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Photon-momentum transfer in one- and two-photon ionization of atoms
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The transfer of the linear photon momentum to the electron in the few-photon ionization of an atom is accurately
computed through a numerical solution to the three-dimensional time-dependent Schrödinger equation (TDSE)
beyond the dipole approximation. The characteristics of the transfer is studied in detail by comparing the
TDSE results with those calculated by the perturbation theory (PT) using the exact scattering states. Our fully
quantum-mechanical calculations show a discernible photoelectron momentum shift along the laser’s propagation
direction, which is caused by the nondipole effects. The momentum transfer rule for the single-photon ionization
is shown to agree with results obtained from the perturbation theory. We identify some extraordinary “dips” in
the photon-momentum transfer in the case of two-photon ionization, which depend on the laser ellipticity and
are caused by the suppression of the nondipole transitions. In addition, the Coulomb screening effect on the
photon-momentum transfer has also been investigated and we find that the Coulomb tail is negligible in the
single-photon ionization case. However, the potential in the short range near the Coulomb center may influence
the initial state, which will change the amount of the momentum that can be transferred.
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I. INTRODUCTION

In many theoretical descriptions of the interaction between
strong fields and atoms or molecules, the electric dipole
approximation has been widely used. Under this approxima-
tion, laser fields are treated as homogeneous time-dependent
electric fields and the dependence of the vector potential on
spatial coordinates as well as the homogeneous magnetic
field components are assumed to be negligible. In fact, the
dipole approximation applies only in a limited frequency and
intensity range. When approaching the well-known short- or
long-wavelength dipole limit [1–3], the dipole approximation
will break down and nondipole corrections are bound to be
considered.

Nondipole effects are usually associated with very high
laser intensities or very large laser frequencies, which play
a significant role in the study of strong-field atomic sta-
bilization occurring in the single-electron photoionization
[4–9] or in two-electron systems [10,11]. Nondipole effects
in photoelectron angular distributions have also been inves-
tigated. Besides the forward or backward asymmetry of the
angular distributions in the soft-x-ray region [12–19], unique
nondipole lobe structures were theoretically predicted for both
the hydrogen atom [20–22] and H+

2 [23]. Some research groups
also paid attention to the analysis of asymmetries of the triply
differential cross section induced by the nondipole corrections
in the double ionization of atoms [24–26] as well as the
contributions of the nondipole corrections to the photoelectron
spin polarization [27–29] based on the single-active-electron
approximation. Among the investigations about the nondipole
effects, the photon-momentum transfer in ionization ranging
from the perturbation regime to the tunneling regime has
attracted increasing attention recently [30–44].

Due to the extreme smallness of linear momentum of a
single visible photon, it is usually neglected in the strong field
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physics. With the development of highly sensitive measuring
instruments, Smeenk et al. [30] and Ludwig et al. [36] have
successively reported experimental observation of photoelec-
tron momentum shift along the direction of laser propagation
in the tunneling ionization processes. Theoretical works have
confirmed this asymmetrical [36,42] electron momentum
distribution and a nonzero momentum shift along the laser’s
propagation direction by quantum-mechanical calculations
[31,38], using semiclassical models with the Lorentz force
included [34,36,42], through solving the time-dependent Dirac
equation [39], or by strong field approximation (SFA) models
beyond the dipole approximation [37,43]. The pioneering work
from Chelkowski et al. [37] has revealed different photon-
momentum partitioning rules for one-photon ionization and
multiphoton processes, which has been supported by a recent
study [43]. In the linearly polarized long-wavelength limit,
the Coulomb interaction and the rescattering may result in a
momentum shift opposite to the direction of laser propagation
[36,42,43], particularly for the low-energy electrons. Besides,
the underbarrier motion caused by the laser-magnetic-field-
induced Lorentz force has been reported to be relevant with
the electron momentum shift in the laser propagation direction
[32,35,40].

