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Attosecond streaking with twisted X waves and intense infrared pulses
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We investigate the photoionization of atoms by attosecond X waves carrying orbital angular momentum in the
presence of a strong, linearly polarized, near infrared (NIR) laser pulse. In the plane-wave case, the streaking
of photoelectrons by the NIR pulse has been used to characterize the ionizing pulse. In contrast to plane-wave
pulses, X waves have a spatially dependent temporal profile, which modifies the ionization process. Here we
explore theoretically the influence of this complex pulse structure on the streaking of photoelectrons for both
localized and macroscopically extended targets. On the basis of the strong-field approximation, we find that the
streaking spectra of localized targets sensitively depend on the opening angle of the X wave and the position
of the atomic target relative to the beam axis. For macroscopically extended targets, we find that the streaking
spectra do not depend on the parameters characterizing the twist of the X wave.
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I. INTRODUCTION

Probing electronic dynamics on the attosecond time scale is
essential for our understanding of many fundamental processes
in matter. In recent years, this dynamics has become accessible
due to advances in the generation and control of ultrashort
laser pulses [1–3]. Major experimental results based on the
interaction of such pulses with electronic systems include
the measurement of time delays in photoemission [4] and the
dynamics of excited states in noble gases [5], imaging of the
charge migration in large molecules [6,7], and the investigation
of many-electron effects in solid-state physics [8].

Attosecond pulses can routinely be produced by high-
harmonic generation [9] and consist of only a few optical
cycles. Utilizing such pulses to probe ultrafast electronic
processes crucially relies on their temporal characterization
in order to derive meaningful interpretations of time-resolved
measurements. Various schemes have been developed to fit
this purpose and allow the determination of the duration or
even the full time dependence of attosecond pulses [10–13].

A prominent example of such a scheme is the attosecond
streak camera [12]. It is based on the photoionization of atoms
by an attosecond pulse in the presence of a moderately strong
near infrared (NIR) pulse. During the process of ionization,
the temporal structure of the attosecond pulse is imprinted on
the photoelectron wave packet. The NIR pulse then streaks the
photoelectrons away from the ion and acts as an ultrafast phase
modulator on this wave packet: If the phase of the dressing
field at the time of ionization is varied, the temporal structure
of the wave packet is mapped to its energy distribution. This
allows the extraction of both pulse duration and chirp from the
photoelectron spectra [10].

Besides manipulating the temporal shape of laser pulses,
one can tailor their spatial wave form. In particular, twisted
light beams with a helical phase structure can be created
using, for example, computer-generated holograms [14], spiral
phase plates [15], or axicons [16]. These beams carry not
only spin angular momentum but also orbital angular mo-
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mentum. This property promises new ways of manipulating
light-matter interactions including the control of trapped
microparticles [17,18]. Furthermore, various studies have
examined theoretically the modification of photoionization
and excitation of atoms due to the twisted nature of the
incoming light [19,20]. In both cases the photon angular
momentum can be transferred to the electron. Assuming, for
example, a single hydrogen atom ionized by a beam carrying
l units of orbital angular momentum, one finds that transitions
must obey the rules �L � |l| + 1 and �M = l ± 1, where
�L + |l| + 1 is even [21].

Moreover, recent studies have shown that orbital angular
momentum is transferred in the process of high-harmonic
generation, which opens the way to the generation of twisted
pulses of attosecond duration [22–25]. Methods have also
been proposed to generate twisted pulses of high energy for
free-electron lasers [26,27].

On the theoretical side, twisted pulses can be described
by X waves, which are composed of a superposition of
Bessel beams. They have attracted much attention in op-
tics [28,29], condensed-matter physics [30], and optical
communications [31]. While most of these works deal with
low-order X waves, pulses carrying a higher total angular
momentum (TAM) have been introduced recently [32–34]. It
was shown that the spatially varying spectral profile of the
X waves can be probed by the photoionization of reasonably
localized targets [35].

The interaction of atoms and molecules with laser pulses
that are tailored in both space and time paves the way for
the study of ultrafast processes involving a transfer of orbital
angular momentum. However, this requires a proper temporal
characterization of twisted pulses in the attosecond domain.

