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Probing double Rydberg wave packets in a helium atom with fast single-cycle pulses
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Fully quantum and classical calculations on a helium atom with two excited, radially localized Rydberg wave
packets are performed. The differences between classical and quantum methods are compared for a wide range
of principal quantum numbers to study the validity of the classical method for low-lying states. The effects of
fast terahertz single-cycle pulses on an atomic system with one or two Rydberg wave packets are also studied
using classical equations of motion. These results suggest that single-cycle pulses can be used as time-resolved
probes to detect motion of the wave packets and to investigate autoionization properties.
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I. INTRODUCTION

The study of correlations between two bound electrons
has remained an interesting topic since the development of
quantum mechanics in the early 20th century. The basic
Coulomb form of the interaction is a prototype of coupled
degrees of freedom in atomic physics. Thus, understanding
the correlations between two electrons can help us understand
more complicated atoms and molecules. In recent years,
numerous experiments have been done using ultrafast laser
pulses to observe, create, and control different two-electron
processes [1–5]. Most of them have been focused on resonant
transitions in low-lying states.

In contrast to low-lying states, highly excited Rydberg states
have many novel properties. The tiny energy spacing between
adjacent Rydberg states makes it easier to generate spatially
localized Rydberg wave packets [6,7]. Many experimental
and theoretical studies on atoms with a single Rydberg
wave packet have been conducted in the past few decades
[7–16]. However, there are only a few experimental studies
of the dynamics of double Rydberg wave packets [17–21].
Recently, experiments done by Zhang et al. in Ref. [20]
studied the time evolution of two highly excited Rydberg
wave packets. Their experimental and numerical results were
in good agreement and showed that substantial energy and
angular momentum exchanges between the two electrons can
happen in just a few Rydberg periods. This motivates us to
study the time-dependent dynamics of double Rydberg wave
packets, which has not been systematically studied before.
A numerical method using basis expansion techniques was
introduced in Ref. [22]. Another method [23] based on the
time-dependent close coupling method [24] will be used in
this report to study the dynamics of double Rydberg wave
packets.

Most quantum mechanical methods face computational
power issues when dealing with highly excited Rydberg
electrons, due to the wide spatial range, long time scale of
substantial interactions, and strong mixing among enormous
numbers of basis functions. Early research showed that
Rydberg electrons behave more classically than electrons in
low-lying states [25,26]. This suggests the use of well-studied
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classical mechanics to investigate those two-electron atoms.
Classical calculations with a wide range of principal quantum
numbers are performed in this paper, and the results are
compared with quantum calculations to study the validity of
the classical method.

Experimentalists have been using well-controlled fast THz
pulses as a time-resolved probe to study the Rydberg electronic
wave function structures at different times as the system
evolves [20,27,28]. Durations of fast THz pulses can be
modified to be shorter than, equal to, or longer than the period
of Rydberg electrons, which can yield totally different field-
ionization results. Subpicosecond half-cycle pulses (HCP)
have been widely used to probe wave-function structures of
a single Rydberg wave packet since the 1990s [14,29,30],
but only a few experiments have been done using HCP to
study double Rydberg wave packets [20]. The effects of fast
THz single-cycle pulses (SCP) on atoms with one valence
electron at different bound states have been studied in both
theoretical [31–33] and experimental [27] ways. However,
there has been no study on the effect of a SCP on an atom with
doubly excited Rydberg wave packets. In this paper, we focus
on the use of SCP to obtain wave function structures from
double Rydberg wave packets. We can also predict motions
of the double Rydberg wave packets from the time-resolved
ionization results with SCP.

This paper is organized as follows. In Sec. II, we introduce
the two-step launch model for generating double Rydberg
wave packets based on experiments in Ref. [20]. Both fully
quantum and classical calculations are performed in order
to explore the differences between them and the validity of
classical methods in low-lying states. In Sec. III, we focus on
the effect of a fast SCP on an atomic system. The evolution
and autoionization of the double Rydberg wave packets are
then studied using a SCP. All physical variables and formulas
presented in this paper are in atomic units unless specified
otherwise.