The photon-momentum transfer in the ionization process
is assumed to be one kind of the nondipole effects and
plays a significant part in characterizing the radiation pres-
sure. However, most previous theoretical and experimental
work paid much attention to the tunneling process in the
high-intensity and long-wavelength limit. Here we solve the
three-dimensional (3D) time-dependent Schrödinger equation
(TDSE) beyond the dipole approximation for a single-electron
system interacting with a very long UV (or XUV) pulse in
the nonrelativistic regime. To the best of our knowledge, we
provide the most detailed ab initio simulations of photon-
momentum transfer in the few-photon ionization region.
Our fully quantum-mechanical calculations show a good
linear relationship between the average kinetic energy of
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photoelectrons 〈Ek〉 and the expectation value of the electron
momentum along laser propagation direction 〈pz〉 in the case
of the single-photon ionization. Most notably we discover
some interesting new features of this relationship for the
two-photon ionization process, e.g., some characteristic “dips”
appear at specific laser frequencies, which have never been
observed before. We attribute this to the suppression of some
nondipole transitions. Finally, we also discuss the Coulomb
screening effect on the transfer of photon momentum for the
aforementioned cases by the perturbation theory. Results of
hydrogen and helium atoms in different short-range potentials
are compared and discussed.

The rest of the paper is organized as follows. In Sec. II
we start by introducing our numerical methods of solving
the TDSE. Then in Sec. III we will compare our TDSE
calculations in the single-photon case with the results obtained
from the perturbation theory, followed by the presentation and
discussion for the two-photon absorption case in Sec. IV. We
will address in Sec. V the influence of the Coulomb screening
effect in the momentum transfer. A short conclusion is drawn
in Sec. VI. Atomic units are employed throughout the paper
unless otherwise stated.

II. NUMERICAL METHODS

In the nonrelativistic situation, the dynamics of a hydrogen
atom interacting with a classical electromagnetic field can be
described by the time-dependent Schrödinger equation

i
∂

∂t
�(r,t) = H�(r,t), (1)

where the full Hamiltonian in the velocity gauge is given by

H = 1
2 [p + A(r,t)]2 + V (r). (2)

With the inclusion of only the lowest order of the nondipole
corrections [40,45–47], the time- and space-dependent vector
potential A(r,t) for a circularly polarized light field propagat-
ing in the positive z axis can be written as

A(r,t) = Ax(z,t)ex + Ay(z,t)ey, (3)

Ax(z,t) � Ax(t) + z

c
Ex(t), (4)

Ay(z,t) � Ay(t) + z

c
Ey(t), (5)

in which Ax(t) and Ay(t) are components of the vector
potential in the dipole approximation, Ex(t) and Ey(t) are
the corresponding electric fields, and c is the vacuum light
speed.

Inserting the vector potential into Eq. (2), we can get the
leading-order corrected nondipole Hamiltonian

Hnondipole = − 1
2∇2+V (r)−iAx(t)∂x −iAy(t)∂y

− i
z

c
Ex(t)∂x −i

z

c
Ey(t)∂y

+ z

c
Ax(t)Ex(t)+ z

c
Ay(t)Ey(t). (6)

Here we focus on the hydrogenlike system and the ionic
potential is spherically symmetric, V (r) = V (r). Note that the
purely time-dependent term A2(t)/2 has been dropped as it

can be taken away by a phase transformation and has no effect
on any of the potentials and observables.

To solve the TDSE, the wave function �(r,t) is expanded in
the spherical harmonics Ylm(θ,φ) for the angular coordinates,
which leads to a set of coupled equations for the radial wave
functions,

�(r,t) =
∞∑
l=0

l∑
m=−l

�lm(r,t)

r
Ylm(θ,φ). (7)

The resultant Schrödinger equation for the radial coefficients
�lm can be solved using various discretization methods
[48,49]. In the present work, we use the finite difference for
the radial coordinate and the split-operator technique for the
short-time propagator [50]. The initial state is obtained by an
imaginary time propagation in the absence of the external field
until the ground-state energy is fully converged.

After the end of the external fields, we get the final wave
function �f and project it onto the scattering states given by
Eq. (4.27) in Ref. [51]:

�−
p (r) = 1√

p

∑
l,m

ile−i(σl+δl )Y ∗
lm(θ,φ)REl(r)Ylm(θ ′,φ′)

= 1√
2πp

∑
l,m

ile−i(σl+δl )Y ∗
lm(θ,φ)Rpl(r)Ylm(θ ′,φ′),

in which the factors 1√
p
ile−iδl ensure the wave boundary

condition as well as the normalization condition to be satisfied,
and σl = arg
(l + 1 − i/p) is the Coulomb phase shift. Then
the probability of the electron with a final momentum p =
(p,θ ′,φ′) is given by