In this work, we therefore investigate the attosecond
streaking when the ionizing pulse is an X wave. In Sec. II, the
theoretical methods based on the strong-field approximation
(SFA) are introduced. We begin our discussion with the
transition amplitude for the two-color ionization with X waves
and strong NIR pulses in Sec. II A. Based on the transition
amplitude, we define the streaking spectra that are measured in
an attosecond streaking experiment. In Sec. II B, we introduce
X wave pulses and explain their characteristics. We then
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FIG. 1. Setup of the two-color ionization by a short twisted X

wave pulse (blue) and a moderately strong NIR field (orange) that is
linearly polarized in the x direction. The atomic target is localized
at the impact parameter b = (b,ϕb = 0,zb = 0) relative to the beam
z axis. The photoelectrons are observed with asymptotic momentum
p = (p,ϑp,ϕp) at the detector.

explicitly evaluate the transition amplitude in Sec. II C. With
the resulting expression, we perform detailed computations
of the streaking spectra, which are discussed in Sec. III.
Emphasis is placed on the dependence of the streaking spectra
on the TAM as well as the opening angle of the X wave
pulse. For localized targets, we show that the streaking spectra
sensitively depend on the opening angle, while a change in
the TAM of the pulse only has a minor effect. We also discuss
macroscopically extended targets of infinite size. There we find
that the dependence of the streaking spectra on the parameters
characterizing the twist of the X wave is lost. Finally, a
summary and an outlook are given in Sec. IV.

Note that atomic units (me = e = h̄ = 4πε0 = 1) are used
throughout the paper unless stated otherwise.

II. THEORETICAL METHODS

A. Two-color ionization and streaking spectra

The attosecond streaking considered in this work is a two-
color ionization process. Figure 1 shows a typical setup for the
two-color ionization of atoms by an X wave pulse of duration
TX and a strong NIR pulse with many cycles. We assume that
the X wave pulse is short compared to the NIR cycle length.
That is, TX � 2π/ωL, where ωL is the central frequency of
the NIR pulse. A single atomic target is placed at impact
parameter b = (b,ϕb = 0,zb = 0) relative to the beam axis,
which is common to both pulses. Furthermore, we assume
that the X wave is energetic enough to ionize the target atom,
ωX > EB , where ωX is the X wave’s central frequency and
EB > 0 is the binding energy of the initial state of the electron.

At a moderate intensity I of the NIR pulse with central
frequency ωL � EB , the NIR pulse does not contribute to the
ionization of the atom. However, a photoelectron released from
the atom by the X wave pulse will be accelerated by the NIR
pulse towards the detectors, where its asymptotic momentum
p = (p,ϑp,ϕp) is eventually measured. This subsequent ac-
celeration is called streaking of the photoelectron by the NIR

pulse. We take the NIR pulse to be polarized in the x direction
and assume that the detectors are aligned in this direction. That
is, we set ϑp = π/2 and ϕp = 0.

In order to describe the two-color ionization theoretically,
we consider a single-active electron, which is bound in the
target atom in a hydrogenlike 1s state |�0(t)〉 = |	0〉eiEBt . Our
aim is to compute the amplitude for the transition of this active
electron from the bound state to the continuum dressed by the
NIR laser pulse. In the SFA, the continuum states are given
by Volkov wave functions |�(V )

p (t)〉 = |q(t)〉e−iSV (t), where
q(t) = p + AL(t) is the electron’s canonical momentum and
the Volkov phase is given by

SV (t) = 1

2

∫ t

dt ′[ p + AL(t ′)]2. (1)

Here AL(t) is the vector potential of the NIR pulse. We employ
the length gauge for AL(t) so that p is the physical momentum
of the photoelectron [36]. Since we assume a many-cycle NIR
laser pulse, we write its vector potential simply as a plane wave
of the form

AL(t) = AL0 cos(ωLt + φL)ex. (2)

For the vector potential AX(r,t) of the X wave, however, we
use the velocity gauge because of its dependence on the spatial
coordinates r .

With these assumptions in mind, the transition amplitude
for the two-color ionization is given by [37]

Tb( p,φL) = −i

∫ ∞

−∞
dt〈�(V )

p (t)| p̂ · AX(r,t) |�0(t)〉, (3)

where we treat the interaction between the electron and the X

wave pulse in first-order time-dependent perturbation theory.
This is valid, since we assume a weak X wave pulse with
central frequency ωX > EB . Equation (3) explicitly indicates
the dependence of the transition amplitude on the impact
parameter of the target and the phase of the NIR field.