II. COMPARISON BETWEEN FULLY QUANTUM AND
CLASSICAL METHODS

A. The two-step launch model

Our theoretical model is motivated by an experiment in
Ref. [20], where both valence electrons in Ba are individually

2469-9926/2017/96(4)/043409(8) 043409-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.043409


XIAO WANG AND F. ROBICHEAUX PHYSICAL REVIEW A 96, 043409 (2017)

excited to Rydberg wave-packet-type states. The experiment
starts with Ba atoms in the ground state, 6s2. The atom is
excited to a coherent superposition of 5d5/2n1d Rydberg states
using two consecutive laser pulses. The first radially localized
wave packet is generated as a superposition of n1 states. Its
Rydberg period is about TRyd1 = 2πν3

1 , where ν1 = n1 − μ1

is the effective principal quantum number. The ν1 corresponds
to the central binding energy E1 = −12/2ν2

1 , and the μ1 is the
quantum defect. When the first wave packet reaches its outer
turning point, the other electron is then excited to a Rydberg
wave packet, giving n2gn1d states. The ν2 = n2 − μ2 is the
effective principal quantum number that corresponds to the
central binding energy E2 = −22/2ν2

2 . Central energies and
energy widths of the two Rydberg wave packets are controlled
by properties of laser pulses used to excite the atom. Dynamics
of the double Rydberg wave packets can then be studied.

This experiment can be converted into a theoretical two-step
launch model in a helium atom. We focus on an easier case
where the angular momenta lj of both electron at launch
are zero. Usually, when the total angular momentum L is
on the order of 1 and is much smaller than both principal
quantum numbers, the dynamics are insensitive to the total
angular momentum L. Calculations with different small L are
described in Sec. II D. Therefore, the first electron is launched
as a spherically symmetric s wave centered at a negative total
energy E1 = −12/2ν2

1 and a launch time width δt1. The δt1
is a time width parameter that describes a Gaussian-shaped
electric field amplitude, which is F1(t) ∝ exp(−2 ln 2 t2/δt2

1 ).
At t = 0.5 TRyd1, the second electron is also launched as a
spherically symmetric s wave centered at a negative total
energy E2 = −22/2ν2

2 and a launch time width δt2. The δt2
has a similar definition as of δt1. In the quantum calculations,
the energy width is an automatic result of the duration of
the laser pulse that excites each wave packet. In the classical
calculations, the energy width is selected to be the same as
that in the quantum calculations. To satisfy the uncertainty
principle, the FWHM of a Gaussian-shaped energy distribution
of the Rydberg wave packet satisfies δEj = 4 ln 2/δtj , where
j = 1,2 represent the first and second electrons, respectively.
We then study the autoionization process of the atom and
angular momenta distributions of the electrons after the second
electron’s launch.

B. Quantum approach

For a neutral helium atom with two electrons, the Hamilto-
nian of this system can be written as

H = p1
2

2
+ p2

2

2
− 2

r1
− 2

r2
+ 1

|r1 − r2| , (1)

where pj and rj are the momentum and spatial coordinate of
the j th electron, respectively. The main difference of a helium
atom’s Hamiltonian compared to a hydrogen atom’s is the
Coulomb interaction term 1/|r1 − r2|, which couples the two
electrons. In this paper, a method based on the time-dependent
close coupling (TDCC) method is used to propagate the wave
function of a helium atom [23,24].

By expanding the two-electron wave function in a coupled
spherical harmonic basis, the wave function can be written as

�LS(r1,r2,t) =
∑
l1,l2

RLS
l1,l2

(r1,r2,t)

r1r2

×
∑

m1,m2

C
l1,l2,L
m1,m2,0

Yl1,m1 (r̂1)Yl2,m2 (r̂2), (2)

where RLS
l1,l2

is the radial wave function, C
l1,l2,L
m1,m2,0

is the
Clebsch-Gordan coefficient, Ylm are spherical harmonics, and
r1,r2 represent the spatial coordinates of the two electrons [24].
To reduce the computational requirements, the calculation can
be performed with total angular momentum L = 0 instead of
small nonzero total angular momentum. Additionally, since
both Rydberg wave packets are highly localized in phase
space and far away from the nucleus, the overlap integral and
exchange effect are expected to be small. Singlet and triplet
symmetrized calculations will give nearly the same result.
With total angular momentum L = 0, the wave function only
depends on r1, r2, and the relative angle θ12 between r1 and r2,
[34]. The wave function in Eq. (2) with L = 0 can be simplified
to

�(r1,r2,t) =
Lmax∑
l=0

(−1)lRl(r1,r2,t)Yl0(cos θ12), (3)

where the (−1)l term is following the conventions of
Refs. [35,36]. The Lmax is the number of angular channels used
in the calculation, and it is slightly larger than the maximum
allowed angular momentum restricted by the total energy. The
goal is to evolve the Rl for all coupled channels with different
angular momentum l of one electron.

