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Nuclear dynamics in a positron-CO collision using close-coupling methods
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Apart from the electronic motion of the target in the molecular collision process, collision probabilities
strongly depend on the dynamics of nuclear motions (rotation and vibration). Here we have studied this
nuclear dynamical dependency of collision cross sections for a positron–carbon monoxide collision using
rovibrational close-coupling, rotational laboratory frame close-coupling (rotational LFCC), and LFCC adiabatic
nuclear vibration (LFCC-ANV) methods. Here we have computed the angle-integrated elastic and state-to-state
rotational excitation, the elastic and state-to-state vibrational (summed over rotational) excitation, and the total
(summed over rotational and vibrational) cross sections for the incident positron energy between 0.0 and 7.0 eV
using the rovibrational close-coupling method. The rotational LFCC method is also employed to calculate
elastic, (state-to-state) rotational excitation, and total cross sections. To estimate the effects of the nuclear
dynamics we have calculated vibrational elastic and state-to-state vibrational excitation cross sections using
the LFCC-ANV method. In these calculations the model correlation-polarization potential is used to include
the correlation-polarization potential. The effect of nuclear dynamics on the collision probabilities is discussed
comparing calculated total cross sections using the rovibrational close-coupling and the rotational LFCC method
with other theoretical calculations and experimental results. The discussion includes comparison of the present
vibrational 0 → 1 excitation process with the theoretical and measured values. The other vibrational and rotational
elastic and excitation cross sections are also compared with the existing theoretical results and we have discussed
the relevance of the effect of nuclear rotational and vibrational dynamics. We have also presented a comparison
among the energy transfer parameters using different coupling schemes and have discussed the implications of
the results.
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I. INTRODUCTION

Understanding the nature of the interaction between the
subatomic particles positron (electron) collision with an atom
or molecule plays an important role in the field of research
works [1–5]. To calculate the collision cross sections theo-
retically for such collision processes the interaction between
the projectile and the electrons of the targets is included via
the so-called static and polarization potential. In the case of
a positron as a projectile the repulsive static potential and the
attractive polarization potential cancel each other and give an
effective potential. Thus for low-energy collision processes
when a positron spends a longer time close to the targets,
accurate calculations of these potentials are very important,
especially the polarization potential. The necessity of accurate
determination of the polarization potential is described by
Tenfen et al. [6] who used this ab initio polarization potential
for the positron-N2 collision process in getting fairly good
results comparing to recent measurement of collision cross
sections. Although the calculation of ab initio potential has
to be used to get more accurate theoretical results, the
determination of this potential is a very complicated task for
any system. Thus one has to rely on some approximate and
reliable method to calculate this potential. One such model
potential is positron correlation-polarization potential (PCOP)
as proposed by Jain [7], especially designed for the positron as
an incident particle. This model PCOP polarization potential
has been applied successfully to the different positron collision
processes and predicts reliable results except the appearance
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of minima structures in the theoretically calculated total cross
sections. However, apart from the use of polarization potential,
for multichannel calculation involving different quantum states
of the target in the collision processes, the inclusion of the
state-to-state coupling effect between the different states is
also very important to get reliable results. This coupling
effect for the positron-atom collision where atomic electronic
states are involved is described in [8]. For molecular collision
processes the situation is more complicated as apart from
the molecular electronic states the rotational and vibrational
states of the molecule are also included in the calculation
in the multichannel formalism to account for the rotational
and vibrational motions of the nuclei. The inclusion of these
nuclear dynamics is necessary, especially in the lower-energy
region where the incoming projectile spends a longer time
with the target molecule and strongly interacts with it. Several
theoretical works have been carried out for different systems
with the positron as the projectile; viz., the works of Tenfen
et al. [6], Mukherjee et al. [9], Gianturco and Mukherjee [10],
Mukherjee and Sarkar [11], and Mukherjee and Mukherjee
[12] using different coupling schemes, namely, rotational
laboratory frame close coupling (rotational LFCC), body
fixed vibrational close coupling (BFVCC), rovibrational close
coupling (for details see [3,10,13–15]), and the method of
continued fractions (MCF) and its multichannel version (MCF-
MC) [16,17]. These methods are in accordance with how the
nuclear motions are taken into account in the calculations.

All the calculations mentioned above [6,9–12,16,17] have
been done for homonuclear diatomic molecules like H2

and N2 which have no permanent dipole moments. The
heteronuclear molecule has a permanent dipole moment
due to its asymmetric charge distribution. The body-frame
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adiabatic nuclei approximation when applied to this kind of
molecule produces infinite total cross sections. In the adiabatic
nuclei approximation, where the rotational and vibrational
motions of the molecule are treated adiabatically, the multiple
extracted adiabatic nuclei (MEAN) approximation [18] has
been employed to get convergent cross sections. On the other
hand, the dynamically included nuclear motion (rotation and
vibration) of the molecule in the calculation reduces the
effect of the asymmetric charge distribution at large distance
giving the finite effective potential which produces finite cross
sections. Thus the close-coupling methods, which include
the nuclear motions in dynamical equations of the collision
process, are very suitable to get the finite cross sections for
the molecules which have a permanent dipole moment like
CO. Not only that, but also these methods give the rotational
and vibrational state-to-state excitation cross sections which
are important for understanding the nature of interaction and
coupling effects as well as for the usefulness of the molecules
in different areas. Earlier theoretical calculations have been
done for CO using the rotational LFCC method by Ghosh
et al. [19], the BFVCC method by Gianturco et al. [20], and
the MCF method by Arretche et al. [21]. Recently elastic
and inelastic vibrational cross sections for this molecule have
been calculated by Tenfen et al. [22] employing the same
MCF method as used by Arretche et al. [23], extending this
MCF method to the multichannel case (MCF-MC) method.
Among the different close-coupling methods the rovibrational
close-coupling method is an elaborate and extensive way to
include the rotational and vibrational motion of the nuclei in a
dynamical way through the solution of coupled differential
equations for the projectile. Here we have carried out the
calculation for a positron collision with a CO molecule
using rovibrational close-coupling methods where the PCOP
potential is used as a polarization potential. The rotational
and vibrational state-to-state coupling potentials [the matrix
elements of total (static+correlation polarization) potential be-
tween different rotational and vibrational states] are evaluated
to solve the coupled equations using rotational and vibrational
wave functions corresponding to different rovibrational states.
The motivation of the present study is to see the dynamical
coupling effect of the rotational and vibrational state-to-state
potentials on the scattering parameters for a CO molecule
which has a finite dipole moment. Moreover, to estimate
the effect of the vibrational motion only, here we have
presented the results using a decoupled form of rotational
and vibrational motion, viz., the laboratory frame rotational
close coupling with adiabatic nuclear vibration (LFCC-ANV)
scheme where rotational motions are included through close-
coupling calculation, but the vibrational motions are taken into
account in an adiabatic way.