P (p,θ ′,φ′) =|〈�−
p |�f 〉|2 =

∣∣∣∣∣
1√

2πp

∑
l,m

∫ ∞

0
dr(−i)lei(σl+δl )

× rRpl(r)�lm(r)Ylm(θ ′,φ′)

∣∣∣∣∣
2

=
∣∣∣∣∣
∑
l,m

ClmYlm(θ ′,φ′)

∣∣∣∣∣
2

. (8)

In this way the final wave function in the momentum space
is expanded in partial waves. We define the weight of each
partial wave as

Wlm = |Clm|2. (9)

For the purpose of the present work to investigate the
photon-momentum transfer along the z axis, one needs to
extract the photoelectron momentum f (pz) along the laser
propagation direction. For convenience, the above 3D photo-
electron momentum distribution has been changed from the
spherical coordinates (p,θ ′,φ′) to the cylindrical coordinates
(pρ,pz,φ

′) with a very high accuracy through the method of
Gouraud shading [52]. The electron momentum distribution
along the laser propagation direction is then calculated by

f (pz) =
∫∫

P (pρ,pz,φ
′)pρdpρdφ′, (10)
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FIG. 1. (a) The 2D photoelectron momentum distribution in the
xz plane of a hydrogen atom by a linearly polarized laser along
the x axis. (b) The normalized angular distributions in the xz plane
for both the linear (red solid line) and the circular (dashed green
line) polarization. (c) The normalized photoelectron momentum
distribution f (pz) along the laser propagation direction. See the text
for the laser parameters.

from which one can calculate the electron average momentum
〈pz〉 as follows:

〈pz〉 =
∫

pzf (pz)dpz∫
f (pz)dpz

. (11)

Apparently, 〈pz〉 is the photon linear momentum that has been
transferred to the photoelectron.

For our cases, convergences are easy to be ensured with
respect to the basis size lmax = 8 because of the relatively
weak fields (∼1013 W/cm2). But we need a large radial
box rmax = 12 000 with �r = 0.1 for our long XUV pulses
(∼10fs). A parallel computing method has been used to
increase the efficiency of our calculations.

III. ONE-PHOTON IONIZATION CASE

First, we will discuss the radiation pressure effects in
the one-photon ionization process. We use the following
Gaussian laser pulses propagating in the positive z direction:
ω = 0.875 a.u., the pulse duration is around 10 fs, and the
intensity is 5 × 1012 W/cm2 for the linear polarization case
and 1 × 1013 W/cm2 for the circular polarization case.

In Fig. 1(a) we present the two-dimensional (2D) pho-
toelectron momentum distribution (which is the cut with
py = 0 for our actual 3D momentum distribution) in the linear
polarization laser case. We show the angular distributions for
both the linear polarization (LP) and the circular polarization
(CP) case in Fig. 1(b). The electron momentum distribution
along the laser propagation direction calculated from Eq. (10)
is shown in Fig. 1(c) for both cases. From these figures, one
can see that the differential distributions are independent on
the laser polarization.

Figure 2 shows the electron average momentum 〈pz〉
as a function of the laser frequency for both the linear
and circular polarization. There seems to be no discernible
difference between results from the LP pulses and the CP
pulses in Figs. 1 and 2 for the single-photon case. Due to
the significantly long pulse that we have used, we can see
that the average electron kinetic energy 〈Ek〉 is exactly equal
to ω − Ip where Ip is the ionization potential. The red open
circles, the green solid deltas, and the black dashed line confirm

FIG. 2. The expectation of photoelectron momentum 〈pz〉 along
the laser propagation direction as a function of the laser frequency ω

in the single-photon ionization regime. Red open circles (green solid
regular triangles): 〈pz〉 for the LP (CP) light. Red open diamonds
(green solid inverted triangles): the electron average kinetic energy
〈Ek〉 divided by the vacuum light speed c for the LP (CP) light.
Black dashed line: the momentum transfer law given by the analytic
first-order perturbation theory in Eq. (12). Black solid line: (ω − Ip)
divided by the vacuum light speed c.

the momentum transfer law proposed in Ref. [37] for both the
linear polarization and the circular polarization,

〈pz〉 = 8

5

〈Ek〉
c

= 8

5

(ω − Ip)

c
. (12)

IV. TWO-PHOTON IONIZATION CASE

Now we will discuss the photon-momentum transfer in the
two-photon ionization. Laser parameters are the same with
the single-photon ionization case except for laser frequencies.
However, obvious discrepancies appear between the results
with linearly polarized fields and those with circularly polar-
ized fields in the two-photon ionization process.