For the time propagation of the wave function, the split-
operator technique is used. The Hamiltonian in Eq. (1) can be
split into three parts, Hj = p2

j /2 − 2/rj with j = 1,2 for each
electron and H3 = 1/r12 for the interaction between the two
electrons. The unitary propagators of U1, U2, and U3 can be
taken in various forms at each time step, e.g., Crank-Nicolson,
Chebyshev, or leapfrog, etc. The propagators U1 and U2 do not
couple amplitudes Rl with different angular momentum and
are tridiagonal in r1 and r2, respectively. For the propagator
U3, the idea from discrete variable representation is used in the
calculation [37]. The method is described in Ref. [23] in detail,
and we give a brief description here. First, the matrix elements
of cos θ12 in the coupled angular momentum basis |j 〉 =
|(lj ,lj )L = 0〉 are calculated [35]. Then, the matrix of cos θ12

is diagonalized, and we can use its eigenstates, eigenvalues,
and the geometric relation r12 = (r2

1 + r2
2 − 2r1r2 cos θ12)1/2

to calculate the matrix element of U3 in the coupled angular
basis |j 〉. Finally, the U3 propagator couples all the angular
states |j 〉, and the radial amplitudes Rj are propagated to the
next time step.

At the final time of the calculation, we can project the
calculated wave function onto energy eigenstates of a helium
atom to get the energy distribution. Since the total angular
momentum of the system is zero, angular momenta of the
two electrons have the same magnitude but in the opposite
directions. The angular momentum distribution of one electron
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is calculated using [36]

pqm(l) =
∫∫

dr1dr2|Rl(r1,r2,t)|2. (4)

C. Classical approach

The three-dimensional classical trajectory Monte Carlo
(CTMC) method [14,23,38,39] is used in the calculations
as a comparison with the quantum calculation, as a way of
interpreting the results, and as a way to obtain results difficult
or impossible to converge using quantum calculations. Initial
conditions of the electrons are set to obey the quantum uncer-
tainty principle with random Gaussian distributed energies and
launch times. Since both electrons are launched as spherically
symmetric s waves, their launch directions are uniformly
distributed in all 4π solid angle.

After the initial launches, the system is propagated un-
der Hamilton’s equations using a fourth-order Runge-Kutta
method with adaptive step size [40]. To avoid divergence near
the nucleus, a soft-core potential V (r) = −Z/

√
r2 + a2 is

used instead of V (r) = −Z/r for the Coulomb interactions,
where a is a soft-core parameter. Calculations performed
with a ranged from 1.0 × 10−3 to 1.0 × 10−5 give converged
results.

At the final time of the calculations, the statistics of
energies, angular momenta, and other physical quantities of
each electron from all Monte Carlo (MC) runs with different
initial conditions give continuous distribution functions. The
continuous distribution functions can be discretized and com-
pared to the quantum calculations. For example, the classical
analogy of the probability of the angular momentum at lc can
be calculated as follows:

pcl(lc) = Number of MC runs with lc � l < lc + 1

Total number of MC runs
, (5)

where l is the angular momentum from the classical calcula-
tions. The lc is a non-negative integer, which corresponds to
the azimuthal quantum number in the quantum calculations.
The pcl(lc) is compared to the quantum angular momentum
distributions pqm(lc) to study the differences between the
classical and quantum methods.