With the two-color transition amplitude (3), we can
compute the energy- and angle-differential photoionization
probability for the two-color ionization of a single atom at
the impact parameter b,

Pb( p,φL) = |Tb( p,φL)|2. (4)

We assume that the ionizing X wave pulse is centered around
t = 0. Therefore, the relative phase φL of the NIR field (2)
defines a time delay τ between the maximum of the X wave
pulse and the first maximum of the NIR field,

φL(τ ) = ωLτ. (5)

In a typical streaking experiment, the two-color ionization
probability (4) is measured as function of the photoelectron
energy Ep and the time delay τ between the two pulses,

Pb(Ep,τ ) = |Tb( p(Ep),φL(τ ))|2, (6)

where p(Ep) = (
√

2Ep,ϑp = π/2,ϕp = 0). The photoioniza-
tion probability (6), parametrized by Ep and τ , is also called
the streaking spectrum.

In Sec. III, we will analyze the dependence of the streaking
spectrum on the properties of the ionizing X wave pulse.
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Before doing so, we first need to introduce X waves and
evaluate the transition amplitude (3).

B. Characterization of X waves

X waves are nondiffracting pulses carrying orbital angular
momentum, which are formed by a superposition of Bessel
beams. These Bessel beams Am�ϑk

(r,t) are solutions of the
wave equation (

� − α2 ∂2

∂t2

)
Am�ϑk

(r,t) = 0 (7)

and are characterized by the helicity �, the cone opening angle
ϑk in momentum space, and the projection m of TAM onto their
beam axis,

Ĵz Am�ϑk
(r,t) = mAm�ϑk

(r,t), (8)

where Ĵz = L̂z + Ŝz is the operator of TAM projection with
the operators L̂z of orbital angular momentum projection
and Ŝz of spin projection. We note that the solutions to (7)
and (8) constructed in the following do not carry a definite
orbital angular momentum. However, Bessel beams have a
well-defined TAM due to Eq. (8). Therefore, we will use the
TAM m when specifying the angular momentum of the beam.
Only in the paraxial limit are orbital and spin angular momenta
separately defined (see the end of this section).

The vector potential of a Bessel beam in the Coulomb gauge
can be represented by a superposition of circularly polarized
plane waves with helicity � [19],

Am�ϑk
(r,t) =

∫
d2k⊥
(2π )2

a�m(k⊥)ei(kr−ωt)εk�, (9)

with wave vectors k = (k⊥,kz) = (�,ϕk,kz). Here the opening
angle ϑk = arctan(�/kz) relates transversal (�) and longitudi-
nal (kz) momenta. In Eq. (9), the expansion coefficients read

a�m(k⊥) = (−1)m

√
2π

k⊥
eimϕk δ(k⊥ − �). (10)

The polarization vectors εk� of the plane-wave components
depend on the helicity � and the wave vector k and are given
by

εkλ = − �√
2

⎛
⎝cos ϑk cos ϕk − i� sin ϕk

cos ϑk sin ϕk + i� cos ϕk

− sin ϑk

⎞
⎠. (11)

In order to describe the interaction of atoms with twisted light
on a short time scale, we need to construct a twisted pulse of
finite duration TX. Experimentally, such pulses can be created
as nonmonochromatic superpositions of continuous Bessel
beams [38]. Such a superposition can mathematically be de-
scribed by convoluting the monochromatic Bessel solution (9)
with a Gaussian spectral distribution of width �ω = 1/TX

while keeping the opening angle ϑk fixed. This results in the
X wave vector potential

AX(r,t) =
∫ ∞

0

dω√
2π�ω

exp

[
−1

2

(
ω − ω0

�ω

)2
]

Am�ϑk
(r,t),

(12)

which is characterized by the quantum numbers �, m, and ϑk

as defined above as well as the central frequency ω0 and the
pulse duration TX.