We present here the total angle-integrated cross sections
(summed over rotation and vibration cross sections), vibra-
tional angle-integrated elastic and state-to-state excitation
cross sections (summed over rotational cross sections), and
rotational angle-integrated elastic state-to-state cross sections
up to 7.0 eV (which is below the positronium formation
threshold). Here we have also recalculated the total and
rotational cross sections using the rotational LFCC method.
This calculation was previously done by Ghosh et al. [19]
and the reasons behind this recalculation are described in

the Results and Discussions section. The present results are
compared with some of the existing theoretically calculated
results. The results are also compared with the experimentally
measured values by Sullivan et al. [4], Kwan et al. [23], Sueoka
and Hamada [24], and Zecca et al. [25].

A. Theory

The detailed theoretical calculations for the rovibrational
close-coupling methods are presented in our earlier cal-
culations [11,12]. Here we have also presented the same
which have been used to compute the collision parameters.
The theoretical collision parameters are obtained solving the
following Schrödinger equation for the total positron-molecule
system:

(H − E)� = 0, (1)

with the usual scattering boundary conditions for collision
calculation.

Here H and � are the total Hamiltonian and the total wave
function of the positron-molecule system. In the present case
of a positron–carbon monoxide molecule collision process
under the (electronically elastic) rovibrational close-coupling
method under Born-Oppenheimer approximation the total
Hamiltonian H of the system is given by

H ≡ H (�rp) + Hel(�re) + Hvib(R) + Hrot(
�

R)

+Vp−mol(�rp,�re, �R), (2)

where �rp is the positron coordinate measured from the
center of mass of the system, �re collectively denotes the
molecular electronic coordinates, and �R is the internuclear
set of coordinates of the molecule. H (�rp) is the kinetic energy

operator for the incident positron; Hvib(R), Hrot(
�

R), and Hel(�re)
are the vibrational, rotational, and electronic Hamiltonians of
the target molecule, respectively. Vp−mol(�rp,�re, �R) represents
the positron-molecule interaction. The total wave function �

is characterized by, for the present method, the electronic,
vibrational, and rotational quantum numbers of the molecule
and the angular momentum quantum number of the projectile
particle 0,v,j,l, respectively, and is described by

�JM
0vjl(�rp,�re, �R) = χ0(�re, �R)

∑
α′′

r−1
p u

Jvjl

v′j ′l′ (rp)YJM
j ′l′

× (
�

rp,
�

R)φv′(R), (3)

where χ0(�re, �R) is the ground-state electronic wave function
which parametrically depends on �R. φv′(R) is the vibrational
wave function of the molecule. The angular basis function Y
is given by

YJM
j ′l′ (

�

rp,
�

R) =
∑
mj

∑
ml

〈j lmjml | j lJM〉Ylml
(

�

rp)Yjmj
(

�

R).

(4)

The coefficients 〈j lmjml | j lJM〉 are the familiar Clebsch-

Gordan coefficients. Yjmj
(

�

R) and Ylml
(

�

rp) are the nuclear
rotational and positron angular wave functions, respectively.
In the present formalism �J = �j + �l and its projection M along
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the nuclear axis are the good quantum numbers (constant of
motion) of the system.

Using the above Hamiltonian and wave function in the
Schrödinger equation (1) one gets the corresponding rovibra-
tional close-coupled differential equation,[

d2

dr2
rp

− l′(l′ + 1)

r2
p

+ k2
αα′

]
u

Jjl

α′ (rp)

=
∑
α′′

〈α′,J |V ′(�rp, �R)|α′′,J 〉uJjl

α′′ (rp), (5)

where α collectively denotes the quantum numbers v,j,l.

V ′(�rp, �R) =
∫

χ0(�re, �R)Vp−mol(�rp,�re, �R)χ0(�re, �R)d�re, (6)

k2
jj ′vv′ = 2(E − εjj ′ − εvv′ ), (7)

where E is the incident positron energy. εjj ′ and εvv′ are the
energy differences between rotational levels j and j ′ and the
vibrational levels v and v′, respectively.

