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In this work, we study a system of interacting fermions with large spin and SP(N ) symmetry. We contrast
their behavior with the case of SU(N ) symmetry by analyzing the conserved quantities and the dynamics in each
case. We also develop the Fermi liquid theory for fermions with SP(N ) symmetry. We find that the effective
mass and inverse compressibility are always enhanced in the presence of interactions and that the N dependence
of the enhancement is qualitatively different in distinct parameter regimes. The Wilson ratio can be enhanced,
indicating that the system can be made closer to a magnetic instability, in contrast to the SU(N ) scenario. We
conclude by discussing the experimental routes to SP(N ) symmetry within cold atoms and the exciting possibility
of realizing physics in higher dimensions in these systems.
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I. INTRODUCTION

Symmetries have always played an important role in
physics. Some can occur naturally, being intrinsic to the system
of interest, while others require fine-tuning of parameters in
order to be present. The experimental control we have over
cold atoms allows us to construct systems with symmetries
which are larger than the ones naturally present in matter.
The study of systems with enlarged symmetries is in principle
very attractive: These have larger degeneracies, which can be
used to the experimentalists’ advantage in adiabatic cooling in
order to achieve low temperatures more effectively [1–3]; also,
the enhancement of quantum fluctuations and the presence of
more degrees of freedom provide theorists with the possibility
of studying new phases of matter [4].

The realization of SU(N ) symmetry has already been
explored both theoretically and experimentally. This symmetry
has been identified in alkaline-earth-metal and Yb cold atomic
systems. These atoms have a completely full outer electronic
shell of s character, so total electronic spin and angular
momentum are equal to zero. As a consequence, the nuclear
spin is effectively decoupled from the electronic degrees of
freedom and the s-wave scattering lengths for all nuclear spin
configurations are equal. The effective Hamiltonian describing
the interacting alkaline-earth-metal atoms is SU(N ) symmetric
[5,6], where N = 2f + 1 and f is the hyperfine spin (which
for these atoms is equal to the nuclear spin). Experimental
realizations of systems with SU(N ) symmetry were already
reported, with ultracold Yb [7–10] and Sr [11] isotopes.
Theoretically several aspects of the SU(N ) symmetry have
already been explored, including the characterization of Fermi
liquid behavior [12,13], magnetism [14–18], superconductiv-
ity [19,20], multipolar orders [21], staggered flux order [22],
and topology [23–25].

The presence of SU(N ) symmetry is restricted to isotopes
with zero total electronic angular momentum and with a
nonzero nuclear spin, which in principle gives us a small
number of options among all isotopes available in nature.
The question that follows is whether there are different
enlarged symmetries which can be realized with other atomic
isotopes. The answer is yes, and SP(N ) symmetry is a good
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candidate since it is a subgroup of SU(N ) and therefore less
restrictive. An early work by Wu et al. [26] on cold atoms with
hyperfine spin f = 3/2 explores a hidden SP(4) symmetry.
More recently, the presence of symplectic symmetry in higher
spin Hubbard models within cold fermions was discussed
[27]. Interesting results for fermions with large hyperfine spin
and SP(N ) symmetry trapped in one-dimensional lattices are
also available [28,29]. Another subgroup of SU(N ) is SO(N ),
which can also be realized in cold atomic systems with bosonic
isotopes [30].

The main aspect that makes cold atom systems with SP(N )
symmetry distinct from the ones with SU(N ) symmetry is re-
lated to the dynamics of each spin component. In systems with
SU(N ) symmetry, one can understand each spin component as
a different color or flavor, and the interactions allow only for
color-preserving scattering, as depicted in Figs. 1(a) and 1(c).
On the other hand, in the case of SP(N ) symmetry, it is more
intuitive to label the spin components with a color and an arrow,
which can be either up or down. The color can be understood
as the different magnitudes of the spin component, and the up
and down arrows as their sign. The form of the interactions
in this case allows for a very special kind of scattering, which
takes a pair of atoms with the same color (up and down)
and transmutes it to a pair of a different color, as shown in
Figs. 1(b) and 1(e). These points are reviewed and discussed
in detail in Sec. II. More generally, one would have spin-flip
scattering processes which do not preserve each nuclear spin
component but only preserve the total angular momentum of
the colliding atoms. This has been observed and controlled
experimentally with the long-lived alkaline radioisotope 40K
in an optical lattice [31].

SP(N ) symmetry can only be realized with fermions
(N = 2f + 1 can only acquire even values for the symplectic
group, requiring half-integer hyperfine spins). At sufficiently
low temperatures, fermions can reach quantum degeneracy
and behave as a Fermi liquid (FL). Fermi liquid behavior
is ubiquitous in condensed-matter systems and a very robust
state of matter. The original FL theory was developed for
spin-1/2 fermions [32] and recently there was a generalization
for fermions with larger spin and SU(N ) symmetry [12].
In Sec. III, we develop the Fermi liquid theory for SP(N )
cold fermions, analyzing the effective mass, compressibility,
and susceptibility, and contrast these results with the SU(N )
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FIG. 1. Schematic comparison of SU(4) and SP(4) systems. An
SU(4) system has four different flavors, represented by the four
different colors in panel (a). In contrast, the SP(4) system represented
in panel (b) has an extra label as “up” or “down” for two colors,
in a total of four different flavors. In panel (c), we depict a SU(4)
representative scattering process, which is color preserving. In panel
(d), we represent the analogous scattering for SP(4). In the symplectic
case there is also the possibility for processes as depicted in panel
(e), where “up” and “down” pairs of fermions of a given color can
transmute into a pair of a different color.

Fermi liquid [12]. The most interesting aspect of the analysis
concerns magnetism. We distinguish between two kinds
of susceptibilities: generalized and physical susceptibility.
Both are renormalized in the same fashion in the presence
of interactions and can be either enhanced or suppressed,
depending on the parameter regime. In Sec. IV, we discuss
the possible routes to realize SP(N ) symmetry within cold
atomic systems and highlight exciting directions for future
work which would allow us to explore experimentally issues
only thought to be in the theoretical realm, as physics in higher
dimensions.

II. SU(N) AND SP(N) SYMMETRIES IN COLD ATOMS

We start with a general model for cold atoms with hyperfine
spin f . We assume a dilute gas with contact interactions so
at low energies only the s-wave scattering channel is relevant
[5,33]. We can write the effective Hamiltonian as

H = H0 + HI , (1)

where H0 is the kinetic part:

H0 =
∫

r

f∑
α=−f

�†
α(r)

[
− 1

2m
∇2 + V (r)

]
�α(r), (2)

which describes moving atoms under a trapping potential V (r).
Here �†

α(r) and �α(r) are creation and annihilation operators,
respectively, for atoms with hyperfine spin component α

located at r, which at this stage can be either bosons or
fermions, and we take h̄ = 1. The interacting part reads

HI = 1

2

∫
r

f∑
α,β,μ,ν=−f

�
†
β(r)�†

α(r)�αβ;μν�μ(r)�ν(r), (3)

where the interaction vertex can be decomposed in different
total angular momentum channels as [34]

�αβ;μν =
2f∑

F=0

gF

F∑
M=−F

〈f α,fβ|FM〉〈FM|f μ,f ν〉. (4)

Here F is the total angular momentum of the two interacting
atoms, M is its component, and 〈f α,fβ|FM〉 are Clebsch-
Gordan coefficients (CGC). gF is the strength of the interaction
in the channel with total angular momentum F . The model
could similarly be written for atoms in an optical lattice, and
the discussion below, concerning symmetries, should follow
in an analogous fashion.

