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Energy-resolved coherent diffraction from laser-driven electronic motion in atoms
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We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven
electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom
from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs
and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved
spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent
diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron
pulses, the rapid 2s−2p quantum beat motion of the target electron is imaged as a time-dependent asymmetric
oscillation of the diffraction pattern.
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I. INTRODUCTION

Coherent diffraction imaging is a technique that uses the
wave property of incident probe particles (such as electrons and
photons) to image microscopic target structures by diffraction
[1–4]. Due to their (sub)angstrom wavelengths, ultrafast
electrons and x rays have long been employed to determine
the structures of atoms, molecules, crystals, and proteins [5–7].
Recent technological advances have dramatically reduced the
duration and/or enhanced the brightness of the incident probe
pulses [8–11]. As a result, such observation of atomic motions
in reactions is enabling investigation of reaction dynamics
[12]. In particular, ultrafast electron techniques such as
electron diffraction, crystallography, and microscopy provide
effective table-top instruments to study reaction mechanisms
in various systems [13–17]. Gas-phase ultrafast electron
diffraction has been used to probe transient structures during
photoinduced chemical reactions [18], to study alignment,
deformation, and ionization of carbon disulfide in a strong
laser pulse [19], and to observe the oscillation and spread of
an excited molecular wave packet of iodine [20]. In crystalline
systems, particular reaction modes participating in molecular
motions involving charge transfers have been identified in
laser-induced phase transitions of molecular crystals [21,22].
Structural changes in phase transitions such as liquid to
crystal of TiO2 [23], semiconductor to metal of VO2 [24],
and amorphization of Ge2Sb2Te5 [25] have been reported.
Oscillating electromagnetic waveforms in metamaterial res-
onators have been measured by ultrafast electron microscopy
[26].

While these experiments on photoinduced reactions have
unveiled underlying mechanisms, the roles played by electrons
in these processes must still be inferred owing to current
inability to resolve the electronic motions. The electronic
motions initiate the atomic and molecular motions in these
reactions, and the interplay between the electronic and nuclear
degrees of freedom governs the ensuing reaction paths.
Observing electronic motions can thus better relate structures
to dynamics and, accordingly, provide a deeper understand-
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ing of the reaction dynamics. Nowadays, femtosecond (fs)
electron pulses with energies from tens of keV to MeV have
been produced [27–31]. Recently, Maxson et al. compressed
relativistic electron pulses to sub-10-fs bunch lengths [32].
Furthermore, various schemes to generate attosecond elec-
tron pulses have been proposed [33–38]. Simulations have
demonstrated the possibility of imaging electronic motions
in atoms and molecules by coherent diffraction imaging
[39–44].

Owing to these promising developments, we have proposed
the imaging of a laser-driven electronic motion in lithium
atoms by ultrafast electron diffraction under feasible exper-
imental conditions [45]. A chirped laser pulse adiabatically
transfers the valence electron of the lithium atom from its
2s ground state to its 2p excited state on a picosecond
(ps) time scale [46,47]. During this process, fs electron
pulses are scattered from the atoms, rendering time-dependent
diffraction images. Our previous results show the capability
of electron pulses to image such an electronic population
transfer. However, owing to the presence of the pump laser,
the energy content of the lithium atoms is constantly chang-
ing. Without energy-resolved measurements, this important
information is lost. By mapping the energy changes of the
electrons during a reaction, one obtains valuable insights
for understanding the reaction mechanisms. Energy-resolved
coherent diffraction imaging has been simulated both for
electron and x-ray pulses [43,48], but the wave functions of
the targets were assumed to be coherent superposition states
whose average energies are constant. In contrast, in this work
we study energy-resolved ultrafast electron diffraction from
laser-driven population transfer in lithium atoms (Fig. 1). We
investigate how the electronic motion and its energy con-
tent are reflected in the energy-resolved diffraction patterns.
Simulations are presented for two pulse durations, and the
diffraction patterns are interpreted in terms of the momentum
transfers.

This paper is organized as follows: In Sec. II we present a
general theory for modeling ultrafast electron diffraction from
a laser-driven system. The details of implementing the theory
in our simulations are given in Sec. III. We then present and
discuss our results, the energy-resolved diffraction images of
the population transfer, in Sec. IV. Finally, we summarize our
results and present our conclusions in Sec. V.

2469-9926/2017/96(4)/042706(14) 042706-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.042706


HUA-CHIEH SHAO AND ANTHONY F. STARACE PHYSICAL REVIEW A 96, 042706 (2017)

FIG. 1. Schematic setup for energy-resolved ultrafast electron
diffraction from a laser-driven electronic motion in lithium atoms. The
valence electrons of the lithium atoms are adiabatically transferred
from the 2s to 2p states by a chirped laser pulse. During the population
transfer, ultrafast electron pulses collide with the atoms. Then energies
of the scattered electrons are determined by the velocity analyzer,
and the detector records the angle-resolved spectrum of the scattered
electrons. Diffraction patterns as functions of scattering angles θ and
ϕ can be obtained by rotating the velocity analyzer. By varying the
pump-probe delay time, the time- and energy-resolved diffraction
images exhibit the spatial and energy details of the electronic motion.
For future reference, the scattering angles θ and ϕ and the coordinate
system are defined here.

II. THEORY

Conventional theories used to describe laser-assisted
electron-atom collisions [49–51] are inadequate for imaging
population transfer. First, the laser fields are frequently treated
as plane waves, whereas in population transfer the pump laser
pulses have finite durations, tailored pulse profiles, and/or
chirps. Second, the atoms are usually modeled as potentials,
thus lacking internal structures, or represented as a single
Floquet state (which is a steady state), whereas population
transfer involves transitions among several target states. For
these reasons, we develop here a scattering theory to properly
model the scattering from a laser-driven system. The theory
is presented in a general context in this section, and further
approximations specific to our system are discussed in the
next section. Atomic units (a.u.) are used throughout the paper
unless specified otherwise.

A. Scattering from a laser-driven system

Consider a scattering system in which a projectile electron
with momentum k0 collides with an atomic target A with
momentum k1:

e−(k0) + A∗(k1) → e−(ka) + A∗(kb), (1)

where ka and kb are, respectively, the momenta of the electron
and target after the collision. This scattering system is assumed
to be influenced by an external laser pulse that induces
a population transfer between the electronic states of the

target. During this pump process, the time-varying electronic
transitions are imaged by the scattered incident electron pulse.