The rotational and vibrational state-to-state coupling poten-
tial matrix elements used in the coupled equations are given
by the following relation:

〈v′j ′l′|V ′(�rp, �R)|v′′j ′′l′′〉

= 2
∫∫∫

φv′(R)YJM∗
j ′l′ (

�

rp,
�

R)V ′(�rp, �R)φv′′(R)Y JM
j ′′l′′

× (
�

rp,
�

R)dRd
�

Rd
�

rp. (8)

Here the interaction potential has been expanded in terms
of Legendre polynomials as

V ′(�rp, �R) =
∑

λ

vλ(rp,R)Pλ(
�

rp,
�

R). (9)

Equation (8) takes the final form as (after angular integra-

tion over the nuclear and positron angular coordinates
�

R and
�

rp respectively)

〈v′j ′l′|V ′(�rp, �R)|v′′j ′′l′′〉
=

∑
λ

〈v′(R)|vλ(rp,R)|v′′(R)〉fλ(j ′,l′,j ′′,l′′; J ). (10)

fλ(j ′,l′,j ′′,l′′; J ) is the angular coupling factor given by
(Lane and Geltman [14])

fλ(j ′,l′,j ′′,l′′; J )

= (−1)j
′+j ′′−J (2λ + 1)−1

× [(2j ′ + 1)((2l′ + 1)(2j ′′ + 1)(2l′′ + 1)]1/2

×(l′l′′00|l′l′′λ0)(j ′j ′′00|j ′j ′′λ0)W (j ′l′j ′′l′′; Jλ). (11)

(ab00|abλ0) and W (j ′l′j ′′l′′; Jλ) are the familiar Clebsch-
Gordan and Racah coefficients, respectively.

In Eq. (10) the integration is over the nuclear coordinate R

only.
To calculate the potential matrix elements the vibrational

wave functions of the molecule are calculated using the

following differential equations:{
d2

dR2
+ 2μ[εv − ε(R)]

}
φv(R) = 0, (12)

where μ is the reduced mass of the molecule and ε(R) is
electronic energies for different nuclear geometries which
support the different vibrational bound states.

The static potential is calculated using a ground-state
wave function of the molecule. To calculate the polarization
potential which takes into account the effect of distortion
of the molecule in the presence of a positron as well as
the effect of correlation, the well known model positron
correlation-polarization potential (PCOP), specially designed
to describe the interaction between the positron and distorted
molecule, is used. Detailed discussions and its functional form
are given elsewhere, viz., in [11].

The solution of rotationally and vibrationally coupled dif-
ferential equations give the T-matrix elements T J (v′j ′l′,vj l)
and using these elements we have calculated rotationally
elastic and state-to-state ICS (angle-integrated cross section),
vibrationally elastic and state-to-state ICS (summed over
rotational ICS), and the total cross section TCS (summed
over rotational and vibrational ICS). We have also calculated
rotationally elastic and state-to-state ICS and TCS (summed
over rotational ICS) using the rotational LFCC method. To get
LFCC-ANV vibrational state-to-state cross sections first we
calculate total cross sections solving the rotational LFCC dif-
ferential equation [13,14] for different internuclear separation
and these cross sections are then integrated between different
vibrational states which give the LFCC-ANV vibrational
state-to-state cross sections.

Here we have also calculated the average vibrational
(rotational) energy transfer, defined as

〈	Eα〉 =
∑α′

α 	=0 	Eα→α′σ (α → α′)∑α′
α=0 σ (α → α′)

, (13)

where σ (α → α′) is the state-to-state cross section, 	Eα→α′

is the energy difference between the vibrational (rotational)
states, and α denotes the vibrational (rotational) quantum
number corresponding to different states of the molecule. This
term describes the overall probability of transferring energy
into the molecular degrees of freedom from a given initial level
(here vibrational and rotational levels are defined by v = 0 and
j = 0). This energy transfer index also indicates the relative
efficiency of rotationally and vibrationally inelastic collision.
The higher value of this index indicates higher efficiency of
cooling of a hot positron in a molecular gas environment.

B. Computational details

To calculate the static and polarization potentials we have
used Slater-type (STO) self consistent field (SCF) ground-state
electronic wave functions at various internuclear separation
R ranging from 1.8a0 to 2.483a0 according to McLean
and Yoshimine [26]. The vibrational coupling potentials are
calculated using the vibrational wave function φv(R). These
wave functions are obtained by solving Eq. (4) using potential
energy values calculated by Peng-Fei et al. [27]. The coupled
differential equation [Eq. (2)] is solved using the variable
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TABLE I. Vibrational and rotational threshold energies (in meV) for CO molecule. v and j label the vibrational and rotational quantum
numbers, respectively.

v = 0 1 2 3 4

j = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0.0 0.47 1.4 3.0 265 266 267 286 527 528 529 531 786 787 788 789 1042 1043 1044 1045

step-size Numerov method up to the radial distance of positron
100a0 measured from the center of mass of the molecule and
obtained the T-matrices and hence the required cross sections.
To get the converged cross sections the static potential is
calculated up to the angular momentum λmax = 13. It is to
be noted here that due to the heteronuclear nature of the
CO molecule, all even and odd momenta are included in the
calculation. The equations are solved for a maximum of five
vibrational states (v = 0 → 4) and five (j = 0 → 4) rotational
states. The maximum number of partial waves lmax = 7 and
maximum total quantum number Jmax = 7 (J = j + l) are
the other parameters to specify the angular motions of the
positron and the molecule. In this calculation we have only
included open channels whose numbers as well as the number
of coupled channels depend on the energy of the incident
positron and the energy of the corresponding vibrational and
rotational states. The maximum number of coupled equations
solved is 45. In Table I we have tabulated the rotational and
vibrational threshold energies for a CO molecule.

II. RESULTS AND DISCUSSIONS

A. Coupling potentials

In the close-coupling method two types of coupling appear;
one is potential coupling and the other is dynamical coupling.
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FIG. 1. Present computed rovibrational state-to-state coupling
potentials for spherical (λ = 0) components for vibrationally elastic
and rotationally elastic cases. The potential matrix elements are
defined in the text.