Similar to Fig. 1 for the one-photon case, in Fig. 3 we
show the 2D photoelectron momentum distribution for a
linearly polarized field, corresponding angular distributions,
and distributions along the laser propagation direction for
both the LP and the CP cases, at ω = 0.4 a.u. (top panel)
and ω = 0.425 a.u. (lower panel). First of all, we observe
strikingly different features in the 2D momentum distributions
at both photon energies, i.e., a circle in Fig. 3(a) and a
four-lobe structure in Fig. 3(d). In fact, one can find significant
differences between the results from the LP and CP cases in
the angular distributions shown in Figs. 3(b) and 3(e): it seems
that the angular distribution for the CP case is insensitive to the
photon energy while it strongly depends on the photon energy
for the LP case.

The differences at these two frequencies are due to different
weights of the partial waves, in which the final wave function
in the momentum space is expanded in Eq. (8). These lm

partial waves come from different transition channels and
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FIG. 3. Same as those of Fig. 1, but for the two-photon ionization
case at two different frequencies ω = 0.4 a.u. (first row) and ω =
0.425 a.u. (second row).

we can obtain their weights from Eq. (9), as is shown in
Fig. 4. We can temporally forget the nondipole corrections
here to simply explain the strikingly different features in
Fig. 3. According to the selection rules, the intermediate
states are only p states (the l = 1, m = ±1 partial waves)
and the final wave function consists of the l = 0,m = 0
partial wave and the l = 2,m = 0,±2 partial waves under the
dipole approximation. The l = 0,m = 0 partial wave produces
the circle structure, the l = 2,m = 0 partial wave produces the
four-lobe structure, and the l = 2,m = ±2 partial waves are
related to the two-lobe structure in the momentum space. In
the first row of Fig. 4, no significant difference was found

FIG. 4. The weight of each partial wave. Black solid line with
open triangles (blue solid line with open circles) in the first row: Wlm

in the CP field of the frequency ω = 0.4 a.u. (ω = 0.425 a.u.); red
solid line with solid triangles (green solid line with solid circles) in
the second row: Wlm in the LP field of the frequency ω = 0.4 a.u.
(ω = 0.425 a.u.). Inset: Wlm in the log scale.

FIG. 5. The expectation of photoelectron momentum 〈pz〉 along
the laser propagation direction as a function of the laser frequency
ω in the two-photon ionization regime. Red solid circles (blue solid
line with circles): 〈pz〉 for the CP (LP) light. Red (blue) triangles:
〈Ek〉/c for the CP (LP) light. Black dashed line: 1.71(2ω − Ip)/c.
Black solid line: (2ω − Ip)/c.

in the weights of the partial waves at these two frequencies
in the case of circularly polarized fields, in which the l =
2,m = −2 partial wave apparently dominates and so their
angular distributions are both like the number “8” in Figs. 3(b)
and 3(e). However, in the case of linearly polarized fields,
the l = 2,m = 0 partial wave and the l = 2,m = ±2 partial
waves dominate at the frequency ω = 0.425 a.u., while the
l = 0,m = 0 partial wave dominates at ω = 0.4 a.u., which
can explain the four-lobe structure in Fig. 3(d) and the circle
structure in Fig. 3(a). These differences are also exhibited in
the f (pz) distributions in Fig. 3(c) and 3(f) so the momentum
expectation value 〈pz〉 will certainly be affected.

In Fig. 5 we plot 〈pz〉 as a function of the laser frequency for
the two-photon ionization case. For circularly polarized lasers,
there still exists a good linear relationship between 〈pz〉 and
ω. It is worth noting that the momentum transfer law becomes
closer to

〈pz〉 = 1.71
〈Ek〉

c
= 1.71

(2ω − Ip)

c
, (13)

which is slightly different from 〈pz〉 = 1.6〈Ek〉/c for the
single-photon ionization case. A similar relationship was
also found recently in Ref. [44]. We agree with the point
that the slight increase of the slope is related to the second
transition starting from the intermediate p and d states and the
one-photon radiative pressure effect from these states increases
[44,53]. This has also been confirmed in Fig. 6, in which we
present 〈pz〉 as a function of 〈Ek〉/c for different initial states,
i.e., 1s, 2s, 2p (m = 0), 2p (m = −1), 2p (m = 1), or 3d state,
all interacting with a circularly polarized laser field.