The Hamiltonian for the scattering system and its interac-
tion with the laser field is

H (t) = H0 + H1 + V (t), (2)

where H0 and H1 are the respective Hamiltonians of the
projectile electron and target. The interaction potential V (t)
comprises two parts:

V (t) = Vα(t) + Vβ, (3)

where Vα(t) is the time-dependent interaction of the scattering
system with the laser pulse and Vβ is the interaction between
the electron and target. The dipole approximation is assumed
for Vα(t), so the magnetic component of the laser field and the
spatial dependence of the electric field are neglected. If the
length gauge is used, one has

Vα(t) = −d · E(t), (4)

where d is the dipole operator of the scattering system and
E(t) is the electric field amplitude of the laser field.

Let ψi be the eigenstate of H0 + H1 corresponding to
the initial condition of the pump process, and let ψf be the
eigenstate of an exit channel. We assume that these asymptotic
states exist for the interaction V (t) as t → ±∞, i.e., that the
duration of the laser pulse is finite and that Vβ is well behaved.
The transition amplitude from the initial state i to the final
state f can be calculated from the S matrix [52,53]:

Sf i = δf i − i

∫ ∞

−∞
dt(ψf (t),V (t) ψ

(+)
i (t)), (5)

where δf i is the Kronecker δ function, and ψ
(+)
i (t) is a solution

of the Schrödinger equation for the full Hamiltonian H (t),
with the outgoing-wave boundary condition denoted by the
superscript (+).

B. Time-dependent distorted-wave approximation

In ultrafast electron diffraction Vβ is expected to be treated
as a perturbation owing to the high collision energies [54].
Since V (t) involves two types of interactions, Vα(t) and Vβ , it
is useful to reformulate the scattering amplitude as a distorted-
wave approximation in which the “distortion” of the wave
function by Vα(t) is fully accounted for, while Vβ is treated
perturbatively to correct the distorted wave due to the collision.
In order to rewrite the S matrix, we introduce the exact solution
ψ

(−)
αf (t) of the following Schrödinger equation:

i
∂ψ

(−)
αf (t)

∂t
= [H0 + H1 + Vα(t)]ψ (−)

αf (t). (6)

The subscript α denotes that ψ (−)
αf (t) is a solution under the laser

interaction Vα(t), and the subscript f indicates that ψ
(−)
αf (t)

satisfies the asymptotic condition

ψ
(−)
αf (t) → ψf (t) as t → ∞. (7)

We define ψ
(−)
αf (t) as the solution of the integral equation

ψ
(−)
αf (t) = ψf (t) +

∫
dt ′ G(−)(t − t ′) Vα(t ′) ψ

(−)
αf (t ′), (8)
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where G(−)(t) is the advanced Green’s function of H0 + H1.
One has a similar equation for ψ

(+)
i (t):

ψ
(+)
i (t) = ψi(t) +

∫
dt ′ G(+)(t − t ′) V (t ′) ψ

(+)
i (t ′), (9)

where G(+)(t) is the retarded Green’s function. Substituting
ψf (t) from Eq. (8) and V (t) from Eq. (3) into Eq. (5) and
using G(−)†(t) = G(+)(−t) and ψ

(+)
i (t) − ψi(t) from Eq. (9),

one can rewrite the S matrix as

Sf i = δf i − i

∫
dt(ψ (−)

αf (t),Vα(t) ψi(t))

− i

∫
dt(ψ (−)

αf (t),Vβ ψ
(+)
i (t)). (10)

This expression is suitable for pump-probe processes since
the respective interactions Vα(t) and Vβ are separated, which
is useful for perturbative approximations. The second term on
the right-hand side describes the transition from the initial state
ψi to the final state ψf induced by the laser interaction Vα(t)
alone, i.e., this term depicts only the laser-driven population
transfer in the target and the dressing of the wave function of
the projectile electron. The last term describes the scattering
process in which the projectile-target interaction Vβ induces
the transition from the exact wave function ψ

(+)
i (t) to the

final state ψf . Since we are concerned with the time-resolved
diffraction of the scattered electrons, the transition amplitude
of interest is defined by the last term:

Tf i ≡
∫

dt(ψ (−)
αf (t),Vβ ψ

(+)
i (t)). (11)

In the first-order Born approximation, the effect of Vβ on
ψ

(+)
i (t) can be neglected, so ψ

(+)
i (t) can be approximated by

the wave function that takes only Vα(t) into account:

ψ
(+)
i (t) � ψ

(+)
αi (t), (12)

where ψ
(+)
αi (t) satisfies the initial condition

ψ
(+)
αi (t) → ψi(t) as t → −∞. (13)

Applying Eq. (12), the transition amplitude for the projectile
electron in the time-dependent distorted-wave approximation
is

Tf i �
∫

dt(ψ (−)
αf (t),Vβ ψ

(+)
αi (t)), (14)

which is an expression widely used in laser-assisted scattering
[49–51].

C. Entrance-channel wave function

After obtaining the transition amplitude (14) for the
scattering process, the next step is to obtain the entrance-
channel wave function ψ

(+)
αi (t) satisfying the initial condition

(13). Since the collision occurs in the presence of the laser
pulse, we assume that the electron pulse adiabatically enters
the interaction region in which the laser, electron, and atom
beams overlap. Therefore, the state for the incident electron is
represented by a Volkov wave (in the length gauge) [52]:

χ0(t) = (2π )−3/2 e
i{k0·[x0−α(t)]−E0t−

∫ t

−∞ dt ′ A2(t ′)
2m0c2 }

ei 1
c

A(t)·x0 , (15)

where x0 is the spatial coordinate of the projectile electron,
m0 is the electron mass, A(t) is the vector potential of the laser
pulse, c is the speed of light, E0 = k2

0/2m0, and α(t) is the
classical displacement vector of the electron in the laser field:

α(t) = 1

m0c

∫ t

−∞
dt ′ A(t ′). (16)

Note that k0 is the canonical momentum of the projectile
electron in the laser field. However, since we have assumed
that the electron adiabatically transforms from a field-free
state to the Volkov wave and employed the dipole approx-
imation, the canonical momentum is equal to the kinetic mo-
mentum of the incident electron before entering the interaction
region [55].

The atomic state is comprised of its external center-of-mass
motion, described by χ1(t), and its internal (electronic) state,
described by ψ1(t). We consider a neutral target, so its external
motion is described by a plane wave

χ1(t) = (2π )−3/2 ei(k1·x1−E1t), (17)

where x1 is the coordinate of the center of mass of the target,
and E1 = k2

1/2m1 is the kinetic energy of the target. The
electronic wave function ψ1(t) is expanded in terms of the
electronic eigenstates φn of H1:

ψ1(t) =
∑

n

Cn(t) φn e−iωnt , (18)

where n denotes a collection of quantum numbers character-
izing each eigenstate, and Cn(t) and ωn are the amplitude and
eigenvalue of φn, respectively. Note that Cn(t) depends on time
because of the presence of the pump laser, and its magnitude
reflects the time-dependent population of φn.