For later analysis of the streaking spectra, it is instructive
to examine the plane-wave limit of Eq. (12). To do so, we first
write the Bessel beam (9) in a spin basis

Am�ϑk
(r,t) = e−iωt

∑
ms=0,±1

ηms
Atw

ms
(r), (13)

where ηms
(ms = 0, ± 1) are eigenvectors of the spin projec-

tion operator Ŝz,

Ŝzηms
= msηms

, η0 =
⎛
⎝0

0
1

⎞
⎠, η±1 = ∓1√

2

⎛
⎝ 1

±i

0

⎞
⎠, (14)

and the coefficients Atw
ms

(r) are given by

Atw
ms

(r) =
√

�

2π
(−i)ms cms

Jm−ms
(�r)ei(m−ms )ϕr eikzz. (15)

Here Jm−ms
(�r) are Bessel functions of the first kind. From

Eq. (15) we can deduce the paraxial limit (ϑk � 1) of the
Bessel beam. In this limit, the coefficients

c±1 = 1

2
(1 ± cos ϑk), c0 = �√

2
sin ϑk (16)

imply that only the term ms = � remains in the summation in
Eq. (13),

Ap(r,t)

= η�

√
�

2π
(−i)�c�Jm−�(�r)ei(m−�)ϕr ei(kzz−ωt). (17)

It can be easily checked that the projections of spin and orbital
angular momenta of Ap(r,t) decouple in this limit,

Ŝz Ap(r,t) = �Ap(r,t), (18)

L̂z Ap(r,t) = (m − �)Ap(r,t). (19)

Moreover, in this limit � = k sin ϑ → 0, which implies
Jm−�(�r) → δm�. Thus, Eq. (17) approaches a standard
plane-wave solution and the X wave vector potential (12)
reduces to a circularly polarized plane-wave pulse in the
paraxial limit.

C. Evaluation of transition amplitude

We now turn to the analysis of the two-color transition
amplitude (3). Due to the spatial dependence of the X wave
vector potential (12), the transition amplitude also depends
on the location of the target atom relative to the beam axis,
that is, on the impact parameter b = (b,ϕb = 0,bz = 0). Using
Eq. (12), the transition amplitude (3) becomes a superposi-
tion of transition amplitudes T (tw)

ωb ( p,φL) for monochromatic
Bessel beams,

Tb( p,φL) =
∫ ∞

0

dω√
2π�ω

exp

[
−1

2

(
ω − ω0

�ω

)2
]

× T (tw)
ωb ( p,φL), (20)
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each of which can in turn be written as

T (tw)
ωb ( p,φL) =

∫
d2k⊥
(2π )2

a�m(k⊥)eikbT (pw)( p,k,φL). (21)

Here T (pw)( p,k,φL) are the typical plane-wave transition
amplitudes

T (pw)( p,k,φL)

= −i

∫ ∞

−∞
dt q(t) · εk�〈q(t)| eikr |	0〉ei(EB−ω)t+iSV (t)

(22)

that occur also in the analysis of the two-color ionization with
plane-wave pulses [39]. In order to perform the time integration
in Eq. (22), we need to evaluate the Volkov phase (1) for the
linearly polarized NIR field (2). This yields the Volkov phase
factor

eiSV (t) = ei(p2/2+Up)t
∞∑

n1,n2=−∞
Jn1 (αL)Jn2 (βL)

× ei(n1+2n2)ωLt ei(n1+2n2)φL, (23)

if one applies the Jacobi-Anger expansion [40] and
makes use of the so-called ponderomotive potential Up =
A2

L0/4 and where the coefficients are given by αL =
(AL0p sin ϑp cos ϕp)/ωL and βL = A2

L0/8ωL.
If we use, in addition, the explicit form (11) of the

polarization vector, we can evaluate the scalar product in
Eq. (22),

q(t) · εk� = − �X√
2
{p[sin ϑp cos ϑk cos(ϕk − ϕp)

− cos ϑp sin ϑk − i� sin ϑp sin(ϕk − ϕp)]

+ AL0 cos(ωLt+φL)(cos ϑk cos ϕk−i� sin ϕk)}.
(24)

With Eqs. (23) and (24), the plane-wave amplitudes (22)
become

T (pw)( p,k,φL) = −i

∞∑
n1,n2=−∞

Fn1n2 (ϑk,ϕk)ei(n1+2n2)φL

×
∫ ∞

−∞
dt〈q(t)| eikr |	0〉exp

[
i

(
p2

2

+ Up + EB − ω + (n1 + 2n2)ωL

)
t
]
,

(25a)

Fn1n2 (ϑk,ϕk) = −�X√
2
Jn1 (αL)Jn2 (βL)

[
p sin ϑp[cos ϑk

× cos(ϕk − ϕp) − i�X sin(ϕk − ϕp)]

−p cos ϑp sin ϑk + n1AL0

αL

(cos ϑk cos ϕk

− i�X sin ϕk)