D. Comparisons between quantum and classical methods

To study the validity of the classical methods, we start
this subsection with a calculation for ν1 = 23, ν2 = 38. The
principal quantum numbers are chosen to be neither too large,
where the quantum calculations would be hard to converge,
nor too small, where the quantum effects can cause huge
differences between the quantum and classical calculations.
Comparison of angular momentum distributions between
quantum and classical methods can be found in Fig. 1, with
all the corresponding parameters given in the caption. In this
calculation, the total angular momentum is set to zero. The
results presented here are for the nonionized part of the wave
function, which is only about 30% at the final time of 2 ps.
The numerical difference for ionization probabilities between
the classical and quantum methods is about 1% at the final
time. The final time of this calculation is about one Rydberg
period of the first electron. In this time scale, significant

FIG. 1. Comparison between the quantum and classical methods
for the angular momentum distribution. The effective principal
quantum numbers are ν1 = 23, ν2 = 38, which correspond to
central energies E1 = −12/2ν2

1 = −9.45 × 10−4, E2 = −22/2ν2
2 =

−1.39 × 10−3 at launch. Rydberg period of the first electron is
TRyd1 = 2πν3

1 = 7.64 × 104. The second electron is launched at
half of the Rydberg period of the first electron after the first
electron’s launch. Launch time widths for the two electrons are δt1 =
2.17 × 104 = 0.28 TRyd1, δt2 = 4.28 × 103 = 0.056 TRyd1, which are
shorter than a full Rydberg period. The results in the figure are at
t = 8.27 × 104 a.u. after the second launch, which is about 2 ps.

interactions between the two electrons can happen. This leads
to a large probability of autoionization and can excite most
of the two-electron wave function to high angular momentum
states. In the figure, a sharp decrease in angular momentum
distribution can be found near l = 36, which is the maximum
classically allowed angular momentum when both electrons
are bound [41].

Additionally, classical calculations that the second electron
starts at a nonzero angular momentum are performed. The
results also match well with the L = 0 results and can be
found in Fig. 2. The calculations with nonzero total angular
momentum strengthen our assumption that the dynamics of
Rydberg electrons is insensitive to small nonzero angular
momentum.

With the comparison between quantum and classical
calculations for highly excited states, the principal quantum
number is then lowered, to study the validity of the classical
methods at low-lying states. We define a difference function to
quantitatively study the differences between the two methods
for different principal quantum numbers. The difference
function fd is defined as

fd =
Lmax∑
l=0

|pcl(l) − pqm(l)|, (6)

where Lmax is the number of coupled angular channels used
in the quantum calculations. The pqm(l) is the probability
that the electron has an angular momentum l as defined in
Eq. (4) in quantum calculations. The pcl(l) is an analogous
probability that the electron has an integer angular momentum
l in classical calculations, which is defined in Eq. (5). The
difference function gives an estimation on the relative error
between the two methods at different l. As fd is higher, the
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FIG. 2. Comparison of the angular momentum distributions
between classical calculations with total angular momentum L =
0,1,2,3. All the parameters are the same as those given in the caption
of Fig. 1 except for the total angular momentum. Since the total
angular momentum is nonzero, the angular momenta of the two
electrons have a small difference. The separate angular momentum
distributions of the two electrons have no visible differences; thus
their distributions are plotted on a single curve as shown in the figure.

differences between the quantum and classical methods are
larger.

Fully scaled calculations with ν1 = 23ζ , ν2 = 38ζ have
been performed, where 0 < ζ � 1 is a dimensionless number.
The laser time widths are scaled as ζ 3, since the Rydberg period
of an electron and the interval between the two electrons’
launches are proportional to the cubes of their principal quan-
tum numbers. To satisfy the quantum uncertainty principle, the
energy widths are scaled as ζ−3 in both classical and quantum
calculations. Final times of the calculations are also scaled as
ζ 3. Similar to the calculation for ν1, ν2 = 23, 38, the angular
momentum distributions used in Eq. (6) are only from the
nonionized part of the wave function.

The results of the difference function versus the first
electron’s principal quantum number ν1 can be found in Fig. 3.

FIG. 3. The difference function fd as defined in Eq. (6) vs the
first electron’s principal quantum number ν1. In these calculations,
the principal quantum numbers of the two electrons satisfy ν1/ν2 =
23/38. The red dots are the numerical results for the fd , while the
blue line is a fit for the numerical results versus ν1.