In order to properly describe the time-resolved scattering,
the projectile electron and target have to be localized in space
and time in order that the moment of collision can be well
defined. This localization can be attained by describing the
incident electron and the target wave functions as wave-packet
integrals that superpose the entrance states [Eqs. (15) and (17)]
of the incident electron and target [42,43,53,56]. Hence, the
wave packet corresponding to the initial condition is

ψ
(+)
αi (t) =

∫
dk0 dk1 a0(k0) a1(k1) e−ik1·b χ0 χ1 ψ1, (19)

where a0(k0) and a1(k1) are the respective momentum am-
plitudes of the projectile electron and target, and b is the
position vector of the target. Rather than assuming a head-on
collision, we treat the collision more generally by assuming
the target is localized at position b; later, an average over the
positions of targets in an ensemble will be implemented. Note
that the magnitude |b⊥| of the transverse components of the
position vector is the impact parameter of the collision; also,
the longitudinal component b‖ affects the time of collision.

D. Exit-channel wave function

The exit-channel wave function ψ
(−)
αf depends on the way

the scattering system interacts with Vα(t) after the collision
takes place. We assume the duration of the laser pulse is
much longer than that of the electron pulse; thus, the collision
process has finished before the completion of the population
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transfer. Therefore, the effect of the laser interaction on the
exit-channel wave function should be taken into account. It is
assumed that the scattered electron exits the reaction region
adiabatically, so the final kinetic momentum ka equals the
canonical momentum after the collision. The state of the
scattered electron is described by a Volkov wave

χa(t) = (2π )−3/2 e
i{ka ·[x0−α(t)]−Eat+

∫ ∞
t

dt ′ A2(t ′ )
2m0c2 }

ei 1
c

A(t)·x0 , (20)

and the final state of the target is described by a plane wave

χb(t) = (2π )−3/2 ei(kb ·x1−Ebt). (21)

Here, Ea = k2
a/2m0 and Eb = k2

b/2m1 are the kinetic energies
of the scattered electron and target, respectively.

For the target electronic state, aside from the assumption
that the duration of the electron pulse is shorter than that
of the laser pulse, we further assume the laser pulse is long
enough that its envelope and frequency change little during
the collision, while the short laser period (≈2.1 fs) compared
to its duration (≈2 ps) allows the laser pulse to be treated as
a plane wave during the collision. Thus, the target electronic
state ψb(t) can be approximated by a Floquet state

ψb(t) � e−iηf t
∑
mj

a
f

mj φm e−ijωinst , (22)

where ηf is the quasienergy, af

mj are the expansion coefficients
of the Floquet state f , and ωins is the instantaneous frequency
of the (chirped) laser pulse at the moment of collision. The
summations include all field-free bound eigenstates φm and the
Floquet-Fourier components j . Note that a

f

mj and ηf depend
on the laser parameters (such as the instantaneous amplitude,
frequency, and phase), so ψb(t) is different at each pump-probe
delay time.

Finally, the exit-channel wave function is approximated by
the product of the exit states of the reaction products:

ψ
(−)
αf (t) � χa χb ψb. (23)

E. Transition amplitudes

After obtaining the entrance- and exit-channel wave func-
tions, the transition amplitude Tf i can be evaluated by
substituting Eqs. (19) and (23) into Eq. (14) to yield

Tf i �
∫

dt

∫
dk0 dk1 a0(k0) a1(k1) e−ik1·b

×(χa χb ψb,Vβ χ0 χ1 ψ1). (24)

In the following, we further simplify and analyze Eq. (24). In
order to perform the temporal integral, the Fourier transform
of Cn(t) [see Eq. (18)] is introduced:

Cn(t) = 1√
2π

∫ ∞

−∞
dν e−iνt Cn(ν). (25)

For time-resolved scattering, Tf i depends on the collision
time. The relative delay between the pump laser and the probe
electron can be modeled by displacing ψ1(t) in time, so the
onset of the laser pulse at the origin precedes the electron pulse
by a time td . The temporal displacement of the target at b is
denoted by t1. Moreover, due to the quasimonochromaticity
of the laser pulse, the displacement vector for the projectile

electron [see Eq. (16)] is approximated by the one for a plane
wave:

α(t) � αins cos (ωinst), (26)

where αins is the instantaneous amplitude of the displacement
vector at the moment of collision. The carrier-envelope phase
is irrelevant, as its effect is small for a many-cycle pulse. Thus,
it is excluded from Eq. (26). Substituting Eqs. (25) and (26)
into Eq. (24), the time-dependent factors in the integrand for
Tf i are
∫

dt ei(εf −εi )t e−is·α(t) . . . �
∞∑

μ=−∞
(−i)μJμ(s · αins) (2π )

× δ(εf − εi − μωins) . . . , (27)

where εf ≡ Ea + Eb + ηf + jωins, εi ≡ E0 + E1 + ωn + ν,

s ≡ k0 − ka is the momentum transfer, Jμ is the μth-order
Bessel function, and the ellipses on either side of Eq. (27)
denote the time-independent factors. Instead of a single δ

function for the conservation of energy in the case of a
time-independent Hamiltonian, the temporal integral yields
a series of energy δ functions representing the absorption or
emission of photons with frequency ωins by the laser-driven
scattering system during the collision.

Since in the dipole approximation the total canonical
momentum is conserved during the collision, a corresponding
δ function can be factored from Tf i . Therefore, one obtains

Tf i � (2π )1/2
∫

dk0 dk1 a0(k0) a1(k1) e−ik1·b

× δ(Pf − Pi)
∑
mj

a
f ∗
mj

∑
n

∫
dν Cn(ν) e−i(ωn+ν)t1

× Tmn

∑
μ

(−i)μJμ(αins · s) δ(εf − εi − μωins), (28)

where Pi ≡ k0 + k1 and Pf ≡ ka + kb are the respective
initial and final linear momenta of the scattering system, and

Tmn ≡ 1

(2π )3

∫
d y eis· y (φm,Vβ φn) (29)

is the usual Born approximation transition amplitude from
the eigenstate n to m in the center-of-mass frame. The inner
product in Eq. (29) involves an integration over all target
electron coordinates. As shown in Eq. (28), the time-resolved
transition amplitude Tf i from the nonstationary state ψ1(t)
to the final state ψb(t) is a coherent superposition of Tmn

amplitudes weighted by the corresponding amplitudes of
the projectile electron and target (a0, a1, and Cn). These
multiple momentum and energy components superposed in
the coherent wave packet produce interferences between
various transitions Tmn, thereby resulting in a delay-dependent
scattering amplitude (28).