]
. (25b)

No approximations have been made so far to obtain
Eqs. (25). In general, however, the time integration in Eq. (25a)
is not easy to perform explicitly. We can further simplify the

integrand in this time integral if we assume a sufficiently weak
NIR field when compared to the asymptotic momentum of the
electron, AL0 � p. This allows us to approximate q(t) ≈ p,
which eventually leads to a time-independent matrix element
in Eq. (25a). For a sufficiently weak NIR field, we can therefore
perform the time integration in Eq. (25a),∫ ∞

−∞
dt ei[p2/2+Up+EB−ω+ (n1+2n2)ωL]t = 2πδ(ωn1n2 (p) − ω),

(26)

where ωn1n2 (p) = p2

2 + Up + EB + (n1 + 2n2)ωL.
Using the properties of the δ function, we can use the

result (26) to carry out the ω integration in the two-color
transition amplitude (20). However, this transition amplitude
still contains an integral over the transverse momenta of the
plane-wave components resulting from Eq. (21). To further
simplify this integral, we make use of the dipole approximation
in the matrix element

〈 p| eikr |	0〉 ≈ 〈 p|	0〉, (27)

which is valid as long as the target is not close to the beam
axis, where the X wave has a phase singularity.

With these simplifications, we can finally write the two-
color transition amplitude for an atom placed at impact
parameter b as

Tb( p,φL) = −i
(2π )3/2

�ω
〈 p|	0〉

×
∞∑

n1,n2=−∞
In1n2 (b) exp

[
−1

2

(
ωn1n2 (p) − ω0

�ω

)2
]

× ei(n1+2n2)φL, (28)

where the coefficients in the double summation are given by

In1n2 (b) =
∫

d2k⊥
(2π )2

a�m(k⊥)eikbFn1n2 (ϑk,ϕk). (29)

In order to compute numerical values for the transition
amplitude, these integrals can be evaluated analytically using
Eqs. (10) and (25b) and the integral representation of the Bessel
functions.

In our computations of the streaking spectra (6) below,
we restricted the (infinite) double summation in the transition
amplitude (28) to the finite values −14 � n1 � 14 and −4 �
n2 � 4. This restriction still yields accurate results, since the
contributions of higher terms decrease exponentially due to
ωn1n2 (p) in the exponent in Eq. (28).

Let us note that in the limit of a long X wave pulse with
duration TX  2π/ωL, the infinite double summation over n1

and n2 in Eq. (28) gives rise to the so-called sidebands in the
photoelectron spectra. Such a two-color photoionization with
a continuous Bessel beam and in the presence of a NIR field
was explored recently in [37].

III. RESULTS AND DISCUSSION

In the preceding section, we derived an expression for
the transition amplitude for a localized target. As seen from
the final result (28), the streaking spectrum (6) depends on
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FIG. 2. Streaking of photoelectrons in a continuous NIR field following the ionization by a short X wave pulse in the plane-wave limit
ϑk � 1, m = �. (a) Modulus of the X wave vector potential as a function of the distance r from the beam axis and time t on a logarithmic
scale. (b) Real part of the x component AX,x(r0 = 600 nm,t) of the X wave pulse (blue) and the NIR field (red) as functions of time for time
delay τ = 0. (c) Streaking spectrum Pb(Ep,τ ) for a single-atom target with binding energy EB = 11.7 eV and at impact parameter b = 600
nm. All quantities are normalized to their respective maxima. Results are shown for an X wave with TX = 150 as, ϑk = 10−3 ◦, � = +1,
ωX = 81.6 eV, and a NIR field with λ = 800 nm and I = 3.5×1012 W/cm2.

NIR laser parameters, X wave parameters, and the binding
energy of the initial state. We now aim to understand how
the TAM projection m and the opening angle ϑk of the X

wave pulse affect the streaking spectra. In the computation
of the streaking spectra below, we set the NIR wavelength
and intensity equal to λ = 800 nm and I = 3.5×1012 W/cm2

(AL0 ≈ 0.18 a.u.), respectively. Moreover, we assume a target
with binding energy EB = 11.7 eV (for example, Ca+) at
b = (b,ϕb = 0,bz = 0) and consider an X wave with central
energy ωX = 81.6 eV, pulse duration TX = 150 as, and helicity
� = +1.