In the figure, as the principal quantum number decreases,
the difference between the two methods increases. Because
of the interference and tunneling effects that only exist in
quantum mechanics, the difference between the two methods
fluctuates as the energy of the system changes. Also, finite
energy spacings in the quantum calculations and finite final
time of the calculations may cause additional disagreements
between the quantum and classical methods [42,43]. We use n

to denote the principal quantum number of the atomic system.
Since the energy spacings between adjacent Rydberg states are
also scaled as n−3 as energy uncertainties, approximately the
same number of quantum states are included in a Rydberg
wave packet regardless of n. However, as n gets smaller,
the discretized energy levels in quantum mechanics may
cause totally different behaviors from continuous energies
in classical mechanics, which could result in a difference
function that scales as power of n. A rough fit of the fd is also
given in the figure and that indicates the differences between
classical and quantum calculations scale as n−1/2. There are
not many studies on the differences between classical and
quantum calculations for different principal quantum numbers
in an atomic system. Related studies on the differences in other
systems can be found in Refs. [43–45].

III. PROBING DOUBLE RYDBERG WAVE PACKETS

Properties of double Rydberg wave packets in an atomic
system are well described by classical calculations. To avoid
the huge computational effort on mixing of large number of
angular momentum states in quantum calculations, all of the
following calculations related to single-cycle pulses (SCP) are
classical calculations.

A. The effect of SCP on a one electron atom

We start this subsection with a study of the effect of short
SCP on an atomic system with one Rydberg electron. A
Rydberg electron is prepared in a classical, elliptical Rydberg
orbit with a small angular momentum. The electron has a
significant time to be far away from the nucleus, and a relatively
short time to be close to the nucleus in its one Rydberg period.
The electric field of a SCP in our calculation has the following
form:

F (t) = C0Fm

(
t

tw

)
exp

[
−

(
t

tw

)2
]
, (7)

where C0 = √
2e ≈ 2.332 is a constant to make the maximum

field strength be Fm. Note that e here is the base of natural
logarithms. The tw is a parameter to characterize the duration
of the pulse. In our calculations, a SCP starts at t = −3.5 tw
and ends at t = +3.5 tw. A SCP has a duration Tpulse = 7.0 tw.
Durations of the short pulses in the calculations below are
much shorter than or equal to one Rydberg period of the
electron. Effects of a SCP in these two scenarios can be totally
different. Single-cycle pulses are applied to a one-electron
atom at different times, and the energy distributions of the
electron after the SCP are observed.

We first describe the effect of a SCP with duration much
shorter than one Rydberg period. Within the duration of a short
SCP, the nucleus-electron interaction can be neglected if the
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electron is far away from the nucleus. Since the integral of
the electric field over time is zero, a short SCP only shifts
the position of the electron and has almost no effect on its
kinetic energy. The estimated energy change of the electron
originates from the Coulomb potential energy change. If the
electron was close to the nucleus before the SCP, the potential
energy change is much higher than that for an electron which
was far away from the nucleus. This is equivalent to saying
that a short SCP transfers more energy to an atom when an
electron is closer to the nucleus at the time of the SCP.

We also study the effect of a SCP with duration equal to
one Rydberg period. The electric field of a SCP has maximum
amplitude at t = ± tw/

√
2 ≈ ± 0.707 tw, which is about half

of its duration. If a SCP starts at the time that the electron is
close to the nucleus, the electron feels maximum accelerations
when it moves to the Rydberg outer turning point. Acceleration
from the SCP quickly flips the sign at almost the same time
that the electron passes the outer turning point and reverses its
moving direction. This means the SCP can perfectly accelerate
the electron during the whole pulse. This is also true if a SCP
starts at the time that the electron is close to the outer turning
point. However, there is a main difference between these two
scenarios. The work done to the electron is the integral of force
times displacements. The electron moves much more quickly
when it is close to the nucleus than when it is far away from
the nucleus. Using pulses with same strengths, the absolute
value of the work done by a SCP is much larger when it starts
at the time that the electron is at its outer turning point.

To summarize, a short SCP transfers more energy when
the electron is close to the nucleus, while a medium-duration
SCP transfers more energy when it starts at the time when the
electron is far away from the nucleus. An atom can be ionized
if the final energy after a SCP is above the ionization threshold.
In experiments, a SCP can be used to probe the periodic motion
of the Rydberg wave packet in a one-electron atom.