F. Scattering probability and ensemble average

The scattering probabilities for the projectile electrons are
calculated from the transition amplitudes in Eq. (28):

P =
∑
f

∫
dkb dka |Tf i |2, (30)
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where the ranges of the integrations over the final momenta ka

and kb and the number of final states f in the summation
are set by experimental observables. We assume energy-
and angle-resolved measurements for the scattered electrons,
so unresolved channels have to be summed in order to
calculate the diffraction patterns. Hence, we define the doubly
differential probability, namely, the probability density for an
electron scattered into a differential solid angle per unit energy
interval, as

d2P

dEad k̂a

≡
∑
f

∫
dkb m0|ka| |Tf i |2. (31)

It represents the diffraction pattern observed in an experiment
having the necessary resolution.

Since the positions of the projectile electrons and targets are
not controlled to atomic precision in gas-phase scattering, the
differential probability needs to be averaged over the positions
b of targets in an ensemble [57]〈

d2P

dEad k̂a

〉
≡

∫
db ρ(b)

d2P

dEad k̂a

, (32)

where ρ(b) is the density distribution of the target ensemble.
We assume the targets are uniformly distributed in the
transverse direction (with respect to the propagation axis of
the incident electrons) and that the transverse size of the
ensemble is much larger than the transverse dimension of the
electron pulse. On the other hand, the targets are assumed
to be well confined along the longitudinal direction in order
to reduce the effect of the mismatch in the group velocities
of the laser and electron pulses. This confinement of the
targets, in principle, can be achieved by a narrow focus of
the laser pulses so that only targets within the focus undergo
population transfer. Hence, assuming the pump-probe delay
for each target is independent of its transverse position b⊥
in the ensemble, integration over b⊥ yields an additional δ

function in the ensemble-averaged differential probability∫
db ρ(b) ei(k′

1−k1)·b . . . = (2π )2ρ⊥ δ(k′
1⊥ − k1⊥)

×
∫

db‖ ρ‖(b‖) ei(k′
1‖−k1‖)b‖ . . . ,

(33)

where k1 and k′
1 are two momentum components in the target

wave packet, ρ⊥ is the transverse area density of the targets,
the subscripts ⊥ and ‖, respectively, denote the transverse
and longitudinal components, and the ellipses denote the b⊥-
independent factors in P . Here, we have assumed that the
target density can be factorized into perpendicular and parallel
parts, namely, ρ(b) = ρ⊥×ρ‖(b‖). The δ function in Eq. (33)
implies that the transverse position of the target relative to the
incident electron for each individual collision has no effect on
the ensemble-averaged scattering probability.

In order to integrate over b‖, further assumptions about
the dependence of P on b‖ must be made. Given a delay td
between the laser and electron pulses at the origin, the collision
time for a target depends on its parallel position b‖ because
of the velocity mismatch. Supposing that the group velocity of
the laser pulse is the speed of light, the onset of the population

transfer of the target at b‖ is delayed by b‖/c compared with
the target at the origin (b = 0), so the time displacement t1 of
ψ1(t) may be approximated as

t1(b‖) � td − b‖
c

. (34)

Furthermore, we assume the longitudinal distribution ρ‖
is a Gaussian distribution with a width σb [i.e., ρ‖(b‖) =
e−b2

‖/2σ 2
b /

√
2πσb]. Thus, the integral on the right-hand side

of Eq. (33) yields∫
db‖ ρ‖(b‖) ei(k′

1‖−k1‖)b‖ e−i(ωn+ν)t1 ei(ωn′ +ν ′)t1 . . .

� ei(ωn′−ωn+ν ′−ν)td e− 1
2 σ 2

b (k′
1‖−k1‖− ω

n′n+�ν

c
)2

. . . , (35)

where {ωn,ν} and {ωn′ ,ν ′} are two sets of frequency compo-
nents of the target electronic state [see Eqs. (18) and (25)],
ωn′n ≡ ωn′ − ωn, �ν ≡ ν ′ − ν, and the ellipses denote the
factors in P that are independent of b‖. Since, as afore-
mentioned, the time dependence of the scattering probability
results from the interference of scattering amplitudes [see the
first exponential factor on the right-hand side of Eq. (35)], the
longitudinal size σb of the ensemble effectively constrains the
interference among the momentum and energy components
[see the second exponential factor on the right-hand side of
Eq. (35)], and, therefore, the temporal resolution.

Finally, the ensemble-averaged differential probability can
be simplified using the energy and momentum δ functions.
Since similar procedures have been detailed in Refs. [42,43],
we only summarize the result below:〈

d2P

dEad k̂a

〉
� ρ⊥ (2π )3 m0|ka|

∑
m′j ′

a
f

m′j ′
∑
n′

×
∫

dν ′ C∗
n′(ν ′) ei(ωn′ +ν ′)td

∑
mj

a
f ∗
mj

∑
n

×
∫

dν Cn(ν) e−i(ωn+ν)td
∑
μ′μ

∫
dk0⊥ dk1

× a0(|ka| + �k,k0⊥) a∗
0 (|ka| + �k + �κ,k0⊥)

× a1(k1) a∗
1 (k1‖ − �κ,k1⊥ ) e

− 1
2 σ 2

b

(
�κ− ω

n′n+�ν

c

)2

× 1

|k0‖/m0 − (k0‖ + k1‖ − ka‖)/m1|

× 1

|(k0‖ + �κ)/m0 − (k1‖ − �κ)/m1|
× iμ

′
Jμ′(αins · s′) (−i)μJμ(αins · s) T ∗

m′n′ Tmn.

(36)

One sees that the amplitudes a0, a1, Cn, and Tmn appear in
pairs upon calculating the absolute square of Tf i . Moreover,
the amplitudes a0 and a1 are shifted by �κ with respect to
their counterparts a∗

0 and a∗
1 because, as energy is exchanged

between the projectile electron and target (e.g., ωn′n �= 0), the
conservation laws couple the components in the wave packet
that interfere. The overall shift �k of a0 with respect to |ka|
is due to the conservation of energy between the reactants and
the products. Note that these shifts depend on the initial and
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final states (n, n′, m, and m′) as well as the number of photons
exchanged (i.e., j, j ′, μ, and μ′) during the collision. The
fractions are the flux factors, taking into account the collision
rate for each combination of momentum components. For a
high-energy electron wave packet having a narrow momentum
spread, they are insensitive to the momentum distributions in
the wave packets.