It can be shown by analyzing HI that only even-F channels
contribute to scattering. One can take α ↔ β and use the
properties of the CGC shown in Appendix C and the fact that
the (fermionic) bosonic operators (anti-)commute to rewrite
the interaction term explicitly as

HI = 1

4

∫
r

f∑
α,β,μ,ν=−f

∑
F

gF

[
1 + η(−1)2f −F

]

×
∑
M

�
†
β�†

α〈f α,fβ|FM〉〈FM|f μ,f ν〉�μ�ν, (5)

where η = +1 for bosons and η = −1 for fermions. Note
that for either bosons or fermions the factor

[
1 + η(−1)2f −F

]
simplifies to

[
1 + (−1)F

]
, which is zero for odd F and equal

to 2 for even F . This is a consequence of the compensation
of the factors η and (−1)2f , which product is always equal
to one since f is an integer for bosons and a half-integer for
fermions. Out of the total 2f + 1 scattering channels, only
f + 1 for bosons or f + 1/2 for fermions actually contribute
to scattering.

A. SU(N) symmetry

We start the discussion toward SP(N ) symmetry showing
first that SU(N ) can be realized in this system under the
special condition of gF = g, meaning that the interactions
in all scattering channels are the same. In order to prove the
presence of the symmetry, we can evaluate the commutator
of the generators of the SU(N ) group with the Hamiltonian.
SU(N ) has N2 − 1 generators, which can be written as

Oαβ =
∫

r
�†

α(r)�β(r), (6)

where each index α and β run over N = 2f + 1 values. Note
that not all the generators are linearly independent since the
Casimir operator C = ∑

α Oαα is a constant. These generators
follow the SU(N ) commutation relation:

[Oαβ,Oμν] = Oανδμβ − Oμβδαν. (7)

The commutator with the noninteracting part of the Hamil-
tonian is rather trivial and equal to zero. Evaluating now
the commutator with the interacting part, we find after some
manipulation

[HI ,Oα′β ′ ] =
∫

r
(�αβ;μα′�

†
β(r)�†

α(r)�μ(r)�β ′(r)

−�αβ ′;βμ�
†
β(r)�†

α′ (r)�α(r)�μ(r)), (8)
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which is generally not equal to zero. In the equation above, the
sum over repeated indexes is implied. Under the consideration
that the interactions in all scattering channels are equal,
gF = g, we can use the orthogonality condition of the CGC
[Eq. (C4)] to simplify the interaction vertex to

�
SU (N)
αβ;μν = gδαμδβν, (9)

so we can write the explicit form of the interaction part of the
Hamiltonian in case of SU(N ) symmetry:

H
SU (N)
I = g

2

∫
r

f∑
α,β=−f

�†
α(r)�†

β(r)�β(r)�α(r). (10)

It is a simple task to show that[
H

SU (N)
I ,Oα′β ′

] = 0, (11)

which proves the SU(N ) symmetry. Note that this result is
independent of the bosonic or fermionic character of the atoms.

The diagonal generators

Oαα =
∫

r
�†

α(r)�α(r) = nα (12)

commute with the Hamiltonian, so these are conserved
quantities. The total number of particles with a given spin
component, or flavor, is preserved if the interactions are the
same for all channels and SU(N ) symmetry is realized.

B. SP(N) symmetry

Given the discussion above, now we move to the study of
the SP(N ) case. One subtlety about the SP(N ) generalization
is that the group is only defined for even N and its realization
is possible only with fermionic atoms. We can check the
presence of SP(N ) symmetry by evaluating the commutator
of the generators of SP(N ) with the Hamiltonian. SP(N ) is a
subgroup of SU(N ) and has N (N + 1)/2 generators, which
can be written as specific linear combinations of the SU(N )
generators defined above in Eq. (6):

Sαβ = Oαβ + (−1)α+βO−β−α, (13)

where again α and β run over N values. Note that these
generators are not all linearly independent given the relation
Sαβ = (−1)α+βS−β−α .

The commutator with the noninteracting part of the Hamil-
tonian is again trivial. Concerning the interacting part, given
that SP(N ) is a subgroup of SU(N ), if a Hamiltonian has
SU(N ) symmetry (if gF = g), it will also commute with the
generators of SP(N ). Note, though, that this is not what we
are looking for since the actual symmetry of the system is still
SU(N ) in this case. We need to look for a way to break the full
SU(N ) symmetry down to SP(N ). From the strongly correlated
systems perspective, it is known that SP(N ) was introduced
in order to deal with valence bonds in frustrated magnetism
[35,36] and singlet pairing [37–39]. It is suggestive then that
the zero total angular momentum channel gF=0 is the important
one to distinguish SU(N ) from SP(N ) symmetry.

We can use the results obtained for SU(N ), before the as-
sumption that all channels have the same interaction strength,
given by Eq. (11), and look at the less restrictive condition
of having g0 �= gF>0 = g. In this case, we can combine all

terms with the same magnitude of the interaction and part of
g0 to use the orthogonality condition of the CGC, leading to
zero contribution to the commutator, as found in the SU(N )
discussion above. We are left with a term proportional to
	g = g0 − g in the F = 0 channel to be evaluated. Now the
interaction vertex simplifies to

�
SP (N)
αβ;μν = �

SU (N)
αβ;μν − 	g

N
(−1)α+μδα,−βδμ,−ν, (14)

after using Eq. (C3), identifying 2f + 1 = N , and remember-
ing that we are dealing only with fermions, so 2f is always an
odd number. Under these considerations the interacting part
of the Hamiltonian for the case of SP(N ) symmetry can be
written explicitly as

H
SP (N)
I = g

2

∫
r

f∑
α,β=−f

�†
α(r)�†

β(r)�β(r)�α(r)

+ 	g

2N

∫
r

f∑
α,β=−f

(−1)α+β�†
α(r)�†

−α(r)�β(r)�−β(r).

(15)

Note that the first term is the same as the one present in the
case of SU(N ) symmetry. The second term, proportional to the
detuning of the F = 0 channel, is the part of the interaction
which breaks SU(N ) down to SP(N ).

We can now evaluate the commutator of the interacting part
of the Hamiltonian under the condition g0 �= gF>0 = g with
the SU(N ) generators to find

[
H

SP (N)
I ,Oα′β ′

] = −
∫

r

f∑
α=−f

	g

2N
(−1)α

× [(−1)α
′
�†

α(r)�†
−α(r)�−α′ (r)�β ′(r)

− (−1)β
′
�

†
−β ′ (r)�†

α′(r)�α(r)�−α(r)],

(16)

what is generally not equal to zero. Note, though, that[
H

SP (N)
I ,(−1)α

′+β ′
O−β ′−α′

] = −[
H

SP (N)
I ,Oα′β ′

]
(17)

so for the SP(N) generators[
H

SP (N)
I ,Sα′β ′

] = 0, (18)

which indicates that the model with the interactions satisfying
g0 �= gF>0 = g has SP(N ) symmetry and not the larger SU(N )
symmetry.

The diagonal generators are now

Sαα =
∫

r
(�†

α(r)�α(r) − �
†
−α(r)�−α(r))

= nα − n−α = mα (19)

and commute with the Hamiltonian, so these are conserved
quantities. The magnetization for a given magnitude of the
spin component, or the color magnetization, is preserved if the
interactions are the same for all but the F = 0 channel and
SP(N ) symmetry is realized.
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Here we would like to stress that the conditions on the
interaction channels found above for the realization of both
SU(N ) and SP(N ) symmetries are unique. One could also
start from the general form of �αβ;μν and determine what
conditions it should satisfy so the interacting Hamiltonian
commutes with all the generators of the desired symmetry
group. Here we choose to simply show that these conditions
hold since it facilitates the discussion.