B. Probing double Rydberg wave packets

Within our two-step launch model described in Sec. II A,
dynamics of the double Rydberg wave packets can be divided
into two regions based on their initial energies. (i) One
wave packet has a much larger Rydberg orbit than the
other. This means the two wave packets are usually spatially
distinguishable, with an inner wave packet and an outer wave
packet. (ii) Two wave packets have similarly sized Rydberg
orbits. We apply a fast SCP at different times after the electron
launches. The SCP can transfer energy to the atomic system. At
a long final time, the atom will be singly or doubly ionized. In
our following calculations, the double ionization probabilities
are very small and can be neglected. We can measure the
energy distributions of those singly ionized atoms to study the
electronic wave function structures at the start time of the SCP.

A classical calculation with ν1 = 45, ν2 = 38 has been per-
formed. This leads to the initial energies E1i = −2.47 × 10−4,
E2i = −1.39 × 10−3, and Rydberg periods TRyd1 = 13.8 ps,
TRyd2 = 2.08 ps. Before the first wave packet returns to the
nucleus (0.5 TRyd1 = 6.9 ps), the second electron is expected
to be in its own periodic motion around the nucleus. In this
calculation, the first electron is considered as the outer wave
packet, while the second electron is the inner wave packet.

FIG. 4. Energy distributions of the electron in a singly ionized ion
at a long final time, after the effect of a short SCP applied at different
time. The principal quantum numbers for the two electrons are ν1 =
45, ν2 = 38. The SCP has a maximum strength Fm = 100 kV/cm,
and a duration Tpulse = 0.208 ps. Numbers in the legends indicate the
start time of SCP (tstart) after the launch of the second electron. The
vertical dashed line is plotted at Ec = −1.46 × 10−3. The figure has
a cutoff at −0.0025 on the left, but the full energy distributions have
long tails to larger binding energies.

A short SCP with duration Tpulse = 0.208 ps ≈ 0.1 TRyd2, and
maximum strength Fm = 100 kV/cm is applied at different
times (tstart) after the second launch. Distributions of the posi-
tive ion’s final energy, E+, can be found in Fig. 4. In the figure,
most of the energy distributions are lower than Ec, the center
of the initial total energy shifted by energy widths, which is
indicated as the vertical dashed line. For these electrons with
E+ > Ec, the atom must have gained energy from the SCP. As
our analyses in Sec. III A, a short SCP transfers more energy
to an atom through the inner electron when the electron is
close to the nucleus. If the energy transferred to the inner
electron is large enough, the inner electron can be directly
ripped off from the atom. In this scenario, there will be no
further chaotic three-body interactions after the outer electron
returns. The energy of the outer electron after the inner electron
being ionized should be approximately 2E1i , which originates
from the changing of ionic core charge from 1 to 2. In Fig. 4,
when E+ > Ec, the peak of the positive ion’s energy is located
at 2E1i .

To further study our claim that a short SCP transfers energy
to an atom when the electron is close to the nucleus, we plot the
probability of E+ > Ec versus tstart in Fig. 5. The probability
indicates direct ionization of the inner electron due to the
short SCP. Additionally, we calculate the probability that at
least one electron is within a sphere of Rc = 260 au centered
at the nucleus, when neither electron is autoionized before the
pulse. The latter probability, Pc, versus tstart is plotted in Fig. 5.
The Rc is calculated to satisfy

−2

Rc + �r
− −2

Rc

+ Ec � 0, (8)

where �r is the displacement of a free electron due to a SCP.
The probabilities of E+ > Ec and Pc have similar trends and
magnitudes on the locations of peaks and troughs. To study the
origin of Pc, we calculated the probabilities that each electron
is within Rc, indicated with Pc1 and Pc2 for the first and second
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FIG. 5. Probability results for calculations with ν1 = 45, ν2 =
38, Fm = 100 kV/cm, and Tpulse = 0.208 ps. The red thin solid line
describes the probability of E+ > Ec, which is the positive ion’s
final energy higher than −1.46 × 10−3, with a short SCP applied at
different time tstart. The blue thick solid line describes the probability
that at least one electron is within Rc = 260, at different time tstart

after the second electron’s launch, just before the application of a
SCP. The green dashed line describes the probability that the first
electron is within Rc at different time, while the magenta dotted line
describes the probability for the second electron.

