the higher-order
corrections, which breaks the particle-hole symmetry, to the
GL equation.

D. Varying w

When w = 0, the binding energies of the Higgs bound states
are rather close to the bulk Higgs gap �. More specifically,
that of the even bound state is roughly 90% of �. This
property is disadvantageous for observing the Higgs bound
states as a separate resonance peak in a response to external
perturbations, because in realistic systems the peak should be
broadened due to thermal and quantum fluctuations neglected
in the Gutzwiller approximation. In the following, we suggest
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FIG. 14. Spatial distributions of αj1 (solid black line) and �̃j1ϕj1

(dashed red line) for a normal mode corresponding to the bound state
with even parity, where zJ/U = 0.18 [or equivalently (J − Jc)/Jc =
0.04912], μ/U = μc/U + 0.2, J ′/J = 0.5, w = 0, and L = 100.
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FIG. 15. Binding energies as functions of (J − Jc)/Jc for μ/U =
μc/U , J ′/J = 0, and w = 1. The binding energies for the (a) even-
and (b) odd-parity states calculated by the Gutzwiller approach are
shown. The solid symbols represent the resonance energy h̄ωres of
quasibound states computed by the stabilization method while the
open symbols represent the excitation energy of true bound states at
L = 200. The solid lines are guides to the eye. The dashed purple
line represents the gap of the delocalized Higgs mode �.

that the energy separation from the lowest Higgs bound state
can be enlarged by using the tunability of the barrier width.

In Figs. 15 and 16, we show the binding energies for
the Higgs bound states versus (J − Jc)/Jc at w = 1 and 2.
There we clearly see that when w increases, the number of
the (quasi)bound states increases. This is simply because a
wider barrier provides the space for accommodating the wave
functions with more nodes. Moreover, at an optimal value of
(J − Jc)/Jc, the separation of the lowest binding energy from
those of the other even-parity modes becomes remarkably
larger at w = 2. Such separation makes it easier to observe
a resonance peak corresponding to the lowest Higgs bound
state in experiment. We finally note that in Ref. [24] we
have suggested a way for creating and probing these localized
Higgs modes in Bose gases in optical lattices by means of
temporal modulation of the lattice amplitude. Our analysis in
the present paper indicates that the localized Higgs mode could
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FIG. 16. Binding energies as functions of (J − Jc)/Jc for μ/U =
μc/U , J ′/J = 0, and w = 2. The binding energies for the (a) even-
and (b) odd-parity states calculated by the Gutzwiller approach are
shown. The solid symbols represent the resonance energy h̄ωres of
quasibound states computed by the stabilization method while the
open symbols represent the excitation energy of true bound states at
L = 200. The solid lines are guides to the eye. The dashed purple
line represents the gap of the delocalized Higgs mode �.

be observed in a large parameter region, including the one in
which GL theory completely fails, in the experimental setup
suggested in Ref. [24].

V. CONCLUSIONS

We have studied collective-mode properties of a Bose-
Hubbard system in the presence of local suppression of
the hopping amplitude, which acts for the superfluid order
parameter as a potential barrier preserving the particle-hole
symmetry. Specifically, we analyze localized (bound) states of
Higgs amplitude mode with use of the Gutzwiller mean-field
approximation combined with a stabilization method. The
employed method is advantageous over the GL theory used in
the previous work [24] in the sense that the former is applicable
to a much broader parameter region. The agreement between
the results obtained by the Gutzwiller and GL methods near
the Mott transition corroborated that the former method can
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properly capture the physics of the Higgs bound states. We
showed that the Higgs bound states survive even in a parameter
region where the GL theory is invalid. Moreover, it was also
shown that when the width of the potential barrier increases,
the excitation energy of the lowest Higgs bound state decreases
and that it can be well separated from the energies of other
collective modes. These properties facilitate experimental
observation of the Higgs bound state.

We found the transition from the quasibound state to a true
bound state. However, we argued that the emergence of the
true bound state should be an artifact of the Gutzwiller approx-
imation such that it will not be observed in exact numerical
analyses of the Bose-Hubbard model or in experiments.

Throughout the present paper, we focused on a 3D system,
in which the Gutzwiller and GL methods are reliable at least at
a qualitative level. However, the most advanced experimental
studies on Higgs modes in ultracold-gas systems have been

performed in two-dimensional optical-lattice systems [22],
where quantum-gas microscope techniques with single-site
resolution were used. Hence, it will be interesting to investigate
the effects of quantum and thermal fluctuations on the Higgs
bound states in two dimensions, especially whether they can
be present as well-defined collective modes exhibiting a sharp
peak in a response function, e.g., by means of quantum Monte
Carlo simulations.
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