C. Comparison of SU(N) and SP(N) symmetric systems

At this point, a discussion on the physical implications of
SU(N ) and SP(N ) symmetries is interesting. From the explicit
form of the Hamiltonians in Eqs. (10) and (15), it becomes clear
that in the first case two particles with components α and β can
only scatter into states with the same spin components, so the
number of particles with each spin component is a constant.
This is illustrated pictorially in Fig. 1(c). On the other hand,
the SP(N ) interaction has a second contribution which allows
the spin components, or colors, to change. Now two particles
with the same color and up and down arrows (β and −β, for
example) can scatter into a pair of states with opposite arrows
and a different color (α and −α, for example). Figure 1(e)
illustrates this point.

Another difference between SU(N ) and SP(N ) symmetries
concerns the dynamics of the system. Given an initial state
with a specific occupancy of the different spin components, the
SU(N ) and SP(N ) cases will evolve differently. In particular,
if we have alkaline-earth-metal atoms with hyperfine spin
f and all the levels are occupied, the system has SU(N =
2f + 1) symmetry. On the other hand, if only a certain subset
n < 2f + 1 of the flavors is occupied, the symmetry which
is realized is SU(n < N). This is a consequence of the fact
that the number of particles in each flavor is conserved. In
contrast, in the symplectic scenario, the interaction allows
for spin component transmutation. Even if we load the
system with a single color (with up and down arrows), the
system will equilibrate to the lowest energy state with same
occupation number to each flavor, and the symmetry is actually
the maximal SP(N = 2f + 1). Interestingly enough, if one
initially traps only positive components, so they cannot pair
with their complements in order to transmute into other flavors,
then the symmetry is lowered to SU(n′ � N/2), where n′ is
the number of unpaired components trapped.

In the introduction, it was already mentioned that SP(4)
symmetry has been pointed out for systems with f = 3/2
[26,27]. What is special about f = 3/2 is the fact that
it naturally satisfies the condition for SP(4), without any
fine-tuning. We know that, by symmetry, only even channels
contribute to scattering, so only F = 0,2 are the allowed
scattering channels for f = 3/2. Even if the interactions in
all channels are different, we fall under the condition with
the F = 0 channel different from all other channels (here
only one, F = 2). For larger spins, we would have extra
channels present, with different interactions. For instance, for
f = 5/2 there are three channels F = 0,2,4. To realize SP(N )
symmetry in this case one needs to tune the interactions for
the F = 2 and F = 4 channels to be the same. A compilation
of results for the particular case of SP(4) can be found in
Wu [40], with more recent results on magnetism [41,42] and

superconductivity [20]. As we will discuss in more detail in
Sec. IV A, unfortunately nature does not provide us with stable
isotopes with hyperfine spin-3/2 which have no dipole-dipole
interactions and are not alkaline-earth metals (these realize the
larger SU(4) and not SP(4) symmetry), so a smart experimental
setup is necessary in order to realize even the first nontrivial
case of SP(N ) with N = 4.

From the discussion above, it is suggested that the presence
of new scattering processes that allow for spin-flip scattering
(or color transmutation) brings new aspects that should be
investigated and the possibility that more interesting physics,
mainly concerning magnetism, may be found. As a first
exploration of these consequences, in this work we focus on
the effects on the Fermi liquid behavior.

III. THE SYMPLECTIC FERMI LIQUID

Given the motivation above for the realization of SP(N )
symmetry within cold fermions, now we analyze the Fermi
liquid behavior of a system of fermions with symplectic
symmetry. This is the state that would be accessible in
experiments if the temperature is below quantum degeneracy,
but not low enough so that order is able to develop. From
this section on, we will focus on the following Hamiltonian,
already Fourier transformed to momentum space:

H
SP (N)
FL =

∑
k

∑
α

�
†
kα

(
k2

2m
− μ

)
�kα

+ g

2

′∑
{k}

∑
α,β

α �= β

�
†
k1,α

�
†
k2β

�k3β�k4α

+	g

2N

′∑
{k}

∑
α,β

(−1)α+β�
†
k1α

�
†
k2−α�k3β�k4−β,

(20)

where �
†
kα (�kα) creates (annihilates) a fermion with momen-

tum k and spin component α, which can assume half-integer
values between −f and f . The first term describes free
fermions with mass m and chemical potential μ. Here we
ignore the trapping potential, assuming the fermions explore a
region in space with an almost constant potential. The second
term introduces part of the interactions which is also present in
the SU(N ) case (here we make explicit that the sum does not
allow α = β since we are dealing with fermions). The third
term introduces a new interaction vertex, which is particular
to the SP(N ) case, where 	g = g0 − g. The primed sum over
{k} = k1,k2,k3,k4 indicates the sum over all momenta, subject
to momentum conservation k1 + k2 = k3 + k4.

We can construct a FL theory, following the lines of Lifshitz
and Pitaevskii [32], treating the quasiparticle distribution
function and the quasiparticle energy as N × N matrices, in
which each index corresponds to a spin component running
from −f to f , where f is a half-integer number. In Yip et al.
[12], the authors generalize the FL theory to SU(N ) symmetry
and compute the effective mass, magnetic susceptibility, and
compressibility in terms of the new Landau parameters. Here
we will comment on the generalization to the symplectic case
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and how physical quantities depend on the parameter N in this
new scenario.

The change in the quasiparticle energy δεαβ(k) due to an
infinitesimal change in the quasiparticle distribution function
δnαβ(k) can be written as

δεαβ(k) =
∑

k′

∑
μ,ν

fαμ,βν(k,k′)δnνμ(k′), (21)

where fαμ,βν(k,k′) is the interaction function [32]. The
specific form of the interaction function depends on the actual
interactions between the particles and it will be worked out in
Sec. III C below. Given SP(N ) symmetry, we can parametrize
the interaction function as follows:

fαμ,βν(k,k′) = fs(k,k′)δαβδμν + fε(k,k′)εαμεβν

+ fa(k,k′)
∑
A

�A
αβ�A

μν. (22)

Note that unlike the SU(N ) case now we have three different
parameters: fs(k,k′), fa(k,k′), and fε(k,k′). This reflects the
fact that there are three independent 4-indexed invariants under
SP(N ) transformations. This point is discussed in more detail
in Appendix B. Here ε is an antisymmetric matrix and �A are
the generators of the specific symmetry group. The label A

runs from 1 to the total number of generators, which is equal
to N (N + 1)/2 for SP(N ). The generators are traceless and
we choose them to be normalized as Tr[�A�B] = δAB . Note
that the generators introduced in Sec. II B do not satisfy this
condition, but in Appendix A we show these can be redefined
such that this normalization holds, making the following
calculations more straightforward.

A. Effective mass and compressibility

The effective mass and compressibility for the SP(N ) FL
can be computed in the same fashion as for the SU(N ) or
SU(2) FL, so we simply state and comment on the results in
this section. The effective mass reads

m∗

m
= 1 + NFs(θ ) cos θ, (23)

where

Fs(θ ) = ρ∗(Ef )

[
fs(θ ) + 1

N
fε(θ )

]
, (24)

with θ being the angle between k and k′, which are at the Fermi
surface. The overline denotes the average over the solid angle.
Here we introduce the density of states per spin component
at the Fermi energy ρ∗(Ef ) = m∗kf /(2π2), with kf being
the Fermi momentum, defined from the total particle density

ρT = NT /V = N
k3
f

6π2 .
Analogously, the inverse compressibility u2 = NT

m

dμ

dNT
is

modified in the presence of interactions as

u∗2

u2
= 1 + NFs(θ )

1 + NFs(θ ) cos θ
. (25)

These results are similar in form to the SU(N ) results, in which
case fε(θ ) = 0.

B. The generalized and the physical magnetic susceptibilities

Now we would like to focus the discussion on the magnetic
susceptibility. Here we will make a distinction between two
kinds of susceptibility: a generalized susceptibility χG and a
physical susceptibility χP .