The potential coupling is represented by the state-to-state
coupling potential matrices and is represented by the terms
〈v,j,l|vλ|v′,j ′,l′〉 in the close-coupled differential equation
(5). The dynamical coupling represents the influence of differ-
ent channels (state-to-state coupling effects) on the result of a
particular channel during the collision process. This dynamical
coupling effect is included in the close-coupling method
when one solves the coupled differential equation (5). To get
the essence of the nature of the coupling forces during the
collision process, which is responsible for transition between
different states, we start our discussions on the state-to-state
potential coupling. Before discussing the behavior of such
coupling potentials we first present the comparison between
the static and correlation-polarization potential used in the
calculation. In Fig. 1 we have plotted spherical components of
those potentials with the total (static+correlation polarization)
potentials for the elastic channel case. The figure shows that
near the vicinity of the molecule the static potential strongly
dominates over the PCOP potential. Above the distance 3.5a0

from the center of mass of the molecule the PCOP potential is
stronger than the static potential, although the strength of the
potentials are less in comparison to the static potential near the
center of mass of the molecule.

A number of coupling potentials appear in solving Eq. (5)
whose number depends on the number of vibrational (v),
rotational (j ) states of the molecule as well as the number
of partial waves l that are included in the calculation. Some
of such state-to-state potentials are plotted below (Figs. 2–6).
In Fig. 2 we have plotted vibrationally elastic and rotation-
ally elastic, 〈0,0,0|v0-tot|0,0,0〉, and vibrationally elastic but
rotationally inelastic, 〈0,1,1|v1-tot|0,0,0〉, 〈0,2,2|v2 -tot|0,0,0〉,
coupling potentials for three different moments (spherical and
nonspherical components: λ = 0,1,2). Here the symbol “-tot”
represents calculated total (static+correlation polarization)
potential using the electronic wave function of the molecule.
The graphs show that the differences among the strengths of the
potentials for a vibrationally elastic channel are comparable
to each other. But an interesting feature is evident from the
figure that the variation of the potential with the distance for
λ = 1 is opposite to those for λ = 0,2 (signs of the potentials
are opposite) which implies that cancellation occurs among
the different potentials (depending on λ) when one solves the
coupled differential equations. This special feature is the nature
of a heteronuclear molecule like CO, which is not observed
in the case of a homonuclear molecule like H2 or N2 (see
[12]). This feature is based on the behavior of the molecules
belonging to different molecular symmetries. It will be clear
from the following discussions on the calculation point of view.
The potentials vλ(rp,R), defined in Eq. (9), are calculated using
the charge density of the molecule which is expanded in terms
of Legendre polynomials Pλ(r̂) as ρ(�r) = ∑

λ aλ(r)Pλ(
�

r). The
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FIG. 2. Present computed rovibrational state-to-state coupling
potentials for spherical and nonspherical (λ = 0,1,2) components for
vibrationally elastic and rotationally both elastic and inelastic cases.
The potential matrix elements are defined in the text.

sign of aλ(r) depends on even and odd values of λ. The sign
for even λ is opposite to that for odd λ. As the CO molecule
belongs to the point group C∞v all λ coefficients aλ(rp,R) are
nonzero whereas, because of the inversion symmetry that char-
acterizes the molecules like H2 and N2 belonging to the point
group D∞h, only the even-λ coefficients aλ(rp,R) are nonzero.
The magnitude and sign of the state-to-state coupling poten-
tials depend on vλ(rp,R) and hence the values of coefficients
aλ(rp,R) and λ.Thus the sign of the potentials for H2, N2 are
the same due to only the coefficients aλ(rp,R) for even values
of λ being nonzero whereas for the CO molecule the potentials’
values are both positive and negative due to all λ coefficients
aλ(rp,R) being nonzero which is also evident from Fig. 2.

In Fig. 3 we have compared the calculated values between
the spherical components (λ = 0) for a vibrationally elastic
and rotationally inelastic channel V0-tot potential. Here we have
also plotted the V0-tot-norot potential, where “norot” implies that
the angular coupling factor fλ(j ′,l′,j ′′,l′′; J ) by which the
rotational state-to-state coupling effect is included [defined
in Eq. (11)] through the solution of the coupled differential
equations is not multiplied with this component. This last
component is shown here for comparison only but not used
in the present calculation. It is evident from the figure that
the two potentials not only vary oppositely but the strength
of the potential also differs. This shows the importance of the
inclusion of the effect of rotational motion in the calculation
of the rovibrational coupling potential.

To estimate the effect of the vibrationally elastic channel
the spherical components of the vibrational coupling potential
〈0,0,0|v0-tot|0,0,0〉 and rotational 〈0,0|v0-tot|0,0〉 coupling
potential (the last one is defined by 〈j,l|vλ|j ′,l′〉) are plotted
in Fig. 4. The figure shows that the values marginally differ
with each other. This feature is also seen for nonspherical
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FIG. 3. Present computed rovibrational state-to-state coupling
potentials for spherical (λ = 0) components. The potential matrix
elements are defined in the text.

components (λ = 0,2) also (not shown here). Thus it is evident
that the vibrational ground state has less significant effect on
the total coupling potential.

To compare the strength of the different vibrationally “elas-
tic” potentials we have plotted the spherical components of
the coupling potential, 〈0,0,0|v0-tot|0,0,0〉, 〈1,0,0|v0-tot|1,0,0〉,
and 〈2,0,0|v0-tot|2,0,0〉, in Fig. 5. Note that the last two
components are elastic in the sense that the vibrationally
initial and final channels for the respective components are
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FIG. 4. Present computed rovibrational and rotational state-to-
state coupling potentials for spherical (λ = 0) components. The
potential matrix elements are defined in the text.
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FIG. 5. Present computed rovibrational state-to-state coupling
potentials for spherical (λ = 0) components. The potential matrix
elements are defined in the text.

the same although they correspond to the vibrationally excited
states. The figure shows that the nature of the variation of the
potentials with the distance is the same, and the strengths of
the potentials are also almost the same, 〈0,0,0|v0-tot|0,0,0〉;
the component involving the vibrational ground state for both
initial and final channels is slightly higher.