III. APPLICATION AND NUMERICAL PROCEDURES
FOR LITHIUM ATOMS

In this section we apply the general theory to the special
case in which the valence electrons of the lithium atoms are
transferred from the 2s to the 2p state by means of a frequency-
swept laser pulse. Details of our simulations are also discussed.

A. Eigenstates of the lithium atom

The eigenstates of the lithium atom are obtained by solving
the Schrödinger equation with the Herman-Skillman potential
[58]. This potential is obtained by solving the Hartree-Fock
equation for the lithium atom under the following approx-
imations. First, the central field approximation is used for
the electrons, so the orbital wave function oplml

for the j th
electron, 1 � j � 3, is factorized into radial and angular parts:

oplml
(rj ) = Rpl(|rj |) Ylml

(r̂j ), (37)

where p, l, and ml , respectively, are the principal, orbital
angular momentum, and magnetic quantum numbers, rj is
the spatial coordinate of the j th electron, and Ylml

is a
spherical harmonic. Second, the electron-electron potential is
approximated by the Hartree-Fock-Slater (HFS) potential in
which the exchange part of the potential is replaced by the
one for a free-electron gas; also, the HFS potential is joined
to the correct Coulombic asymptotic potential at large radii.
Third, relativistic effects are neglected. The eigenstate φn of
the lithium atom is then approximated by a Slater determinant
that is antisymmetric under particle exchange.

Although the above approximations greatly simplify our
calculations, the Herman-Skillman potential is unable to pro-
vide atomic structures with spectroscopic accuracy. Nonethe-
less, this potential serves our purposes well for the following
reasons. First, gas-phase ultrafast electron diffraction has not
as yet reached spectroscopic resolutions. Second, at present we
are concerned with determining whether qualitative features
of target electronic motions are reflected in the time- and
energy-resolved diffraction patterns; these qualitative general
features are unlikely to be significantly altered in simulations
having higher accuracy. Third, the HFS potential is known to
provide satisfactory results for such light atoms as lithium in
which many-electron and spin-orbit effects are small.

B. Population transfer in the lithium atom

After obtaining the lithium eigenstates, we proceed to
simulate the process of laser-driven population transfer by
solving the time-dependent Schrödinger equation. The electric
field of the laser pulse is assumed to have a Gaussian profile:

E(t) = F0 e
− (t−tc )2

2σ2 cos
[
ω0(t − tc) + 1

2β(t − tc)2
]
, (38)

where F0 is the peak amplitude, tc is the peak position in
time, σ is the Gaussian width, ω0 is the carrier frequency,
and β denotes the chirp of the laser pulse. The instantaneous
frequency ωins at a time t is given by the time derivative of the
phase of the field at that time:

ωins = ω0 + β(t − tc). (39)

The pump laser pulse is assumed to be linearly polarized
along the z axis (see Fig. 1). In our simulations, F0 =
2.35×10−5 a.u., the full width at half maximum (FWHM)
duration is 2.0 ps (σ = 0.85 ps), β = 1.5×10−3 eV/ps, and
the carrier frequency is set to be the 2s−2p resonant frequency
(ω0 = 1.946 eV).

We consider the single active electron approximation for
the valence electron since for a weak pulse the population
transfer is largely a single electron process. The wave function
ψ1(t) is expanded in the eigenstates of the lithium atom
[see Eq. (18)], so the Schrödinger equation is reduced to
a system of linear differential equations for the expansion
coefficients Cn(t). These coefficients are then propagated in
time using the fourth-order Runge-Kutta method. The initial
state is the ground state of the lithium atom. The time scale
of the population transfer in our simulations takes a few
picoseconds, which is shorter than the lifetime of the 2p state
(≈27.1 ns [59]), so spontaneous emission from the 2p state
is not modeled in the simulations. Furthermore, since three
photons are required to ionize the lithium atoms, for our weak
laser pulses multiphoton ionization can be neglected.

C. Incident electron pulses

We consider the momentum amplitude a0(k0) of the inci-
dent electron to have a Gaussian distribution. The longitudinal
and transverse widths of the profile |a0(k0)|2 are set by the
pulse duration and angular divergence, respectively. Moreover,
we assume a0(k0) is transform limited (i.e., chirpless). In
our simulations, the incident electrons move in the positive
x direction with a central kinetic energy 10.000 keV in the
laboratory frame, and their angular divergence is ±10−4 rad.
The corresponding central momentum is | p0| = 27.111 a.u. In
our simulations, two pulse durations are used: 1 fs and 100 fs
(FWHM).

Regarding our assumption that the incident electron pulse is
chirpless, we note that transform-limited pulses are uncommon
in practice, for several reasons. Specifically, the vacuum is
dispersive for electrons. Also, an additional chirp may be
introduced by space charge effects or by the mechanism for
generating ultrashort electron pulses (e.g., see Ref. [60]). This
is why most techniques for producing ultrashort electron pulses
include methods for compensating such effects such that in
the interaction region at the instant of collision the pulses
are as close to chirpless as possible, i.e., as short as possible
(see Refs. [8,33,34]). For this reason, we employ transform-
limited pulses in our simulations. Moreover, we have found
that, as long as the pulse duration is shorter than the time scale
of the target electronic motion, a mild linear chirp only reduces
the contrast (or visibility) of the temporal oscillation observed
in the diffraction patterns.
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D. Scattering probabilities

Although the ensemble-averaged differential probabilities
can be calculated using Eq. (36), the parameters of our
simulations allow for further simplifications of that equation.
First, the absorption and emission of photons by the projectile
electron are neglected. We have seen in Eq. (28) that the ampli-
tude for absorption or emission of μ photons is proportional to
Jμ(αins · s). For a weak field (F0 ≈ 10−5 a.u.), the amplitude
of the displacement vector αins is small (�0.005 a.u. in our
case). In addition, owing to the high energy of the incident
electrons (E0 = 10.000 keV), they are primarily scattered in
the forward direction, so that the magnitudes of the momentum
transfers are small. Consequently, the argument of the Bessel
function is much less than unity, so Jμ(αins · s) ≈ 0 if μ �= 0.
Hence, the probabilities for photon emission or absorption can
be neglected for the projectile electrons and thus we have also
approximated J0(αins · s) ≈ 1 in the simulations.