For the generalized susceptibility, we define a generalized
magnetization with components mA, associated with a gener-
alized magnetic field with components hA which couple to
the respective generator as −μBhA�A. This is the natural
generalization of the SU(2) case, in which there are three
generators σA, the three Pauli matrices, each one coupling
to one component of the magnetic field in three-dimensional
space as −μBhAσA. This is a formal definition, and it is what
was evaluated for the SU(N ) FL as a generalized susceptibility
[12].

We can perform a similar calculation, following Lifshitz
and Pitaevskii [32], and evaluate the change in energy due
to the presence of an external generalized magnetic field as
follows:

δεαβ(k) = −μB

∑
A

hA�A
αβ

+
∑
μ,ν

∫
dτ ′fαμ,βν(k,k′)δnνμ(k′), (26)

where the second takes into account feedback effects due to
interactions. We transformed the sum over k′ into an integral
introducing dτ ′ = dk′

(2π)3 . We use the ansatz

δεαβ(k) = −μB

γ

2

∑
A

hA�A
αβ, (27)

where γ is a parameter to be determined self-consistently.
Using the fact that the generators are traceless, normalized,
and follow the symplectic condition ε�Aε = (�A)T , we find

γ = 2

1 + Fa(θ )
, (28)

where

Fa(θ ) = ρ∗(Ef )[fa(θ ) − fε(θ )]. (29)

Finally, the generalized susceptibility is defined as

χ∗
GhA = mA = μB

∑
αβ

∫
dτ�A

αβδnβα(k) (30)

and has the form

χ∗
G = 2μ2

Bρ∗(Ef )

1 + Fa(θ )
. (31)

This generalized susceptibility is the one which controls
the stability of the Fermi liquid against the development of
magnetic order since it stems from the intrinsic interactions of
the system. Note, though, that the susceptibility computed in
this fashion is independent of N .

This result for the generalized susceptibility χG goes against
the physical intuition that says if we have a Fermi gas with
many spin components, all susceptible to a magnetic field, the
susceptibility should depend on the number of components.
Also, this computation assumes the existence of a generalized
magnetic field with as many components as generators, so
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FIG. 2. Quasiparticle interaction vertices in first order in g/2
(circle) and in 	g/2N (square), respectively, depicted as Feynman
diagrams. Note that α �= β in the first diagram.

N (N + 1)/2 components. This suggests that one would need
to be in higher spacial dimensions in order to realize it. We are
going to comment further on this aspect in Sec IV D.

Based on this discrepancy, we evaluate now what we call
the physical susceptibility χP . The physical point of view
asks the following question: What happens when we apply
actual magnetic field (assuming a three-dimensional space) to
a system with an enlarged symmetry? The standard estimation
for the magnetization of a pair of spin components α and −α

is 2αμBmα , and one can approximate mα ≈ ρ(Ef )2αgμBhz,
where hz is now a physical magnetic field chosen to be in the
z direction. The total magnetization can then be written as

mz =
∑

α

2αμBmα = 4ρ(Ef )gμ2
B

∑
α

α2hz, (32)

so from mz = χ∗
P hz we can identify the physical susceptibility

as

χ∗
P = 2μ2

Bρ∗(Ef )

1 + Fa(θ )

N (N2 − 1)

6
, (33)

which now depends on N . Note that in the case N = 2 we
recover the known SU(2) result, with the last fraction equal to
one and fε(θ ) = 0. This result should be valid for both SU(N )
and SP(N ) Fermi liquids, which will differ on the specific
form of the renormalization factors, which we treat explicitly
below.

Note that in both cases, for the generalized or physical
susceptibilities, the effects of interactions lead to the same
renormalization:(

χ∗
G,P

χG,P

)−1

= 1 + Fa(θ )

1 + NFs(θ ) cos θ
. (34)

In principle, both of these susceptibilities can be probed
experimentally. We comment on this point in Sec. IV C below.

C. Explicit form of the interaction function

The interaction function is defined as the second variation
of the total energy with respect to occupation numbers:

fαμ,βν(k,k′) = δ2E

δnβα(k)δnνμ(k′)
. (35)

If we approach the interacting problem perturbatively,
starting from the Fermi gas as the noninteracting problem,
we have that the ground state over which averages are going
to be taken has only diagonal nonzero occupation numbers

FIG. 3. Feynmann diagrams related to the interaction function in
second order for particles with equal spin.

δnαβ (k) = δnαα(k)δα,β ≡ δnα(k)δαβ , so the only nonzero in-
teraction functions have the form

fα,β (k,k′) = δ2E

δnα(k)δnβ(k′)
, (36)

where we defined fα,β(k,k′) ≡ fαβ,αβ (k,k′).
In first order, the contribution of the interactions to the total

energy can be written as

E(1) =
∑
k1,k2

∑
α,β

nα(k1)nβ(k2)

×
[
g

2
(1 − δαβ) + 	g

2N
δα,−β

]
. (37)

Note that the last term in the first-order correction is not
present in the SU(N ) scenario since 	g = g0 − g is zero in
that case. This term appears with a factor of 1/N , but for small
values of N and significant 	g it can play an important role.
The interaction function in first order in the interactions is then

f
(1)
α,β (k,k′) = g

2
(1 − δαβ) + 	g

2N
δα,−β (38)

and can be associated with the vertices depicted in Fig. 2.
In second order, the contribution to the total energy is more

involved. In favor of a concise notation, we rewrite

H
SP (N)
I =

′∑
{k}

∑
α,β,μ,ν

Gαβμν�
†
k1α

�
†
k2β

�k3μ�k4ν, (39)

where

Gαβμν = g

2
(1 − δαβ)δμβδαν

+ 	g

2N
(−1)α+μδβ,−αδμ,−ν . (40)

With this definition, we can write the second-order contri-
bution to the total energy as

E(2) =
′∑

{k}
∑
αβμν

(Gαβμν)2 nk4νnk3μ(1 − nk2β)(1 − nk1α)

(k2
4 + k2

3 − k2
2 − k2

1)/2m
.

(41)

As we are interested in the interaction function, not in the
total energy, we evaluate the sums after we vary the energy with
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respect to the occupation numbers. The result is the following:

f
(2)
α,β (k,k′) = −

(g

2

)2{
(1 − δαβ)

[
I1(k,k′) + I2(k,k′)

] + δαβ(N − 1)I1(k,k′)
}

− 2
(g

2

)(
	g

2N

){
δα,−β

[
I1(k,k′) + I2(k,k′)

] + δαβI1(k,k′)
}

−
(

	g

2N

)2[
I1(k,k′) + δα,−β

N

2
I2(k,k′)

]
, (42)

where I1,2(k,k′) are the sums

I1(k,k′) =
∑
k1,k2

nk1 − nk2(
k2

1 − k2
2

)
/2m

δk1+k,k2+k′ , (43)

I2(k,k′) =
∑
k1,k2

nk1 + nk2(
2k2

f − k2
1 − k2

2

)
/2m

δk1+k2,k+k′ , (44)

which can be evaluated as integrals in order to obtain the
familiar closed forms

I1(k,k′) = −4kf m

(2π )2

[
1 + 1 − s2

2s
ln

(
1 + s

1 − s

)]
, (45)

I2(k,k′) = −8kf m

(2π )2

[
1 − s

2
ln

(
1 + s

1 − s

)]
, (46)

where s = sin(θ/2) and θ is the angle between k and k′, both
assumed to be at the Fermi surface.