In Fig. 6 we have plotted the potentials for vibrationally
inelastic channels 〈1,0,0|v0-tot|0,0,0〉 and 〈2,0,0|v0-tot|0,0,0〉
(the initial vibrational states are different). It is evident from
the figure that unlike the elastic potentials shown in Fig. 4
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FIG. 6. Present computed rovibrational state-to-state coupling
potentials for spherical (λ = 0) components. The potential matrix
elements are defined in the text.

FIG. 7. Upper panel: Present computed angle-integrated rovi-
brational and rotational LFCC total cross sections along with the
BFVCC result of Gianturco et al. [20] and Arretche et al. [21], for
the positron–carbon monoxide molecule collision process. Different
measured values by Kwan et al. [23], Sueoka and Hamada [24], and
Zecca et al. [25] are also plotted for comparison. Middle panel: Same
as upper panel but in the lower-energy region. Lower panel: Same as
upper panel but in the higher-energy region.

the nature and strength of these two inelastic potentials differ
from each other. However, the strength of the potentials is less
compared to the elastic components.

B. Total and vibrational elastic cross section

In Fig. 7 we present the computed angle-integrated total
(summed over rotational and vibrational) cross sections us-
ing both rovibrational and rotational LFCC close-coupling
methods, the BFVCC results of Gianturco et al. [20], and
the MCF results of Arretche et al. [21] which are plotted
up to 7.0 eV (below positronium formation threshold). The
measured values of Kwan et al. [23], Sueoka and Hamada
[24], and Zecca et al. [25] are also plotted for comparison.
As the top panel shows the cross sections that are hard to
distinguish we separately plot two more curves in the same
figure. In the middle panel we plot the cross sections for
lower energy (up to 1.0 eV) and in the lower panel we plot
the results for higher energy (ranging from 1.0 to 7.0 eV).
It is to be mentioned here that earlier the same collision
process was investigated by Ghosh et al. [19] employing the
rotational LFCC method. In that calculation they used the
near–Hartree-Fock (HF) ground-state electronic wave function
of the CO molecule in terms of a Gaussian-type orbital
(GTO) basis set as used by Jain [28] to calculate the static
and correlation-polarization (PCOP) potentials. Moreover, that
calculation only includes the dipole moment of the molecule.
In the present calculation the Slater-type orbital (STO) basis
set and all the multipole moments (for different λ ranging
from λ = 1 to λmax = 13) have been employed. The main
motivation of the present calculation is to see the effectiveness
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of inclusion of the dynamical coupling effect of different
molecular degrees of freedom (rotational and vibrational)
using different coupling schemes in determination of collision
parameters. Thus here we have recalculated the cross sections
using the rotational LFCC method with the same STO basis set
to describe the electronic ground state and the moments which
also have been used to calculate the cross sections using the
rovibrational close-coupling method. However, we have found
some differences between the present results and the results
of Ghosh et al. in the lower-energy region. Theoretically,
Gianturco et al. performed the calculation using the body-fixed
vibrational close-coupling (BFVCC) method with the same
STO basis set as used in the present calculation. However, the
potential energy values used to calculate the vibrational wave
function are different from the present one. Arretche et al.
used the fixed nuclei framework and employed the method
of continued fractions (MCF). The near–Hartree-Fock wave
function using the Gaussian basis set at the equilibrium geom-
etry was used in their calculation. It is to be mentioned that
Tenfen et al. [22] also carried out the calculation for the same
collision process using the BFVCC scheme. They compared
the calculated ICS 00 [integral cross section for vibrationally
elastic case (v = 0 → v′ = 0)] with experimental TCS (total
cross sections) considering the very low values of vibrational
excitation cross sections in comparison to the elastic results
and these calculated values are very similar to the MCF results
of Arretche et al. Thus here we have plotted the results of
Arretche et al. in the figure. It is seen from the figure that in the
lower-energy region there are differences among the different
theoretical results (however, the BFVCC and MCF results
match each other). In the higher-energy region all theoretically
calculated results almost merge with each other. From the
figure it is also important to notice that the present rovibrational
and the rotational LFCC results do not match each other in the
lower-energy region; the rovibrational close-coupling result is
higher. In Fig. 4 we have seen that the strength and variation
of the state-to-state coupling potential for elastic channels are
almost the same, calculated using the rotational LFCC and
rovibrational methods. Thus the difference of the results is
due to the effect of the vibrationally inelastic state-to-state
coupling potential which is absent in the rotational LFCC
formalism. However, for the rovibrational method the effect of
rotational coupling remains effective by the angular coupling
factor fλ(j ′,l′,j ′′,l′′; J ) in the coupling potential. Higher
values of rovibrational cross sections imply the more attractive
nature of vibrational coupling in comparison to the rotational
coupling. This is also evident if we compare our present
results with the BFVCC result. It is seen that the BFVCC
values are higher than the present results. In the BFVCC
scheme rotational motion of the molecule is not included
in the calculation and the resulting cross section is only the
effect of vibrational motion, which produces higher values
of cross section. But in the present rovibrational formalism
the combined rotational and vibrational effect is not strong
enough to get values comparable to the BFVCC result. This
feature for the positron–carbon monoxide collision process is
different from that of a positron–nitrogen molecule collision.
In the case of the nitrogen molecule the rotational LFCC result
is lower than the rovibrational result [12] similar to the present
case whereas the rovibrational cross section is higher than