A. Plane-wave limit

Let us first consider streaking spectra from an X wave pulse
in the plane-wave limit. As discussed above in Sec. II B, X

waves coincide with a plane-wave for ϑk � 1 and m = �. In
Fig. 2(a), the modulus of the resulting vector potential is shown
as a function of time t and distance r from the beam axis.
Independently of the radial coordinate, the vector potential
exhibits a single maximum in time that describes a single
circularly polarized XUV pulse of FWHM duration TX. To
compute the photoionization probability, we place the atomic
target at b = 600 nm. Note that, at this point, the choice of
impact parameter is not important, since the plane-wave limit
of the X wave is independent of r . Figure 2(b) shows the real
part of the x component of the XUV pulse (blue) at this impact
parameter together with the NIR field (red) for a time delay
τ = 0. In the ionization process, the electron leaves the atom
at time ti = 0. From conservation of canonical momentum, the
final photoelectron momentum at the detector is given by

pf = pi + AL(ti)

= pi + AL0 cos[ωLti + φL(τ )]ex

= pi + AL0 cos[ωL(ti + τ )]ex, (30)

where pi is the momentum at time of ionization and we made
use of Eq. (5). In streaking measurements, the photoelectron
momentum is measured as a function of τ . From Eq. (30) we
see that this reproduces a trace of the NIR field in the streaking
spectrum.

However, the ionization time ti is not sharply defined.
Instead, the finite duration TX of the ionizing pulse imposes an
uncertainty on ti . The streaking spectrum, shown in Fig. 2(c),
therefore exhibits a broadened image of the NIR field, where
the broadening in energy depends on TX. From a measurement
of this spectrum, one can directly read off the cycle length
(∼2.7 fs) of the NIR field and extract the duration of the
ionizing pulse. This is discussed, for example, in [10].

B. X waves: Localized targets

Let us now examine the streaking spectra from an X wave
of arbitrary opening angle ϑk and TAM projection m. In
the following, we study the influence of these parameters
on the photoionization process in the presence of the NIR
field. Thereby, we hold all other parameters fixed as already
mentioned in the beginning of the section.

In Fig. 3, the X wave vector potential is visualized as a
function of r and t , similar to Fig. 2(a) for the plane-wave
limit. More precisely, the modulus of AX(r,t) is displayed for
three values of ϑk and m. In this figure, we can observe a
strong dependence of the temporal shape of the X wave on ϑk

and m: Rather than consisting of a single pulse independent of
position [cf. Fig. 2(a)], it splits into two pulses with increasing
opening angle. The temporal separation between these pulses
depends on r and the opening angle ϑk . An increase in the TAM
projection m shifts the first maximum of the X wave away
from the beam axis to larger r . Mathematically, this behavior
arises from the radial dependence of the Bessel functions in
the definition of the X wave [see Eq. (15)].

With this general structure of the X wave vector potential
in mind, we now turn to the analysis of the streaking process.
The atomic target is placed at the fixed impact parameter b =
600 nm (white vertical lines in Fig. 3). Figure 4 shows the
streaking spectra as calculated from Eq. (6) for the same X

wave parameters as in Fig. 3.
A rather small opening angle of ϑk = 5◦ yields streaking

spectra similar to those found in the plane-wave limit: They
exhibit one dominant streaking trace independently of the
TAM projection m. However, for m = 1 this trace is shifted
to higher energies and we see a second trace in the spectrum.
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FIG. 3. Vector potential (12) of the X wave pulse as experienced by an atom at r = (r,ϕ = 0,z = 0). The individual plots show the modulus
of AX(r,t) as a function of the distance r to the beam axis and time t for three values of the TAM projection m (left column, m = 1; center
column, m = 4; right column, m = 20) and three values of the opening angle ϑk (top row, ϑk = 5◦; center row, ϑk = 20◦; bottom row, ϑk = 40◦)
of the X wave pulse on a logarithmic scale. The modulus is normalized to its maximum in each plot. The rightmost panel shows the NIR field
as a function of time for time delay τ = 0. All other parameters are the same as in Fig. 2.

This can be explained by comparison with Fig. 3: The vector
potential has two maxima as a function of time t for ϑk = 5◦
and m = 1 at r = 600 nm. Therefore, two ionization events
take place and release the photoelectron at two different
phases of the NIR field. The interferences of these two events
are seen in the streaking spectrum. In contrast, for m = 4
and 20, the vector potential has only one maximum in time
at r = 600 nm. No interferences are therefore seen in the
corresponding streaking spectra.