We can look now at specific cases of the interaction function
in second order in the interactions. First, for particles with
equal spin components,

fα,α(k,k′) = −
[(g

2

)2
(N − 1)

+ 2
(g

2

)(
	g

2N

)
+

(
	g

2N

)2
]
I1(k,k′), (47)

which we can identify with the diagrams in Fig. 3. Note
that the diagram with two circular vertexes, proportional to
( g

2 )2, is the only one with internal lines which need to be
summed over all the possible spin indexes but α, which
gives the factor of N − 1 above. Note also that there is no
first-order correction in the case of particles with the same spin
component.

FIG. 4. Diagrams for the interaction function up to second order
for particles with opposite spin components.

For particles with opposite spin components,

fα,−α(k,k′) = g

2
+ 	g

2N

−
(g

2

)2[
I1(k,k′) + I2(k,k′)

]
− 2

(g

2

)(
	g

2N

)[
I1(k,k′) + I2(k,k′)

]

−
(

	g

2N

)2[
I1(k,k′) + N

2
I2(k,k′)

]
, (48)

which second-order terms can be identified with the diagrams
in Fig. 4. Note that this time only one of the diagrams with
two square vertexes, proportional to ( 	g

2N
)2, have internal lines

that need to be summed over, giving rise to the factor of N/2
in the last line.

Finally, for the case of α �= ±β we find

fα,β �=±α(k,k′) = g

2
−

(g

2

)2
[I1(k,k′) + I2(k,k′)]

−
(

	g

2N

)2

I1(k,k′), (49)

related to the diagrams pictured in Fig. 5.
Note that when 	g = g0 − g = 0 we recover the SU(N )

results [12]. Under this condition fα,−α = fα,β �=α since there
are only two FL parameters in the SU(N ) case, in contrast to
three in the SP(N ) case. Because of the different parametriza-
tion of the interaction function in terms of fs,a,ε(k,k′) given
the different group properties, in particular the completeness
relation, the corrections to the physical observables are going
to be different, as will be shown explicitly in the following
subsection.

FIG. 5. Diagrams depicting the interaction function up to second
order for particles with spins satisfying α �= ±β.
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FIG. 6. Renormalization of the effective mass as a function of
N . Note the different qualitative behavior for different parameter
regimes. The curves above have different ranges and parameters. The
blue circles were plotted for g̃ = 0.005 and 	g̃ = 0.5; the orange
squares used g̃ = 0.1 and 	g̃ = 0.5; and the green diamonds were
plotted for g̃ = 0.1 and 	g̃ = 0.1. The lines are guides to the eye.

D. Explicit correction to physical quantities

Given the results above, we can now explicitly write the
Fermi liquid parameters fs,a,ε(k,k′). Using the completeness
relation for SP(N ),

∑
A

�A
αβ�A

μν = δανδβμ − εαμεβν, (50)

and the fact that the only nonzero interaction functions
have the form fα,β (k,k′) ≡ fαβ,αβ (k,k′), Eq. (22) can be
rewritten as

fα,β (k,k′) = fs(k,k′) + (fε − fa)(k,k′)δα,−β + fa(k,k′)δαβ,

(51)

so we are able to identify

fs(k,k′) = fα,β �=±α(k,k′),

fa(k,k′) = (fα,α − fα,β �=±α)(k,k′),

fε(k,k′) = (fα,α + fα,−α − 2fα,β �=±α)(k,k′). (52)

The effect of interactions on physical quantities appear in
terms of fs,a,ε(k,k′), averaged over the Fermi surface. The
calculation involves then averages of combinations of I1(k,k′)
and I2(k,k′) over the Fermi surface, which leads to well-known
integrals. The effective mass reads

m∗

m
= 1 + 16

15

{(
g̃

2

)2

[(5 + N ) ln 2 − 5 + 2N]

+ 2

(
g̃

2

)(
	g̃

2N

)
(7 ln 2 − 1) +

(
	g̃

2N

)2

N (7 ln 2 − 1)

}
(53)

FIG. 7. Wilson ratio as a function of N . For this plot, the
parameters used are g̃ = 0.5 and 	g̃ = ±0.5.

and the inverse compressibility has the form

(
u∗

u

)2

= 1 + N

2

{
(N − 1)

(
g̃

2

)2 8

3
(2 ln 2 + 1)

+ 2

(
g̃

2

)(
	g̃

2N

)
16

3
(ln 2 + 2)

+
(

	g̃

2N

)2 16

3

[
(2 − N ) ln 2 + N + 1

]}
. (54)

Here we defined the dimensionless quantities g̃ = ρ(Ef )g and
	g̃ = ρ(Ef )	g. By inspection, one can see that for N > 2 the
corrections to the effective mass and inverse compressibility
are always positive, even in the case 	g̃ < 0, leading to an
enhancement of both quantities due to interactions. Interest-
ingly enough, the behavior of the enhancement of the effective
mass and inverse compressibility as a function of N varies
for different parameter regions, as shown in Fig. 6. We focus
on the small g̃ and 	g̃ parameter region since the calculation
is perturbative in the interaction strength. For g̃ � 	g̃ the
enhancement decreases as a function of N , while for g̃ � 	g̃

the enhancement increases as a function of N . For intermediate
regimes, a nonmonotonic dependence on N can be observed.
These qualitative features are valid for both 	g̃ > 0 and
	g̃ < 0.

Concerning the correction to the magnetic susceptibility, we
can look at the Wilson ratio, as a measure of the enhancement
of the susceptibility due to exchange interactions:

W = χ∗
G,P /m∗

χG,P /m
= 1

1 + Fa(θ )
, (55)

which takes the explicit form

W = 1 − 	g̃

2N
− 8

(
g̃

2

)(
	g̃

2N

)
−

(
	g̃

2N

)2 8N

3
(1 − ln 2).

(56)

Considering the Wilson ratio in first order in the interactions,
there can be an instability for 	g̃ > 0 at 	g̃/2N = 1. Note
that there is an N dependence for the instability in first order,
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TABLE I. List of stable or long-lived isotopes with hyperfine spin larger than 1/2, and the respective symmetry they realize. Asterisk (*)
indicates that the system requires fine-tuning.

Electronic configuration Family Isotope Nuclear spin Hyperfine spin Symmetry

9Be 3/2 3/2 SU(4)
25Mg 5/2 5/2 SU(6)

Alkaline-earth
41,43Ca 7/2 7/2 SU(8)

metals
87Sr 9/2 9/2 SU(10)

135,137Ba 3/2 3/2 SU(4)

Lanthanides 173Yb 5/2 5/2 SU(6)

J = 0
67Zn 5/2 5/2 SU(6)

Family IIB
201Hg 5/2 3/2 SU(4)
21Ne 3/2 3/2 SU(4)

Noble gases 83Kr 9/2 9/2 SU(10)
131Xe 3/2 3/2 SU(4)

Alkali metals 40K 4 9/2 SP(10)∗

J = 1/2
Family IIIA 10B 3 5/2 SP(6)∗

J = 1 Family IVA 73Ge 9/2 7/2 SP(8)∗

and it is harder for the system to reach the instability for large
values of N , unlike the SU(N) case [12].

The second-order contribution to the Wilson ratio puts the
system closer to an instability, assuming g̃ > 0, or that the
interactions are originally repulsive, as shown in Fig. 7. This
is in contrast with the findings for SU(N ), since for N > 2 the
second-order corrections always take the system away from a
magnetic instability [12].