Another interesting phenomenon in Fig. 5 is that 〈pz〉 for
the linear polarization case exhibits some dips around some
particular frequencies, e.g., ω = 0.4 a.u. and ω = 0.455 a.u.,
which has never been reported before. These unusual dips
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FIG. 6. The expectation of photoelectron momentum 〈pz〉 along
the laser propagation direction as a function of 〈Ek〉/c in the one-
photon ionization regime with different initial states: red solid line
for the 1s (angular quantum number l = 0 and magnetic quantum
number m = 0) state; blue dotted line with solid circles for the 2s

(l = 0,m = 0) state; black dash-dotted line for the 2p (l = 1,m = 0)
state; black dotted line with solid triangles for the 2p (l = 1,m = −1)
state; black dashed line for the 2p (l = 1,m = 1) state; green solid
line with open inverted triangles for the 3d (l = 2,m = 1) state.

disappear for circularly polarized cases. Besides, we find that
the depth of these dips will decrease with the increase of the
laser field ellipticity, as is shown in Fig. 7 for ω = 0.4 a.u. Note
that 〈pz〉 increases with the laser field ellipticity but 〈Ek〉/c
keeps almost unchanged at the same time. In other words, the
dip at ω = 0.4 a.u. in Fig. 5 gradually diminishes when the
laser is continuously changed from the linear polarization to
the circular polarization. This is different from the case of the
single-photon ionization discussed before, in which 〈pz〉 is
independent of the laser ellipticity.

We attribute these unique features to the different weights
of the partial waves related to the nondipole transitions, which
appear with the nondipole corrections considered and follow
different selection rules from the dipole parts. We call those
following the selection rules under the dipole approximation
as dipole transitions.

Specifically, the intermediate state after absorbing the first
photon will be comprised of the l = 1,m = ±1 partial waves
from the dipole transitions and the l = 1,m = 0 partial wave
and the l = 2,m = ±1 partial waves from the nondipole
transitions. Then the second transition starting from this

FIG. 7. The expectation of photoelectron momentum 〈pz〉 along
the laser propagation direction as a function of the laser ellipticity ε

at ω = 0.4 a.u.

FIG. 8. The total weight of partial waves related to the nondipole
transitions at different laser frequencies. Blue solid line with circles
(red dashed line with triangles): W nondipole for the LP (CP) pulse.

intermediate state will result in a final state which can be
expanded in partial waves related to the dipole or nondipole
transitions. We only focus on the nondipole ones with their
weights marked as W

nondipole
lm , which do not exist under the

dipole approximation, such as the l = 1,m = ±1 and l =
2,m = ±1 partial waves, etc. We denote the total weight as
W nondipole = ∑

l,m W
nondipole
lm .

It is reasonable to quantify the nondipole effect with
W nondipole, which is shown in Fig. 8 at varied laser frequencies
both for the linear and circular polarization. We can see a series
of minimum points in Fig. 8 for the LP case, which coincide
with the dips mentioned in Fig. 5. According to the inset of
Fig. 4, at ω = 0.4 a.u. in LP case, the weights of some partial
waves related to the nondipole transitions are apparently small,
e.g., the l = 2,m = ±1 and l = 3,m = ±1 partial waves,
which means some nondipole transitions are suppressed. On
the contrary, in the CP case this obvious difference in weights
of these partial waves does not appear in Fig. 4 and no
minimum points exist in Fig. 8 either. Nevertheless, it remains
an interesting question why the suppression of the nondipole
transitions happens at these specific frequencies in the LP case,
which deserves a further study.

V. THE COULOMB SCREENING EFFECT

In this section we turn to discuss the Coulomb screening
effect on the photon-momentum transfer. The effect of the
Coulomb tail and the influence of potentials on the initial states
will be investigated. For these purposes, we will only focus on
the single-photon ionization process in the linear polarization
case.