Second, we assume the lithium atoms are well localized
in space, so their momentum amplitudes a1(k1) have a broad
width such that a1(k1) is insensitive to the variation of �κ in
the wave-packet integral:

a1(k1‖ − �κ,k1⊥) � a1(k1‖,k1⊥). (40)

Furthermore, we assume that the quantities depending on the
target momentum k1 in Eq. (36) (e.g., Tmn) are insensitive to the
variation of k1 within the width of the momentum distribution.
Therefore, these quantities can be evaluated approximately at
the central momentum p1 of the targets. Under the above
assumptions, the k1 integral can be performed analytically,
rendering an expression independent of the details of the target
wave packet except for its localization in space.

Third, although the target states ψb(t) of the exit channel
should be the Floquet states [see Eq. (22)], the calculation can
be simplified by considering the effects of the dressing of the
lithium atom states by the pump laser. We found that, owing to
the weak laser intensity and the small detuning, the dressing is
effectively limited to the 2s and 2p states. Therefore, the 2s and
2p states can be considered as an isolated two-state system,
and the final state ψb(t) can be approximated by considering
only the dressing of the two-state system and assuming no
dressing for the other excited states of the lithium atom.

Fourth, we found that during the entire population transfer
process the populations in excited states other than 2p are
negligible. Hence, in calculating the scattering probabilities,
ψ1(t) includes only the φ2s and φ2p states. We further
assume that the target density is 1010 cm−3 [61] and that
the longitudinal size of the ensemble has a small thickness
of 50 μm; hence, the velocity mismatch effects are minimal.
Moreover, techniques have been used to further reduce velocity
mismatch effects [20,62], so we set σb ≈ 0. We consider the
lithium atoms to have the thermal energy of room temperature,
which is much smaller than the energy of the incident electron,
so we set p1 = 0.

Finally, since the mass of the projectile electron is much
smaller than that of the target (m0 
 m1), the projectile-target
interaction is approximated by

Vβ � − 3

| y| +
3∑

j=1

1

| y − rj | , (41)

where y ≡ x0 − x1 is the relative distance between the
projectile electron and the target. Then, the expression for
Tmn can be calculated by substituting Eq. (41) into Eq. (29):

Tmn � 1

(2π )2

2

s2

⎡
⎣−3 δmn +

3∑
j=1

∫
d{rj } eis·rj φ∗

m φn

⎤
⎦. (42)

Since the orbital wave function is factorized into its radial
and angular parts [see Eq. (37)], the integration over electron
coordinates {rj } can accordingly be calculated separately.
The angular expression can be found in [42] and the radial
part is done numerically. Moreover, the exchange effect is
unimportant, as the exchange integral is negligible [6].

IV. RESULTS AND DISCUSSION

A. Population transfer in lithium atoms

The results of the population transfers in the lithium atoms
are shown in Fig. 2. The 2s and 2p populations as a function
of time are presented in Fig. 2(a), and the corresponding
amplitudes Cn in the time and frequency domains are shown
in Figs. 2(b) and 2(c), respectively. The spectra in Fig. 2(c) are
presented in atomic units of energy. For the laser parameters
used here (see Sec. III B), the 2s and 2p populations change
monotonically, and the process lasts about 3 ps. Essentially
100% of the population is moved from the 2s to the 2p state,
and no appreciable population is observed in other excited
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FIG. 2. (a) Populations of the 2s and 2p states of lithium atoms
undergoing laser-driven population transfer as a function of time.
The shaded area indicates the envelope of the electric field E(t) that
drives the population transfer as a function of time. The laser pulse is
centered at tc = 3.6 ps with a Gaussian shape. (b), (c) Amplitudes Cn

of the 2s and 2p states in the (b) time and (c) frequency domains. See
Eqs. (18) and (25) for the definitions of Cn(t) and Cn(ν), respectively.
The real and imaginary parts of the 2s and 2p amplitudes are presented
separately, as denoted by the legends in (b).
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FIG. 3. Ensemble-averaged doubly differential probabilities
(EADDPs), 〈d2P/dEad k̂a〉, for 100-fs electron pulses (FWHM)
scattered from laser-driven lithium atoms at four time delays: td =
1.0, 3.0, 4.0, and 6.0 ps. The electronic population is driven from
the 2s to 2p states by a chirped laser pulse (see Fig. 1). Each of
the kinetic energies of the scattered electrons along the abscissa are
plotted versus the scattering angle θ along the ordinate. The azimuthal
scattering angle is ϕ = 0◦. The energies of the incident electrons are
centered at 10.000 keV.

states during the pump process. The oscillations of Cn(ν) are
mainly due to the shift of the center of the laser pulse in the time
domain to tc = 3.6 ps, which yields a phase eiνtc that oscillates
in frequency with a period of 2π/tc = 0.42×10−4 a.u. The
widths of Cn(ν) are set by the time scale of the population
transfer. The envelopes of spectra are slightly shifted toward
negative frequency, which results from the dynamic Stark
effect (i.e., the dressing of the lithium eigenstates).

B. Time-, angle-, and energy-resolved ultrafast electron
diffraction of 100-fs electron pulses

We first present the time- and angle-resolved spectra for
100-fs electron pulses, whose duration is short enough to map
the population transfer in lithium atoms. Figure 3 shows the
ensemble-averaged doubly differential probability (EADDP)
at four time delays: td = 1.0, 3.0, 4.0, and 6.0 ps. The abscissa
and ordinate, respectively, represent the energies Ea and angles
θ of the scattered electrons, and the azimuthal scattering angle
is set to be ϕ = 0◦ (see Fig. 1). Owing to the narrow bandwidth
of the probe pulse (≈0.018 eV), which enables state-resolved
measurements, the spectra exhibit peaks corresponding to
transitions from the target state ψ1(t) to lithium eigenstates.
The height of a peak in the θ direction indicates the extent of
the angular distribution (or the magnitude of the momentum
transfer) of the scattered electrons for that particular transition,

0.0

2.0

4.0

6.0

8.0

9.996 9.998 10.000 10.002

(a) θ = 0.3°
× 10-3

2p → 3d
2p → 3s

2p → 2s

2s → 2p

2s → 2s
2p → 2p

0.0

0.8

1.6

2.4

3.2

9.996 9.998 10.000 10.002

E
ns

em
bl

e-
A

ve
ra

ge
d 

D
ou

bl
y 

D
iff

er
en

tia
l P

ro
ba

bi
lit

y 
(a

.u
.)