The enhancement of the susceptibility is usually taken as
an indication of the tendency of the system to develop order
through a second-order phase transition. It is important to
comment here that the transition could also be of first order as
discussed in the literature for SU(2) [43] and SU(N ) systems
[13]. In the SU(N ) scenario, it was argued that the transition
is first order based on the construction of a Landau free energy
which allows for odd powers of the order parameter given the
properties of the generators of the SU(N ) group [13]. Some of
the generators of SU(N ) invert under time-reversal operation,
while others do not [37]. This allows for the construction of
triads of operators in which two invert under time reversal and
one does not, leading to cubic terms in the free energy. In
contrast, the generators of the SP(N ) group all invert under
time reversal, so terms with odd powers of the generators
are not allowed in the free energy if one wants to preserve
time-reversal symmetry. This difference in the property of the
generators might indicate that the transitions to magnetic states
in SP(N ) systems, if of first order, are not as strongly first order
as the SU(N ) systems. A more detailed numerical analysis is
required to clarify this point.

Here we would like to notice that one cannot benchmark
these results with the SU(N ) case by directly taking the limit
	g̃ = 0 since we are using a different parametrization (given
the different completeness relations for the generators of the

different symmetry groups). The benchmarking needs to go
one step back, eliminating the parameters fε(θ ) from the
evaluation of the corrections above and taking 	g̃ = 0, in
which case the SU(N ) results [12] are recovered. We also note
that the limit with N = 2 cannot be directly taken since in this
case g̃0 is the only one scattering channel. Again one needs
to go one step back and make g̃ = 0 in order to recover the
SU(2) results.

IV. DISCUSSION AND CONCLUSION

A. Experimental realization without tunning

We now discuss the candidates for the realization of
symplectic symmetry within ultracold fermionic systems.
We start by restricting ourselves to atoms whose scattering
properties can be well described by contact interaction in
the limit of ultracold temperatures, so we neglect atoms
with sizable dipole-dipole interactions [44]. We also focus
on stable or long-lived isotopes which can be actually handled
in an experimental setup. These restrictions eliminate some of
the transition metals, lanthanides, and actinides, which have
large dipole-dipole interactions and elements heavier than Pb.
We now go over the different families in the periodic table,
exploring the possibilities to realize enlarged symmetries. The
discussion below is summarized in Table I.

1. Alkali metals

These have the outer electronic shell with configuration ns1

(here n is the principal quantum number). The total electronic
angular momentum is J = 1/2. As we are interested in atoms
which are fermions, we need to look for isotopes with integer
nuclear spin. This leaves us with 2H, 6Li, and 40K, with nuclear
spin I equal to 1, 1, and 4, respectively. Because of the
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hyperfine interaction, these combine into a total hyperfine spin
f equal to 1/2, 1/2, and 9/2. The first two cases are trivial
in the sense that SP(2) is isomorphic to SU(2). In conclusion,
40K is the promising candidate among the alkali metals.

2. Alkaline-earth metals

These have a full outer electronic shell with configuration
ns2. In this case, J = 0 and the electronic degrees of freedom
are therefore decoupled from the (possibly nonzero) nuclear
spin. In order to obtain a fermionic isotope, we need a nucleus
with half-integer spin. Now we have the following options:
9Be, 25Mg, 41,43Ca, 87Sr, and 135,137Ba, with nuclear spins
ranging from 3/2 to 9/2, as summarized in Table I. These are
known to realize SU(N ) symmetry, so in principle one could
realize enlarged symmetries ranging from SU(4) up to SU(10)
with alkaline-earth-metal atoms.

3. Transition metals

One would expect that there would be also some candidates
among the transition metals. For the family IB, with ns1

electronic configuration, one would need a nucleus with an
even number of nucleons, but nature does not provide us with
stable isotopes of this kind. The atoms in family IIB have a
full electronic shell of s character, so we look for isotopes with
half-integer nuclear spin. There are several: 67Zn, 111,113Cd,
and 199,201Hg, with nuclear spins ranging from 1/2 to 5/2.
Since these have a full electronic shell, they also realize SU(N )
symmetry. Other transition metals have large dipole-dipole
interactions or do not have stable fermionic isotopes.

4. Lanthanides

Among the lanthanides, Yb is one of the few elements
with no dipole-dipole interaction due to its complete electronic
shell. There are two isotopes which are fermions: 171,173Yb,
with nuclear spin equal to 1/2 and 5/2, respectively. These
would realize SU(2) and SU(6) symmetries, respectively.

5. Families IIIA–VIIA

Elements in the families VA–VIIA have a substantial
multipolar character, so we are not going to consider them.
Elements in the families IIIA have an odd number of electrons;
therefore we should look for integer nuclear spin isotopes. The
only stable isotope is 10B with nuclear spin equal to 3. Elements
of the families IVA have an even number of electrons; therefore
we are interested in isotopes with half-integer nuclear spin.
There are several isotopes available in nature: 13C, 29Si, 73Ge,
115,117Sn, and 207Pb with nuclear spins equal to 1/2, with the
exception of 73Ge, which has nuclear spin equal to 9/2.

6. Noble gases

These have a complete electronic shell, so J = 0, and
we should look for isotopes with half-integer nuclear spin.
The stable isotopes are 3He, 21Ne, 83Kr, and 129,131Xe, with
hyperfine spins ranging between 1/2 and 9/2. These also
realize SU(N ) symmetry.

From the analysis above we can conclude that nature is
quite unfair toward the realization of symplectic symmetry.
The most interesting case would be to have an isotope with
hyperfine spin f = 3/2 and electronic angular momentum

J �= 0, which would not require fine-tuning of the scattering
channels. In this case, there are only two interaction channels
satisfying g0 �= g2. Unfortunately there is no such isotope (at
least not on its ground state and without substantial dipole-
dipole interaction). The only f = 3/2 cases are within the
elements with J = 0, so they actually realize the larger SU(4)
symmetry and not SP(4) symmetry. Note that the discussion in
terms of the interaction strengths in different channels, gF , is
analogous to the discussion in terms of scattering lengths, aF ,
since these are related by the identity ρ(Ef )gF = 2kf aF /πh̄,
where as before kf is the Fermi momentum and ρ(Ef ) the
density of states at the Fermi level.

B. Experimental realization with tunning

There are elements with larger hyperfine spins which have
J �= 0. These are 40K, 10B, and 73Ge, and can realize SP(N )
symmetry in case the scattering lengths are fine-tuned such that
a0 �= aF>0. We focus on 40K, the only one among these that
was already taken to ultralow temperatures. Interestingly, it has
a very large hyperfine spin (f = 9/2) so the associated sym-
metry is SP(10). Note that the symmetry will be present only
if the scattering lengths aF=2,4,6,8 are all made equal. It seems
challenging to fine-tune four parameters in the system, but in
fact 40K is already very close to naturally satisfy this condition.
From Krauser et al. [31], one can see that the scattering lengths
for F > 0 are the same within about 12% (a0 ∼ 120, a2 =
147.83, a4 = 161.11, a6 = 166.00, a8 = 168.53 in units of the
Bohr radius). Given the fact that we are naturally close to the
fine-tuned point with all gF>0 equal, it might be interesting to
explore how one could tune the system toward better satisfying
this condition, perhaps by the use of Feshbach resonances.

Feshbach resonances have been successfully used to control
cold atom systems and are particularly interesting due to
possibility of significantly changing the scattering lengths
[45]. Magnetic Feshbach resonances can be used in systems
with significant magnetic moments, while optical Feshbach
resonances are more appropriate for system without magnetic
moments such as alkaline-earth-metal atoms [45,46].

As already discussed in Sec. II B, for SP(N ) systems we
cannot simply initially load it with a few of the states in order
to realize a smaller SP(n < N) symmetry, as can be done in
the SU(N ) case. If we load the system with one flavor and its
complement, it can scatter to another flavor and its component,
α, − α → β, − β, as sketched in Fig. 1(e). If that was possible,
one could take 40K and load the system only with the states
{±1/2, ± 3/2}, realizing SP(4) symmetry. In this direction,
one could think on engineering a way to block the scattering
to other states.