We use similar laser parameters as before. Three different
short-range potentials are considered, e.g., the Yukawa po-
tential given by V (r) = −Ze−αr/r (Z = 1.905, α = 1 and
Z = 1.5, α = 0.5365), and the finite potential [54] given by
V (r) = −e−(r/10)2

/r . These potentials will result in the same
ground state energy as the real H atom. From Fig. 9(c) first
we can conclude the insignificancy of the Coulomb tail in this
long-pulse single-photon ionization case through comparing
the scaling law in the Coulomb potential and the finite potential
because these two potentials coincide in the short range but
deviate in the long range, as is shown in Figs. 9(a) and 9(b).
Then the change of the scaling law between the finite potential
and the Yukawa potential with different value of “Z” can
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FIG. 9. Top panels show different types of potential V (r) in the
regime of (a) 0 < r < 0.5 a.u. and (b) 0 < r < 20 a.u. The lower
panel shows the expectation of photoelectron momentum 〈pz〉 along
the laser propagation direction as a function of 〈Ek〉/c in the one-
photon ionization regime with different potential types. Red solid
line: results with the Coulomb potential given by V (r) = −1/r; thick
green dashed line: results with the finite potential; thin blue dashed
line: results with the Yukawa potential (Z = 1.905, α = 1); black
dash-dotted line: results with the Yukawa potential (Z = 1.5, α =
0.5365).

confirm the significant effects of the short-range part of the
potential because these potentials coincide in the long range
but deviate in the short range. For the Yukawa potential, the
initial state is influenced by the factor Z, which will surely
change the photon-momentum transfer rule.

Here we introduce a numerical calculation by the pertur-
bation theory to support our speculation. The initial states
can be extracted from the imaginary time propagation as
mentioned in Sec. II. Thus the influence of different kinds
of short-range potentials on the initial state can be included.
Results from this numerical calculation for the H atom and the
He atom are shown in Fig. 10, compared against the TDSE
calculations. For the helium case, we use a model potential
given by V (r) = − 1

r
[1 + (1 + 27/16r)e−27/8r ] [55].

Both calculations indicate that the potential can affect the
momentum transfer rules, namely the relationship between
〈pz〉 and 〈Ek〉/c. Almost identical slopes are obtained from
these two methods, which are no longer equal to 1.6 for
the H atom in the Yukawa potential and the He atom in
the model potential. Please note that the exact scattering
wave has been used in our numerical calculations from the
perturbation theory. We must point out here that although the
plane wave approximation used in Ref. [37] seemed applicable
in the calculation of the photon-momentum transfer of H atom

FIG. 10. The expectation of photoelectron momentum along the
propagation direction 〈pz〉 as a function of 〈Ek〉/c in the one-photon
ionization regime for three cases: hydrogen atom in the Coulomb
potential (green solid line for PT and red solid circles for TDSE);
hydrogen atom in the Yukawa potential (Z = 1.905, α = 1) (yellow
dashed line for PT and black solid triangles for TDSE); helium atom
with a model potential (gray dash-dotted line for PT and blue solid
squares for TDSE).

during the single-photon ionization process, it may not be able
to provide an accurate electron momentum distribution. We
also find that the ionization probability under the plane wave
approximation deviates from the TDSE results, although one
can arrive at the same photon-momentum transfer law.

VI. CONCLUSIONS

For the photon-momentum transfer in the one- and
two-photon case, we have solved the 3D time-dependent
Schrödinger equation beyond the dipole approximation for
a hydrogenlike system and introduced a numerical calculation
from the perturbation theory with the exact scattering states.
Our findings confirm the photon-momentum transfer rules
and its polarization-independent characteristics in the single-
photon ionization case. While in the two-photon ionization
process, we discovered some distinct dips appearing at specific
laser frequencies in the transfer of the photon linear momentum
to the electron. These dips are dependent on the laser ellipticity,
which disappear in the circular polarization cases. We at-
tributed this to the different weights of nondipole transitions at
various laser frequencies. Finally, we discussed the screening
effect of the Coulomb potential on the photon-momentum
transfer and pointed out that the Coulomb tail is negligible
in the long-pulse single-photon ionization case while the short
range of the potential may influence the initial state, which
will change the photon-momentum transfer rule.
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