For a larger opening angle of ϑk = 20◦, the dependence
of the streaking spectra on the TAM projection is even less
pronounced. For m = 1, 4, and 20, we see two streaking
traces merging in interferences around τ = 0, TIR/2, and TIR.
The origin of these interferences is the fact that the vector
potential at b = 600 nm consists of two pulses separated in
time by TIR/2 (see Fig. 3). The two ionization events release
the photoelectron into the NIR field at phases φL0 and φL0 + π ,
leading to two traces of its vector potential in the streaking
spectrum. Interferences between these ionization events occur
if the NIR vector potential vanishes for φL0. From Fig. 3
we see that an increase in m does not significantly change
the temporal separation of the two pulses defined by AX at
b = 600 nm. Therefore, the overall structure of the streaking
spectra is not modified by a variation of m. However, the
interference structures at τ = 0, TIR/2, and TIR change with

m. This reflects the fact that the specific shape of AX is altered
by a change of m due to the shift of the vector potential to
larger r (see Fig. 3).

A further increase of the opening angle again strongly
modifies the streaking spectra. For ϑk = 40◦, Fig. 4 displays
interferences in the streaking spectra over the full range of
τ . Furthermore, the streaking is independent by the TAM
projection. The comparison with Fig. 3 reveals that at b =
600 nm, AX consists of two pulses separated by TIR. Therefore,
the two ionization events release the photoelectron into the
same phase of the NIR field independent of τ , leading to the
interferences in the streaking spectra. Furthermore, we see a
flip of the streaking trace compared to the plane-wave limit.
This arises due to the fact that the X wave’s maxima occur at
t = ±TIR/2, inducing an overall phase shift of π .

For all other values of the opening angle ϑk , which fall in
the range between the three values ϑk = 5◦,20◦,40◦ discussed
above, the streaking spectra will show more complex patterns.
These patterns are determined by the temporal separation of the
two maxima in the X wave vector potential. For this reason,
a variation of the impact parameter has the same effect on
the streaking process as a variation of the opening angle. In
the following, we therefore vary the impact parameter of the
atomic target while keeping the opening angle unchanged.
Figure 5 displays the streaking spectra computed at b = 300,
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FIG. 4. Streaking of photoelectrons in a continuous NIR field following the ionization by a short X wave pulse. The individual plots show
the streaking spectra Pb(Ep,τ ) for a single-atom target with binding energy EB = 11.7 eV and at impact parameter b = 600 nm, but with
otherwise the same parameters as in Fig. 3.

600, and 900 nm for the same values of the opening angle
as discussed above and m = 4. Hence, the central column
(b = 600 nm) is identical to the second row of Fig. 4. For
smaller or larger impact parameters, the streaking spectra show
different structures. There, the ionization events are not spaced
by integer multiples of TIR/2.

A single trace of AL(τ ) can still be observed for ϑk = 5◦ at
b = 300 nm. However, for b = 900 nm, two traces are present,
reflecting the fact that the vector potential AX at r = 900 nm
consists of two pulses closely separated in time (see Fig. 3).
The same behavior is found for ϑk = 20◦ at b = 300 nm. At
b = 900 nm, the temporal separation of the two pulses almost
equals TIR (see Fig. 3), which leads to interferences for all
values of τ . If the impact parameter were increased further,
this streaking spectrum would transform into the one already
discussed for ϑk = 40◦ and m = 4 at b = 600 nm. In the third
row of Fig. 5, the streaking spectrum shown for ϑk = 40◦
at b = 300 nm is identical to that computed for ϑk = 20◦ at
b = 600 nm. This can be expected, since the pulse separation
in the X wave vector potential increases linearly with r for a
given opening angle, so that we find TIR/2 in this case. For
b = 900 nm, the pulse separation is 3TIR/2, producing again
two traces of the NIR vector potential that interfere at τ = 0,
TIR/2, and TIR.

The streaking spectra presented so far fall into four
categories, which are determined by the structure of the X wave

vector potential as presented in Fig. 3: A single pulse (small
ϑk or small b) in time leads to a single streaking trace of the
NIR vector potential, while a split into two pulses leads to two
interfering traces (pulse separation is an odd multiple of TIR/2),
interferences over the whole range of τ (pulse separation is
a multiple of TIR), or transitions between these cases (pulse
separation is not an integer multiple of TIR/2).