electrons, respectively. The plots can be found in Fig. 5. Note
that, the probability that both electrons are within Rc is less
than 0.1% and can be neglected here, which means Pc ≈ Pc1 +
Pc2. The peaks of Pc2 are located at tstart ≈ 2.0,4.0,6.0 ps,
which are multiples of TRyd2 and indicate the inner electron’s
return to the nucleus. Similarly, the outer electron returns to the
nucleus at tstart ≈ 6.9 ps. Instead of a peak in Pc1 at 6.9 ps, we
can find a small dip on it. This is because at tstart ≈ 7.0 ps, the
inner electron is at its outer turning point. Thus, the repulsion
between the inner electron and the returning outer electron
shifts the radial positions of the two electrons. Therefore, Pc1

is slightly lower and Pc2 is slightly higher at tstart ≈ 7.0 ps. On
the Pc2 curve at 7.0 ps, the depth of the dip is not as large as
that at 5.0 and 8.0 ps. As a result, we have flatter probabilities
near 7.0 ps on both Pc and E+ > Ec curves. After 8.0 ps,
both curves are mostly flat, indicating a SCP applied after
the collisions between the two electrons. The probability to
find electrons in a small radial range barely changes after
collision.

To study the effect of a medium duration SCP, calculations
with ν1 = 45, ν2 = 40, Tpulse = 2.43 ps ≈ 1.0 TRyd2, and
Fm = 5 kV/cm, have been performed. For this case, the Tpulse

is smaller than the outer electron’s Rydberg period TRyd1. When
the outer electron is far away from the nucleus, the SCP only
slightly shifts its position and has negligible effect on it. We
may only consider the effect of the SCP on the inner electron,
before the outer electron returns. Energy distributions of the
positive ion at a long final time can be found in Fig. 6(a),
which has the same meaning as described in Fig. 4. The
probability of E+ > Ec can be found in Fig. 6(b). To have
a detailed understanding of the effect of a medium-duration
SCP, we have performed calculations of a He+ ion with
only one Rydberg wave packet at ν2 = 40 under the effect
of a same medium duration SCP, with Tpulse = 2.43 ps and

FIG. 6. Study of the effect of a medium-duration SCP with ν1 =
45, ν2 = 40, Fm = 5 kV/cm, and Tpulse = 2.43 ps. Panel (a) describes
the same physical quantities as given in the caption of Fig. 4. Panel
(b) describes the probability of positive ion’s energy higher than
Ec = −1.17 × 10−3, and the direct ionization probability of a He+

ion due to a medium-duration SCP with the same properties. The tstart

is the start time of a medium-duration SCP [see Eq. (7) for definition
of the start time].

Fm = 5 kV/cm, applied at different times. The field-induced
ionization probability (Pion) of the He+ is also plotted in
Fig. 6(b). At tstart = 2.4 ps ≈ 1.0 TRyd2, the electron in the
He+ model and the inner electron in the two-electron atom
return to the nucleus and gain the lowest energy transferred
from a short SCP. Thus, the probabilities of E+ > Ec and Pion

reach their minimum. Similarly, at tstart = 1.3 ps ≈ 0.5 TRyd2

and tstart = 3.5 ps ≈ 1.5 TRyd2, the electron in He+ model
and the inner electron in the two-electron atom are at their
outer turning points, and E+ > Ec, Pion reach their maximum.
These two lines have very similar trends, which strengthens
our assumption that a medium-duration SCP transfers more
energy to an atom when it starts at the time when the electron
is far away from the nucleus.

These calculations show that single-cycle pulses with short
duration and medium duration behave oppositely on the energy
transfer to a Rydberg electron. Experimentally, a SCP can
be used to probe the wave-function structures of the inner
wave packet, by transferring energy to the atom through the
inner electron while the inner electron is located at different
positions.
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FIG. 7. The curves have the same meaning as introduced in the
caption of Fig. 5. Parameters used in the plot are ν1 = 34, ν2 = 40,
Fm = 100 kV/cm, Tpulse = 0.243 ps, Ec = −1.42 × 10−3, and Rc =
300.