FIG. 8. Present computed angle-integrated vibrational elastic
cross sections using LFCC-ANV (see the text) method for the
positron–carbon monoxide molecule collision process.

the BFVCC result, opposite to that of positron collision with
a carbon monoxide molecule. It seems the rotational effect
for the case of a carbon monoxide molecule is stronger than
for the case of a nitrogen molecule. Another interesting case is
evident from the figure, that unlike the case of the hydrogen and
nitrogen molecules here no minimum appears in the calculated
integrated cross sections, which is supposed to be due to
the lack of inclusion of the polarization effect in the model
PCOP potential which is used here. In this connection we
refer to the work of Tenfen et al. [22] where they have found
the minimum structure appears in all calculated vibrationally
elastic cross sections (VECS) using the MCF-MC method.
While searching for the cause behind this they have concluded
that the multichannel coupling effect is responsible for the
generation of minimum structure. To show this they have
calculated vibrationally elastic cross sections (VECS) using
diagonal components of a vibrational potential matrix and data
show the expected increase of the VECS with the vibrational
quantum numbers. Here we have also calculated the VECS
using the LFCC-ANV method where the rotational states are
coupled but the vibrational states are included adiabatically.
The computed results are presented in Fig. 8 where we see
that the nature of variation of the VECS with vibrational
quantum number agrees with the VECS of Tenfen et al. [22]
calculated with the diagonal vibrational potential. However, it
is interesting to see that in the present LFCC-ANV results no
such minimum appears in the VECS although the multichannel
effect is still present due to rotational coupling included
in the rotational LFCC method. Thus the disappearance of
the minimum in the total cross section computed using all
the theoretical methods (Fig. 7) as well as in the present
calculated vibrational elastic cross section (VECS) employing
the LFCC-ANV method, and on the other hand the appearance
of the minimum in VECS calculated using the MCF-MC
method, shows the importance of the rotational coupling
effect in the positron–carbon monoxide collision process. It
seems that the vibrational multichannel coupling effect which

042709-7



T. MUKHERJEE PHYSICAL REVIEW A 96, 042709 (2017)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Vi
br

at
io

na
l (

0-
1)

 e
xc

ita
tio

n 
cr

os
s 

se
ct

io
n 

(in
 1

0-1
6 cm

2 )

Energy (in eV)

 Rovibrational Close Coupling
 BFVCC (Gianturco et al. [20])
 MCF-MC (Tenfen et al. [22])
 Sullivan et al. [4]

FIG. 9. Comparison between present computed angle-integrated
vibrational state-to-state 0(v) → 1(v′) excitation cross sections with
other theoretical results and measured values for positron–carbon
monoxide molecule collision.

generates the minimum in VECS as described by Tenfen et al.
[22] is reduced by the rotational coupling effect. Comparison
of the calculated values with the measured data shows that the
present rovibrational TCS well match with the experimental
results of Kwan et al. and the results of Sueoka and Hamada in
the whole energy range presented here, while they well agree
with Zecca et al. in very low and higher energy values. On the
other hand the BFVCC and MCF results better agree with the
measured values of Zecca et al. It is seen from the figure that
there are differences between the experimental data measured
by different authors. The reason behind the different values
of the measurements is not clear and needs more theoretical
and experimental studies. However, Zecca et al. attributed
the difference of their experimental values from the other
experimental values to the superior angular resolution of their
apparatus to those of other apparatuses.

C. Vibrational and rotational inelastic cross section

In Fig. 9 the present rovibrational angle-integrated excita-
tion cross sections (vibrational inelastic ICS) for vibrational
0 → 1 (summed over rotational states) transition process is
plotted which is calculated using the rovibrational coupling
scheme along with the theoretical BFVCC result of Ginnturco
et al. [20] and the MCF-MC result of Tenfen et al. [22]. The
experimental result of Sullivan et al. [4] is also included for
comparison. It is seen from the figure that the present results
well agree with the measured values and other theoretical
results with some marginal differences. However, an inter-
esting difference between the present result and the theoretical
results is seen around the threshold of vibrational excitation.
The present calculated cross section varies smoothly whereas
the other calculations generate a peak around the threshold.
In this juncture we want to make some comments on the
excitation threshold of the vibrational 0 → 1 transition. This
threshold value is 0.266 eV as mentioned by Gianturco
et al. [20] and Tenfen et al. [22]. However, for the present
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FIG. 10. Comparison between present computed angle-
integrated vibrational state-to-state 0(v) → 1(v′) excitation cross
sections using rovibrational and LFCC-ANV methods and BFVCC
result for positron–carbon monoxide molecule collision.

rovibrational formalism one cannot specify a particular value
of vibrational excitation threshold as the excitation involves
different rotational levels of the excited vibrational states.
Thus (shown in Table I) the vibrational excitation threshold
varies from 0.265 to 0.286 eV depending on the transition
from ground vibrational and rotational level to the rotational
quantum number j of the excited vibrational state. However,
if we define the vibrational excitation threshold as the energy
required for transition from ground vibrational state to ground
rotational state of the excited vibrational states, then the
excitation threshold for the vibrational 0 → 1 transition is
0.265 eV, which is almost same as the above-mentioned results
of Gianturco et al. and Tenfen et al. [22].

The present calculation includes both rotational and vi-
brational dynamics whereas both BFVCC and MCF-MC
calculations include only the vibrational dynamics. Thus it
seems that the disappearance of the peak in the present result
is due to the effect of rotational dynamics. For more clear
understanding of this we have also calculated the vibrational
0 → 1 cross section using the LFCC-ANV method and plotted
it in Fig. 10 along with the rovibrational and BFVCC results.
The figure shows that although the LFCC-ANV result is higher
than the rovibrational result the nature of the variation of the
both results is similar. Moreover, no peak in the cross section
appears similar to the rovibrational result. This means that the
rotational coupling effect is responsible for the disappearance
of the peak in the rovibrational cross section.