Energy (keV)

(b) θ = 1.5°× 10-5

× 1/5

6.0 ps

4.0 ps

3.0 ps

1.0 ps

FIG. 4. Line-out profiles of the EADDPs from Fig. 3 at (a) θ =
0.3◦ and (b) θ = 1.5◦ at four time delays: td = 1.0, 3.0, 4.0, and 6.0
ps. In order to avoid overlapping the peaks, the 3.0-, 4.0-, and 6.0-ps
profiles are shifted upward, respectively, by 2.86×10−3, 4.29×10−3,
and 7.14×10−3 a.u. for θ = 0.3◦ and by 1.14×10−5, 1.71×10−5, and
2.86×10−5 a.u. for θ = 1.5◦. The magnitude of the 10-keV peak at
θ = 1.5◦ is reduced by a factor of 5 in (b). Transitions are assigned
to dominant peaks of the spectrum in (a).

whose scattering intensities at each value of θ are color coded
on a logarithmic scale. As the energies of the incident electrons
are centered at 10.000 keV, the excitation (Ea < 10 keV)
and deexcitation (Ea > 10 keV) transitions are divided by
the 10-keV peak. The 10-keV peak has the broadest angular
extent owing to elastic scattering from the core electrons and
the nucleus.

One observes that the angle-resolved spectrum as a function
of time delay td reflects the change of the energy content and
population in the lithium atoms. The number of peaks increases
as the delay increases, while some peaks appearing at td =
1.0 ps wane. In particular, the emergence of the deexcitation
peak close to 10.002 keV with increasing delay indicates
the increase of electron excitation as a result of the pump
process. Because of the predominant 2s and 2p populations
at td = 1.0 and 6.0 ps, respectively, the corresponding spectra
essentially represent scattering exclusively from the 2s and
2p states respectively [see Fig. 2(a)]. At td = 1.0 ps, there
are fewer peaks because higher energy is needed to excite the
more deeply bound 2s state than the 2p state. At td = 6.0
ps, one can see a series of Rydberg transitions converging to
the 2p ionization threshold at 3.548 eV; also, their angular
extensions decrease as the transition approaches the threshold
(see the discussion of Fig. 4 below). Excitation peaks above
the 2p ionization threshold are embedded in the continuous
2p-ionization channels. However, our simulations exclude
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these impact ionization channels since they can in principle
be distinguished by means of two-electron coincidence mea-
surements. Although the number of peaks varies with delay,
the θ angular distribution of each transition is invariant. The
nodes seen in some inelastic transitions remain at the same
position, whereas the variations of the intensities of the peaks
continuously follow the change of the population. The en-
semble behaves like a mixed state comprising two different
species, and the temporal behavior of the spectrum reveals the
conversion of the populations in the two species by the chirped
laser pulse.

For quantitative comparisons of the spectra, line-out pro-
files of Fig. 3 at small (θ = 0.3◦) and large (θ = 1.5◦)
scattering angles are presented in Fig. 4 on a linear scale.
The profiles corresponding to different delays are labeled in
Fig. 4(b). The assignment of transitions for the dominant peaks
are shown in Fig. 4(a). Owing to the strength of the elastic
scattering transition, the 10-keV peaks at θ = 1.5◦ are reduced
by a factor of 5, as indicated in Fig. 4(b). As can be seen in
Fig. 4, the dominant inelastic transitions are dipole allowed,
such as s-p and p-d transitions. However, comparison of the
spectra at the same delay with different θ in Figs. 4(a) and 4(b)
shows that the relative contributions of the inelastic channels
varies with the scattering angle θ . More inelastic transitions
can be seen in the spectra at the small angle, θ = 0.3◦, while
only the 2s → 2p and 2p → 2s transitions are significant at
the large scattering angle, θ = 1.5◦. In addition, the 2p → 3s

transition is weaker than the 2p → 3d one at θ = 0.3◦, yet
at θ = 1.5◦ their relative strength is reversed (although the
overall magnitudes of both peaks decreases). This can be
understood by analyzing the transition amplitude Tmn [see
Eq. (42)]. For small momentum transfer s, the exponential
function in Eq. (42) can be expanded as a power series in the
momentum transfer:

eis·rj = 1 + is · rj − 1

2!
(s · rj )2 + · · · . (43)

After integrating over electronic coordinates {rj }, each term
in this expansion is associated with a different multipole order
transition in the scattering amplitude. The first term, together
with the scattering amplitude from the nucleus [the first term in
the square brackets of Eq. (42)], is the monopole contribution
to the scattering amplitude. The monopole term exists only
if φm = φn. However, for a neutral target the two monopole
amplitudes from the nucleus and the electrons cancel each
other, so the 10-keV peak is smaller than the inelastic peaks at
θ = 0.3◦. The next leading transition is the dipole term, which
exists only if the final state φm has the opposite parity to that
of the initial state φn. Therefore, the dominant transitions in
the forward direction are the dipole-allowed transitions [6].

To further understand the θ dependence of the relative
strength for each channel, we note that in the Born approxima-
tion the scattering can be considered as a momentum-transfer
process in which the initial state φn receives a momentum
transfer s from the projectile electron. Its wave function in
momentum space is thus displaced by the amount s. The
transition amplitude Tmn is then proportional to the overlap
between the wave functions of the displaced initial state φn and
the final states φm [43]. Owing to the heaviness of the nucleus,
the momentum transfer to the nucleus can be neglected in the

internal coordinate frame. From this viewpoint, the angular
distribution of the scattering probabilities indicates the relative
momentum distributions of the initial and final states and
how the momentum is transferred between the states. Since
the deeper bound states 2s and 2p have broader momentum
distributions and fewer nodes than most other excited states,
as momentum is transferred from or to the 2s electron, the
overlap between the two wave functions can still be substantial
for large momentum transfers. The strongest inelastic peak is
the 2s−2p transition. Likewise, the reversal of the relative
scattering intensities of the 2p → 3d and 2p → 3s channels
at θ = 0.3◦ and 1.5◦ can be attributed to the differences in their
nodal structures and to the momentum distributions of the 3s

and 3d final states. The 3d orbital has no nodes, while the 3s

orbital has two. Thus, less cancellation occurs in the transition
amplitude for the 3d channel at small θ . The wider momentum
distribution of the 3s orbital than that of the 3d orbital allows
more overlap of the 2p and 3s momentum wave functions at
larger θ .

Comparison of the spectra at different time delays with the
same θ shows three types of temporal behaviors. The elastic
scattering monotonically increases with delay, which shows
that the 2p state has larger scattering probability than that of
2s state at both angles. Moreover, depending on the initial
states, the inelastic peaks behave differently. Those peaks
corresponding to a 2p initial state (e.g., 2p → 2s) grow with
the delay, and those corresponding to a 2s initial state (e.g.,
2s → 2p) decrease. This thus reflects the changes in the 2s

and 2p populations.