C. Atoms with similarly sized double Rydberg wave packets

In the previous subsection, we studied the effect of a
SCP on a two-electron atom with the size of one Rydberg
wave packet much larger than the other’s. Here we focus
on those scenarios in which the two Rydberg wave packets
have similar sizes. A classical calculation with ν1 = 34,
ν2 = 40 has been performed. The single-cycle pulses have
duration Tpulse = 0.1 TRyd2 = 0.243 ps and maximum strength
Fm = 100 kV/cm. The Ec = −1.42 × 10−3 is center of the
initial total energy shifted by energy widths. The probability
of E+ > Ec, versus different start times of the SCP is plotted in
Fig. 7. The probabilities to find electrons within Rc = 300 au,
Pc, Pc1, Pc2, as introduced in the previous subsection can
also be found in Fig. 7. In the figure, similar trends between
E+ > Ec and Pc can be found, which is because a short SCP
transfers more energy to an electron when it is close to the
nucleus. The peak of Pc1 is located at tR1 = 2.4 ps, which
indicates the first electron’s return to the nucleus. Similarly,
the second electron returns to the nucleus at tR2 = 3.4 ps.
These return times are neither a full nor a half Rydberg period
related to their initial energies. Because of the correlations
between the two electrons, their energies, angular momenta,
and Rydberg periods are changed.

After the two electrons return to the nucleus, respectively,
they will be in Rydberg orbits with new periods. The new
periods are approximately 2 tR1 and tR2 for the two electrons,
which can be deduced from the peaks and troughs on the
Pc1 and Pc2 curves in Fig. 7. The first electron arrives at its
new outer turning point at about 2 tR1 = 4.8 ps, while the
second electron arrives at its new outer turning point at about
1.5 tR2 = 5.1 ps. As can be seen in Fig. 7, at tstart ≈ 4.8 ps, the
probabilities to find either electron inside Rc are at minimum.
The energy transferred from a short SCP and the probability
of E+ > Ec are also at local minimum.

Experimentally, a short SCP can be used to probe an atom
with two similarly sized Rydberg wave packets. Usually, the
first two peaks of the probability of E+ > Ec indicate the
return times of the two electrons. After that, the two electrons
will be in new Rydberg periods which are related to their first
return times to the nucleus.

IV. CONCLUSIONS

Inspired by a previous experiment in Ref. [20] and various
numerical methods for solving two-electron atoms developed
in the past few years, we studied dynamics of two Rydberg
wave packets in a helium atom. We first briefly introduced the
helium model with two-step launches, where the first electron
was excited to a radially localized Rydberg wave packet using
laser pulses with tunable parameters. When the first electron
reached its outer turning point, the other electron was then
excited to a Rydberg wave packet using laser pulses with
different properties. As studied in Ref. [20], energy and angular
momentum exchanges between the two electrons can happen
quickly, leading to rapid autoionization.

We then performed both quantum and classical calculations
to show the validity of the classical methods when dealing
with Rydberg wave packets, comparing them to an accurate
quantum method. The classical and quantum methods were
in good agreement at high principal quantum numbers. The
numerical differences between the two methods at lower
principal quantum numbers were also quantitatively studied.

Furthermore, we introduced the effects of a fast single-cycle
pulse on an atom with one Rydberg electron. Detailed analyses
showed that a short-duration single-cycle pulse transfers more
energy to an atom when the electron is closer to the nucleus,
while a medium-duration single-cycle pulse transfers more
energy when it starts at the time when the electron is further
away from the nucleus. With these results, we studied the
effects of a single-cycle pulse on an atom with double Rydberg
wave packets. A short single-cycle pulse is applied to an
atomic system with distinguishable wave packets at different
times, and the energy distribution of the positive ion at a
long final time is measured. The probability that significant
energy is transferred to the atom has a very similar trend as
the probability that at least one electron is located in a small
region very close to the nucleus. We also compared the results
of a single-cycle pulse acting on an atom with double wave
packets of significantly different sizes and on a positive ion
with only the inner wave packet. The results have very similar
trends which verify our assumptions that a fast single-cycle
pulse only has small effects on the outer electron. Moreover,
we studied the case that the two Rydberg wave packets have
similar sizes. From the time-dependent probabilities that each
electron is close to the nucleus, we found out the return times of
the two electrons. Because of the correlations between the two
electrons, return times of the two electrons are different from
their initial Rydberg periods. The new Rydberg periods after
both electrons return to the nucleus are related to their return
times. Experimentally, a fast single-cycle pulse can be applied
at these times when an electron is close to the nucleus, and a
large amount of energy will be transferred to the atom. Further
novel autoionization behaviors after the effects of single-cycle
pulses remain open questions to be studied in both theoretical
and experimental ways.
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