In Figs. 11 and 12 we have plotted the present calculated
(0 → 2 and 0 → 3) vibrational excitation cross sections along
with the results calculated using the BFVCC and MCF-MC
methods, respectively. Both figures show that the cross sections
for these excitation processes are less in magnitude compared
to the 0 → 1 excitation process. Both cross sections show that
the rovibrational results are higher than the BFVCC results in
the lower-energy region and merge with each other with energy
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V

FIG. 11. Comparison between present computed
angle-integrated vibrational state-to-state 0(v) → 2(v′) excitation
cross sections using rovibrational and LFCC-ANV methods along
with BFVCC and MCF-MC results for positron–carbon monoxide
molecule collision.

which is the same as the 0 → 1 cross sections. On the other
hand the 0 → 2 rovibrational results are higher and 0 → 3
values are lower than MCF-MC results in the lower-energy
region. We have also presented LFCC-ANV results where
0 → 2 and 0 → 3 cross sections are high compared to the
other theoretical values. The 0 → 2 results show a minimum
whereas 0 → 3 results vary smoothly. The rotational LFCC-
ANV data show that this method overestimates 0 → 2 and
0 → 3 cross sections. However, the values are very small and
it is not possible to make any final comments on the variations
and differences of the cross sections without comparing with
the measured values.

FIG. 12. Same as Fig. 11 but for 0(v) → 3(v′) vibrational
excitation cross section.

FIG. 13. Present computed angle-integrated rotational state-to-
state elastic 0(j ) → 0(j ′), and excitation 0(j ) → 1(j ′) and 0(j ) →
2(j ′) cross sections for vibrational elastic 0(v) → 0(v′) process (in
a2

0 ) for positron–carbon monoxide molecule collision.

In the present work we have also calculated angle-integrated
rotational cross sections for both elastic and excitation pro-
cesses. It is to be mentioned that in the case of the rovibrational
coupling scheme for each vibrational process (elastic and
inelastic) there corrrespond several rotational elastic and
inelastic processes. In Fig. 13 we have compared the rotational
elastic 0 → 0 and inelastic 0 → 1 and 0 → 2 cross sections
in the case of the vibrationally elastic (vibrational 0 → 0)
channel for three different energies (these energies are chosen
to cover the whole energy range considered here). It is seen
from the figure that for all energies shown here the elastic
0 → 0 values are higher than the 0 → 1 and 0 → 2 values.
However, for positron energies 0.3 and 1.5 eV 0 → 1 values
are comparable to 0 → 0 values, whereas for 7.0 eV the 0 → 0
value is much higher. An interesting result is seen from the
figure that for positron energy 7.0 eV the 0 → 0 cross section
is higher than for 0.3 and 1.5 eV. This means that there are
minima in the rotational 0 → 0 cross section. However, the
total cross section for the vibrational 0 → 0 process is the sum
of the rotational cross sections and this total value as well as
the total cross section (which is the sum of the vibrational cross

FIG. 14. Present computed angle-integrated rotational 0 → 0
(elastic) cross sections for the vibrational elastic process in positron–
carbon monoxide molecule collision.
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FIG. 15. Present computed angle-integrated rotational state-to-
state 0 → 1 excitation cross section for vibrational elastic process in
positron–carbon monoxide molecule collision.

sections) shows no minimum. To find the effect of vibrational
motions we have compared the rotational elastic 0 → 0 and
inelastic 0 → 1 and 0 → 2 cross sections for vibrationally
elastic processes using the rovibrational coupling scheme with
the results calculated employing the rotational LFCC method
in Figs. 14–16. The figures show that the values and energy
dependence using both methods are almost the same with a
small difference in the case of rotational 0 → 1 cross sections
in the low-energy region. This implies that the vibrational
coupling effect has less influence on rotational cross sections in
the vibrational elastic channel. Thus we see that in the present
positron-CO collision process using close-coupling formalism
the higher rotational excited state has a pronounced effect in
determining the total collision cross section compared to the
vibrational effect when the molecule is in its ground vibrational

FIG. 16. Present computed angle-integrated rotational state-to-
state 0 → 2 excitation cross section for vibrational elastic process in
positron–carbon monoxide molecule collision.

FIG. 17. Present computed angle-integrated rotational state-to-
state elastic 0(j ) → 0(j ′), and excitation 0(j ) → 1(j ′) and 0(j ) →
2(j ′) cross sections for vibrational excitation 0(v) → 1(v′) excitation
process (in a2

0 ) for positron–carbon monoxide molecule collision.

state. In Fig. 17 we have plotted the rotational cross sections
for the vibrational 0 → 1 excitation process. It is seen that for
this vibrational excitation process the rotational 0 → 1 and
0 → 2 cross sections are higher than the rotational 0 → 0 cross
section, unlike the results for the vibrational 0 → 0 process
where the 0 → 0 cross sections are higher. Thus it is apparent
that the probability of rotational transition from the ground
rotational state (j = 0) for the vibrational ground state to the
rotational states corresponding to excited vibrational states
depends on the final vibrational state. In the present formalism
this final-state effect is included through the vibrational cou-
pling effect. All together we have found the importance of the
rotational and vibrational coupling effect in positron-CO colli-
sion processes. However, to make any final comments on these,
more theoretical and experimental works are necessary.