Since the pulse separation in the X wave vector potential
is mainly determined by ϑk and b, the streaking process
for localized targets depends most strongly on these two
parameters. However, as can be seen from Fig. 3, the shift
to higher radii induced by an increase of m also leads to a
change in the pulse separation. A streaking experiment with
an X wave carrying very large TAM will therefore also show
a modification of the streaking spectra compared to small m.

The above results demonstrate that the streaking from
localized atomic targets leads to complex structures in the
photoelectron spectra that reflect the local temporal structure
of the ionizing attosecond X wave. Since this local structure is
mainly determined by the opening angle of the beam, the
streaking spectra show a strong dependence on this parameter.

C. X wave: Extended targets

For actual streaking experiments with X waves, an impor-
tant question is whether the results found above for localized
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FIG. 5. Same as Fig. 4 but for three different values of the impact parameter b of the target (left column, b = 300 nm; center column,
b = 600 nm; right column, b = 900 nm) and three values of the opening angle (top row, ϑk = 5◦; center row, ϑk = 20◦; bottom row, ϑk = 40◦).
The TAM projection of the X wave pulse is m = 4.

targets also apply to extended targets. To analyze the streaking
with macroscopic targets, we assume a homogeneous and (over
the cross section of the X wave) infinitely extended target of
atoms. To obtain the streaking spectrum for such a target,
we incoherently sum the streaking spectra (6) for single-atom
targets over all impact parameters

P(Ep,τ ) =
∫

d2bPb(Ep,τ )

=
∫

d2bT ∗
b ( p(Ep),φL(τ ))Tb( p(Ep),φL(τ )). (31)

The integrations over b and the transverse wave vector k⊥
resulting from Eq. (29) can be analytically performed,

P(Ep,τ ) = [3 + cos(2ϑk)]P̃(Ep,τ ), (32)

where P̃(Ep,τ ) is independent of �, ϑk , and m. Any mea-
surement of the relative streaking spectrum (that is, of relative
photoionization probabilities) will therefore depend on neither
the helicity � nor the opening angle ϑk and the TAM projection
m of the X wave pulse. However, measurements of absolute
spectra would restore a dependence on the opening angle.

Let us remark that Eq. (31) has a more complex dependence
on ϑk if the photoelectrons are not observed along the polariza-
tion direction of the NIR field. For infinite targets, however, the
effect of the TAM projection on the photoionization process
is always integrated out. Therefore, the interesting question

remains how the streaking spectra depend on the X wave
parameters for targets of finite size that are localized around
some impact parameter.

IV. CONCLUSION

We investigated theoretically the streaking process where
the ionizing pulse is an attosecond X wave carrying orbital an-
gular momentum and the streaking field is a strong NIR plane-
wave laser pulse. Emphasis was placed upon the influence of
the characteristic opening angle as well as the total angular
momentum of the ionizing pulse on the streaking process.

We discovered that the streaking spectra from single-atom
targets show a strong dependence on the opening angle of
the X wave and the impact parameter of the target relative to
the beam axis. Both parameters determine the X wave pulse
structure that the atom experiences and therefore the timing
of photoelectron emission into the NIR field. For infinitely
extended clouds of atoms, we found that the (relative) streaking
spectra observed in the polarization direction of the NIR field
do not depend on the opening angle or total angular momentum
of the X wave.

Recent experimental advances in the creation of ultrashort
twisted pulses [24,25] as well as the localization of targets [41]
suggest that streaking measurements with small atomic clouds
might be possible in the near future. Regarding this, it is
an important future task to analyze the influence of a finite
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target size on the streaking spectra in the setup discussed
here. In addition, more complex atomic or molecular targets
may be investigated within the formalism used here. For such
targets, due to more ionization channels, the effect of the total
angular momentum of the twisted pulse is expected to be more
pronounced than for the target considered in this work.

The work presented here opens avenues for more complex
two-color experiments involving ultrashort pulses that carry
orbital angular momentum. For example, the excitation by
an attosecond X wave and subsequent ionization by a strong
NIR pulse might provide insight into the dynamics of excited

states that differ from those excited by plane-wave pulses
due to modified selection rules for localized targets [20].
This promises rich applications in both atomic and molecular
physics.
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