Another possibility to realize SP(N ) symmetry would be
to think on the other way around: It might be possible to
detune the F = 0 channel away from the remaining channels
in an isotope which has SU(N ) symmetry so we are able
to break it down to SP(N ) symmetry. In principle, this can
be achieved by connecting the low lying states with excited
states by external fields.

One could also explore the atoms we neglected above, with
strong dipole-dipole interactions, by tuning them with Fesh-
bach resonances such that the contact interactions are much
stronger than the dipole-dipole interactions. One of the atoms
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with the strongest dipole-dipole interaction is Dy and there
are two fermionic isotopes, 161,163Dy, both with nuclear spins
equal to 5/2. Another atom with significant dipolar character
is Er, which has only one stable fermionic isotope, 167Er.
Recently Er and Dy have been shown to display a very dense
Feshbach spectrum with signatures of chaotic behavior [47].
This suggests that one could scan the system as a function of
magnetic field in order to find a value which gives the suitable
scattering lengths following a0 �= aF �=0, in fashion similar to
what was done by Lahaye et al. [48]. 53Cr is another dipolar
isotope which was already brought to a degenerate state [49].

One might be concerned with the use of Feshbach res-
onances since the coupling of the system to an external
magnetic field, or to excited states with nonzero angular
momentum by optical means, strictly breaks both SU(N )
and SP(N ) symmetries. Besides renormalizing the scattering
lengths, these external fields would enter the Hamiltonian in
new terms which do not commute with all the generators of the
enlarged symmetry group. Nevertheless, in case the strength
of the interactions, or the temperature, are significantly larger
than the splitting of the degeneracy of the different fermionic
components, SU(N ) or SP(N ) symmetries should still be
effectively present [5]. Interestingly enough, there are systems
which possess higher symmetries under external fields, such as
6Li, which possesses SU(3) symmetry under strong magnetic
fields [50,51].

One more interesting note about the application of an exter-
nal magnetic field in case of SP(N ) symmetry: In the presence
of an external magnetic field, the Hamiltonian has a Zeeman-
like term of the form HZ = −mzhz = −2μB

∑
α α�†

α�αhz.
Now not all the generators commute with the Hamiltonian,
and the dynamics of each spin component is given by

dSαβ

dt
= − i

h̄
[Sαβ,HZ] = −iωαβSαβ, (57)

where ωαβ = 2μBhz(α − β)/h̄. In direct analogy to what is
known for spin-1/2 under a magnetic field in the absence
of relaxation processes, the components of the spin in the
direction of the field, here related to the diagonal generators,
Sαα = mα , are preserved. The transverse components precess
in pairs, Sαβ and Sβα , with frequency ωαβ . Note that as the
magnetization does not change under magnetic field, the main
observable property of the SP(N ) system, the preservation of
the color magnetization, is maintained in the presence of an
external magnetic field.

C. Experimental verification

In order to verify the presence of SP(N ) symmetry, one
could do more than simply measuring the scattering lengths
in different channels. One can track the evolution of the
occupation number of each spin component. For the SU(N )
case, each component is preserved independently, so there
should be no changes in nα over time. For SP(N ) the color
magnetizations mα = nα − n−α are the conserved quantities.
Even though nα can change over time, mα does not. This can
be verified by Stern-Gerlach experiments, similar to the one
performed by Krauser et al. [31] with 40K atoms.

It is also possible to access the effects of interactions
evaluated in Sec. III experimentally. From different imaging

techniques, it is possible to determine the density profile of
the trapped cold atomic system. In turn, from a series of
measurements of the density profile for different temperatures
and chemical potentials, it is possible to reconstruct the
equation of state, from which the thermodynamics can be
derived, and the Landau parameters extracted [52,53]. It is also
possible to make use of the fluctuation-dissipation theorem in
order to determine the susceptibility and compressibility from
the measurement of the fluctuations of the occupation number
of each hyperfine spin component [54,55].

Concerning the two kinds of magnetic susceptibilities
introduced in Sec. III B, here we would like to discuss further
their role and how to access them experimentally. The physical
susceptibility is the most intuitive and can be accessed by
reconstructing the equation of state for a trapped system of
cold fermions by measuring the density profile at different
external magnetic fields, in a way similar to that described
by Ho et al. [52]. The generalized susceptibility stems from
the interactions within the system and controls the stability of
the Fermi liquid state against magnetic order. Assuming the
system to be isotropic in the different generalized magnetic
field directions, one could choose it to be in a direction
associated with one of the diagonal generators, meaning
Sαα = mα . One can then access the generalized susceptibility
by looking at the fluctuations of the density of mα . One
interesting aspect to observe experimentally is the fact that
these two susceptibilities will scale differently with N .

D. Realization of physics in higher dimensions

Symmetries dictate the kinds of quantum states, or particle
types, that can exist. If we are in isotropic space in d

dimensions, the physics should be invariant under SO(d)
transformations, for massive particles with positive definite
energy [56,57]. The different types of particles that exist cor-
respond to the different irreducible projective representations
of SO(d), or to the distinct irreducible representations of its
covering group, the Spin(d) group [58,59]. The representations
of Spin(d) which are not representations of SO(d) are spinor
representations, associated with fermionic particles. Interest-
ingly enough, for low dimensions there is a series of accidental
isomorphisms, in particular, Spin(3) ∼= SU(2) ∼= SP(2) and
Spin(5) ∼= SP(4) [58,59]. These isomorphisms suggest the
following correspondence: If we start with a three-dimensional
world, in which case the physics is invariant under SO(3)
rotations, we can look for the irreducible representations of
SO(3) and we find that they correspond to all integer angular
momentum states. If we now look at representations of SU(2),
its double-cover, we find extra representations which are
related to half-integer spin particles, or fermions. Interestingly
enough, SP(2) has three generators, corresponding to the three
different spin components, which couple, correspondingly,
to the three different magnetic field components in three
dimensional space. In the same fashion, if we are in d = 5,
the double-cover of SO(5) is Spin(5) ∼= SP(4). If we are
able to realize a system with effective SP(4) symmetry, in
particular in the fundamental representation (the smallest
faithful representation), we are in fact realizing the analogous
of spin-1/2 particles in three dimensions, but now in five
dimensions. SP(4) has 10 generators, corresponding to 10
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different “spin components.” Note that in five dimensions the
number of magnetic field components is also 10. Defining a
generalized magnetic field as the possible antisymmetric pair-
wise combinations of the electromagnetic tensor components
Fij , with i,j = 1, . . . ,d, we have in total d(d − 1)/2 magnetic
field components.

One could think of these particles confined to three
dimensions in the same way as we talk about SU(2) spin-1/2
particles in one- or two-dimensional systems. Even though it
is not clear how to manipulate the fictitious magnetic field
in higher dimensions, one could still measure fluctuations of
the system and determine its response functions by the use
of the fluctuation-dissipation theorem. This is an interesting
direction for future work.

E. Final remarks

In conclusion, we have reviewed the problem of inter-
acting fermions with SP(N ) symmetry within cold atoms
and contrasted its behavior with the SU(N ) scenario. We
characterized the main properties of the Fermi liquid state:
effective mass, compressibility, and magnetic susceptibility.
We find that both the effective mass and inverse compressibility
are enhanced in the presence of interactions following SP(N )
symmetry. The magnetic susceptibility can be either enhanced
or suppressed, depending on the sign of the detuning parameter
	g̃ = ρ(Ef )(g0 − g). We conclude by discussing the possible
routes to realize SP(N ) symmetry within cold atoms, which
unfortunately always requires some degree of fine-tunning,
setting up an interesting challenge for experimentalists. The
correspondence of SP(4) systems to physics in five dimensions
is a fascinating direction for future work.