D. Vibrational and rotational energy transfer

Using Eq. (13) we have calculated the energy transfer using
rovibrational and rotational LFCC methods. In Fig. 18 we
have plotted those results (the rotational energy transfer is
multiplied by 50) along with the results using the BFVCC
method by Gianturco et al. The BFVCC results (multiplied
by 50) for a positron–nitrogen molecule collision are also
included in the figure for comparison. It is seen that the
variation of the energy transfer with incident positron energy is
the same calculated using different methods and for different
molecules. The higher value of vibrational energy transfer
using the rovibrational method is due to higher values of
vibrational 0 → 1 excitation cross section compared to the
BFVCC cross section, although the total cross section using
BFVCC is higher than the result using the present rovibrational
coupling scheme. The very low value of rotational energy
transfer compared to that of vibrational energy transfer implies
that the overall probability of transferring energy into the
molecular rotational degrees of freedom is less than the
molecular vibrational energy transfer. The higher value of
vibrational energy transfer for CO when compared with the
result of N2 corresponds to higher efficiency of vibrational
energy transfer for CO than N2 which corroborates the
observation that the CO molecule provides the environment for
cooling of a hot positron more efficiently than N2 as mentioned
by Tenfen et al. [22].
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FIG. 18. Comparison between present computed average energy
transfers as defined in Eq. (5) in the text using present rovibrational
and rotational LFCC methods and BFVCC methods for positron–
carbon monoxide molecule collision. The present rotational LFCC
results are multiplied by 50. The BFVCC results for a nitrogen
molecule by Gianturco and Mukherjee [10] (multiplied by 50) are
also plotted for comparison.

III. CONCLUSION

In this work we have presented the calculated results
for a positron–carbon monoxide collision using rovibrational
close-coupling, rotational laboratory frame close-coupling (ro-
tational LFCC), and LFCC adiabatic nuclei vibration (LFCC-
ANV) methods. We have reported the angle-integrated rota-
tionally elastic and state-to-state excitation, vibrational elastic
and state-to-state excitation (summed over rotational), and
total cross section (summed over vibrational and rotational)
using the rovibrational close-coupling method. The rotational
LFCC method is used to calculate the rotational and total cross
sections (summed over rotational states). Using the LFCC-
ANV method we have calculated the elastic and vibrational
excitation cross sections. All the calculations are done using
the positron correlation-polarization potential (PCOP) model
to incorporate the correlation-polarization potential and the
results are reported up to 7.0 eV. The results are compared with
the theoretical results using the body fixed vibrational close-
coupling (BFVCC) method performed by Gianturco et al.
[20], the method of continued fractions (MCF) of Arretche
et al. [21], and the multichannel MCF (MC-MCF) method of
Tenfen et al. [22]. The present results are also compared with
the measured values of Sullivan et al. [4], Kwan et al. [23],
Sueoka and Hamada [24], and Zecca et al. [25]. In the first
part of the discussions we have presented and compared some
state-to-state potentials. It is seen that the natures of these
potentials are different from those of homonuclear diatomic
molecule like H2 and N2. In the next part of the discussions we
have compared our computed total integrated cross sections
(ICS) with the other theoretical and measured values. We
have found some differences between the different theoretical
values. It is to be noted that all the calculated data presented
here are obtained using the same model PCOP correlation-
polarization potential. Although the potentials are calculated

using different electronic basis functions, the differences of
the cross sections seem to not be so sensitive with the basis
functions used. Thus the differences of the results may be
attributed to the use of different coupling schemes. It is seen
that the rotational coupling effect seems to be a very important
contributor in determining the cross sections for positron-CO
collision. To verify this we have also calculated the vibrational
elastic cross sections (VECS) using the LFCC-ANV method
and compared them with the results reported by Tenfen et al.
[22]. The results also show the importance of the rotational
coupling effect. The present results, when compared with
the experimental data, show that the nature of the variation
of the cross sections well agrees with the measured values.
So far as the magnitude of the cross section is concerned,
it is seen that the present rovibrational results match well
with the measured values of Kwan et al. and Sueoka and
Hamada. However, some differences have been observed with
the results of Zecca et al. in the middle-energy region. The
differences among all the theoretical results as well as the
experimental data show the need for more theoretical and
experimental works. We have also reported the vibrational
and rotational inelastic cross sections. The vibrational 0 → 1
cross sections match well with the existing theories and the
experimental results. However, the difference in the nature of
the variation of this cross section with energy near the threshold
also shows the effect of rotational dynamics in determination
of the cross sections. The magnitudes of the vibrational
0 → 2 and 0 → 3 cross sections using rovibrational close
coupling are found to be very small compared to 0 → 1
cross sections. These vibrational 0 → 2 and 0 → 3 cross
sections using the rovibrational close-coupling scheme match
well with the other theoretical calculations except the values
calculated using the rotational LFCC-ANV method. Here we
also have reported the computed rotational angle-integrated
cross sections both for elastic and excitation processes. The
plotted results show that the vibrational coupling effect has less
influence on rotational cross sections in the vibrational elastic
channel. However, the rotational cross sections corresponding
to vibrational excitation channels show different behavior
which represents the effect of vibrational coupling. Finally we
have presented the computed vibrational and rotational energy
transfer using rovibrational coupling and rotational LFCC
methods, respectively. The results are also compared with the
vibrational energy transfer for the N2 molecule. The higher
value of the present vibrational energy transfer compared to
the present rotational energy transfer and the result for N2 show
that a positron cools down more efficiently in a CO molecule
through transferring energy to vibrational excitation process.
Additionally, we want to mention the work done by Machacek
et al. [29] where they have presented the experimental
cross sections on positron–hydrogen molecule collision in
the large-energy region and compared their results with other
experimental and theoretical results. They have found some
differences among the theoretical and experimental results
and attributed to the differences partially due to the exclusion
of vibrational and rotational scattering from the calculations.
Thus the present calculation on positron–carbon monoxide
collision including rotational and vibrational motions of the
molecule supports their observation on the importance of the
inclusion of nuclear dynamics, at least for the lower-energy
region.
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