ACKNOWLEDGMENTS

I thank A. M. Rey, T. Esslinger, G. Baym, C. Sa de Melo,
and G. W. Moore for illuminating discussions. I also thank
S. Yip for bringing to my attention his work on the SU(N )
version and R. Desbuquois for very insightful discussions on
the possible experimental paths to realize SP(N ) symmetry.
I also thank M. Sigrist and Y. Liu for carefully reading and
commenting on a preliminary version of this manuscript. This
work was performed in part at the Aspen Center for Physics,
which is supported by National Science Foundation Grant
No. PHY-1066293. This work was also supported by Dr. Max
Rössler, the Walter Haefner Foundation, and the ETH Zurich
Foundation.

APPENDIX A: GENERATORS OF
THE SYMPLECTIC GROUP

The definition of the generators for the symplectic-N
generalization in Ref. [37] is different from the one we use
in this paper. Here we define

Sαβ = �†
α�β + (−1)α+β�

†
−β�−α, (A1)

with α and β ranging from −f to f for N = 2f + 1.
We can show that the above operator form in fact gives a

set of generators of SP(N ) by looking at the properties of their
matrix form in a specific basis. There are N (N + 1)/2 linearly

independent Sαβ which are related to N × N matrices Mi , i =
1, . . . ,N(N + 1)/2, which follow the symplectic condition

MT
i � + �Mi = 0, (A2)

where � is an antisymmetric matrix.
It can be shown that these are the generators of the

symplectic group by using the explicit matrix forms, in the
basis (�3/2,�1/2,�−1/2,�−3/2)

[Sαβ]mn = δm,s−α+1δn,s−β+1

+ (−1)α+βδm,s+β+1δn,s+α+1, (A3)

and the antisymmetric form

[�]mn = (−1)mδm,2s−n+2. (A4)

By verifying the symplectic condition,[
ST

αβ

]
mn

[�]np + [�]mn[Sαβ]np = 0, (A5)

using the fact that [ST
αβ]mn = [Sαβ]nm and the explicit matrix

forms given above, we find

(−1)n+1δn,s−α+1δm,s−β+1δn,2s−p+2

+ (−1)α+β+n+1δn,s+β+1δm,s+α+1δn,2s−p+2

+ (−1)m+1δm,2s−n+2δn,s−α+1δp,s−β+1

+ (−1)α+β+m+1δm,2s−n+2δn,s+β+1δp,s+α+1 = 0, (A6)

which is zero if we are working with fermions and s, α, and β

are half-integers.
Here we note that we would get the same matrix form for

the generators as in Flint et al. [37] if we use a different basis,
(�3/2,�−1/2,�1/2,�−3/2), in which case the antisymmetric
matrix has a different form: �̃ = AntiDiag[1,1,1, . . . , −
1, − 1, − 1, . . . ]. In Flint et al. [37], the basis used is
(�3/2,�1/2,�−1/2,�−3/2) with the same measure.

Note that the generators as presented above are traceless
but not properly orthonormalized. For the development of the
FL theory, it is convenient to work with generators which
are orthonormal. This can be achieved by rescaling these
generators as S̃αβ = Sαβ/

√
2 and combining them as follows:

(a) Generators of the form S̃αα , with both indexes equal.
Given the relation S̃αα = −S̃−α−α , we need to consider only
the generators with positive indexes. There are N/2 of those
and these are already properly orthonormalized such that
Tr[S̃ααS̃ββ] = δαβ .

(b) There are also N linearly independent generators
with opposite indexes as S̃α−α . To guarantee orthonormality,
these should be reorganized as (S̃α−α + S̃−αα)/2 and (S̃α−α −
S̃−αα)/2i.

(c) The missing generators have the form S̃αβ with α �=
±β. Given again the relation S̃αβ = (−1)α+β S̃−β−α , if both
indexes are positive there are N

2 (N
2 − 1), and we do not need

to consider the generators with both negative indexes. If one
index is positive and the other negative, it is linearly dependent
of another generator of the same form, so again there are
N
2 (N

2 − 1). This totals N (N
2 − 1) generators of the form S̃αβ

with α �= ±β. These should be combined in such a way that
they are all summed but one, which is subtracted, which leads
to N (N

2 − 1) independent combinations.
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Note that the total number of generators is still N (N + 1)/2.
In the main text, we refer to this set of properly orthonormal-
ized generators as �A, such that T r[�A�B] = δAB , without
writing them explicitly.

APPENDIX B: PARAMETRIZATION OF THE
INTERACTION FUNCTION FOR THE SP(N) FL

In order to understand the parametrization of the interaction
function, we can look at the total change in energy due to a
change in the occupation number δnαβ (k):

δE =
∑
k,αβ

δεαβ(k)δnβα(k)

=
∑

k,k′,αβμν

fαμ,βν(k,k′)δnνμ(k′)δnβα(k). (B1)

We can now go back to the operator form in order to analyze the
symmetries more explicitly, identifying nαβ(k) = 〈�†

kβ�kα〉,
and we have that the change in the total energy has the form

∼ �
†
kα�

†
k′μfαμ,βν(k,k′)�kβ�k′ν, (B2)

before taking the averages, with the sum over repeated indexes
implied in the equation above and in the following. If there is
a unitary symmetry group whose transformations are denoted
by U , we can rotate the operators in spin space such that this
form is invariant. We can write �α = ∑

a Uαa�̃a and rewrite
the equation above as

∼ �̃
†
kaU

†
aα�̃

†
k′cU

†
cγ fαγ,βδ(k,k′)Uβb�̃kbUδd�̃k′d , (B3)

so in order for this term to be invariant,

U †
aαU †

cγ fαγ,βδ(k,k′)UβbUδd = fac,bd (k,k′). (B4)

If the transformation is unitary UU † = I , the identity above
can be satisfied if fαγ,βδ = δαβδγ δ ,

U †
aαU †

cγ (δαβδγ δ)UβbUδd = U †
aαU †

cγ UαbUγd

= (U †U )ab(U †U )cd

= δabδcd , (B5)

and also for fαγ,βδ = δαδδγβ ,

U †
aαU †

cγ (δαδδγβ)UβbUδd = U †
aαU †

cγ UγbUαd

= (U †U )ad (U †U )cb

= δadδcb. (B6)

For the SU(N ) case, these are the only possible constructions
based on the unitarity of the transformations.

In the SP(N ) case, given the symplectic condition for the
transformations εUT = U †ε, there is one more possibility
fαγ,βδ = εαγ εβδ:

U †
aαU †

cγ (εαγ εβδ)UβbUδd = U †
aαεαγ U ∗

γ cU
T
bβεβδUδd

= εaαUT
αγ U ∗

γ cεbβU
†
βδUδd

= εaαδαcεbβδβd

= εacεbd . (B7)
APPENDIX C: SOME PROPERTIES OF THE

CLEBSCH-GORDAN COEFFICIENTS

Below are some useful properties of the CGC
〈j1m1,j2m2|Jm〉 = 〈Jm|j1m1,j2m2〉 used in the main text:

〈j1m1,j2m2|Jm〉 = (−1)j1+j2−J

×〈j1 − m1,j2 − m2|J − m〉, (C1)

〈j1m1,j2m2|Jm〉 = (−1)j1+j2−J 〈j2m2,j1m1|Jm〉, (C2)

〈j1m1,j2m2|00〉 = δj1,j2δm1−m2

(−1)j1−m1

√
2j1 + 1

. (C3)

The orthogonality relations are∑
F,M

〈f α,fβ|FM〉〈FM|f μ,f ν〉 = 〈f α,fβ|f μ,f ν〉

= δαμδβν, (C4)∑
α,β

〈FM|f α,fβ〉〈f α,fβ|F ′M ′〉 = 〈FM|F ′M ′〉

= δF,F ′δM,M. (C5)
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