C. Energy-resolved ultrafast electron diffraction
images for 100-fs electron pulses

Provided one has adequate energy resolution and nonover-
lapping transitions, one can isolate a few or even a particular
transition from various scattering channels through energy-
resolved measurements, thereby obtaining state-resolved
diffraction images. One thus avoids possible loss of informa-
tion on the target electronic motion resulting from averaging
over transitions to final states having different energies. We
present in Fig. 5 the diffraction images as a function of
pump-probe time delay for three transitions that are well
separated from others: the 2s, elastic, and 3s channels. The
modified diffraction image is defined by

dM

d k̂a

≡ s4
∫

dEa

〈
d2P

dEad k̂a

〉
. (44)

Since the transition amplitude is strongly enhanced in the
forward direction owing to the factor 1/s2 [see Eq. (42)], we
multiply the diffraction image by a factor s4 ≡ (ka − p0)4 in
Eq. (44) to suppress this effect. Thus, the resulting distributions
of the diffraction images at large θ can be better seen. (Recall
that in elastic scattering 1/s4 is the angular distribution of
the Rutherford differential cross section.) The energy ranges
used in Eq. (44) to calculate the modified diffraction images
of the 2s, elastic, and 3s channels are 10.0019–10.0020 keV,
9.99995–10.00005 keV, and 9.99843–9.99857 keV, respec-
tively. Note that our results for the “elastic” channel include
transitions to the various ml levels of the degenerate 2p

state. As shown in Fig. 5, the diffraction images are sensitive
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FIG. 5. Modified diffraction images of the 2s, 3s, and “elastic”
channels for 100-fs electron pulses scattered from laser-driven lithium
atoms at four time delays: td = 1.0, 3.0, 4.0, and 6.0 ps. See Eq. (44)
for the definition of the modified diffraction image, and Fig. 1 for the
definitions of the scattering angles θ and ϕ. The 2s and 3s channels
include all transitions labeled by those final states, as shown in Fig. 4.
The elastic diffraction images correspond to the 10-keV peak in Fig. 4.
Owing to symmetry, only the diffraction patterns in the upper half
plane are shown.

functions of the pump-probe delay time, clearly demonstrating
that ultrafast electrons provide the spatial and temporal
resolution to map electronic motions in atoms. Moreover,
the distinct diffraction patterns and temporal behaviors in the
different channels imply the importance of differentiating the
transitions in order to interpret the electronic motions.

Having discussed the interpretation of the θ angular
distribution in Sec. IV B, here we focus on the ϕ angular
distributions for the state-resolved diffraction images. The
ϕ angular distributions of the elastic and inelastic channels
behave differently, as shown in Fig 5. The 2s and 3s channels
have the same temporal behavior: their scattering intensities
increase as the 2p population grows, and their ϕ angular
distributions remain unchanged. On the other hand, for the
elastic channel both the scattering intensities and the ϕ angular
distribution vary with the delay. At td = 1.0 ps, the diffraction
image shows an isotropic pattern for the elastic channel,
indicating the spherical symmetry of the 2s state. Lack of
monopole and dipole terms suppresses the modified scattering
intensities in the forward direction. With increasing time delay,
the angular distribution develops a twofold symmetry. This
change in the ϕ angular distribution reflects the overlap of
channels and the change of the orbital angular momentum
imparted by the pump laser. Simply put, the scattered electrons
carry the symmetry information about the target states.

In addition to the same ϕ angular distributions, both 2s and
3s channels show a linear nodal structure along the ϕ = 90◦
axis, which can be understood in terms of the symmetry of
the scattering system and the parities of the electronic states.
Since the Hamiltonian of the scattering system possesses
mirror symmetry, the scattering amplitudes of two scattering

geometries are associated with each other if the two geometries
are related by mirror symmetry. In particular, consider the
mirror operation with respect to the x-y plane (i.e., z → −z)
and the scattering geometry in which an incident electron
moving in the positive x direction with momentum k0 is
scattered toward some direction with momentum ka . The
scattering geometry obtained by the mirror operation is the
one in which the electron is scattered toward the direction k′

a ,
which is the mirror image of ka . Then, one can show that the
S matrix elements for these two geometries are related by

〈ka,lf mf | S |k0,li mi〉 = (−1)li+lf +mi+mf

×〈k′
a,lf mf | S |k0,li mi〉, (45)

as the target angular momentum state changes from |li mi〉 to
|lf mf 〉. If the symmetry of the target state is changed such
that li + lf + mi + mf is an odd number, then the scattering
amplitude is also an odd function of ka with respect to the
x-y plane. Consequently, the scattering amplitude must be
zero in the symmetry plane, which is the reason the nodal
line along ϕ = 90◦ axis appears in the 2s and 3s channels. One
can also see this from the viewpoint of momentum transfer.
Since the parities of the initial p and final s states are opposite,
the overlap between the displaced initial and the final wave
functions is zero if the momentum transfer is in the symmetry
plane.

D. Time-, angle-, and energy-resolved ultrafast electron
diffraction of 1-fs electron pulses

Although ultrafast electron diffraction of 100-fs pulses
successfully images the population transfer in the lithium
atom, information on the electronic motion is still incomplete.
In addition to the ps-scale evolution of the population,
the target state ψ1(t) actually oscillates rapidly due to the
difference in the energies ω2s and ω2p. As the valence electron
is in a time-dependent coherent superposition of eigenstates
having opposite parities, it wiggles from one side of the nucleus
to the other with a beat period T = 2.13 fs. In order to map
such motion, pulses with 1-fs duration (FWHM) are chosen.

The angle-resolved spectra for the 1-fs pulses are shown
in the left column of Fig. 6 at time delays td = 1.0, 3.7 −
T/2, 3.7, 3.7 + T/2, and 6.0 ps. In order to monitor the
wiggling motion, the delays between the middle three panels
differ by half the beat period. The azimuthal scattering angle is
ϕ = 0◦. Contrary to the 100-fs case, the spectra show continu-
ous distributions and no channel can be clearly resolved owing
to the large bandwidth of the incident electrons (≈1.82 eV).
Nevertheless, the largest extension of the angular distribution
is around 10 keV. Some information about the energy content
of the target state can be extracted by comparing the spectra
at td = 1.0 and 6.0 ps. In the energy region corresponding to
the deexcitation transition (Ea ≈ 10.002 keV), the spectrum
continues to increase with delay time. The middle three panels
exhibit rapid changes in the spectrum, especially on either side
of the 10-keV peak. Note the similarity between the second
and fourth panels, indicating that the spectrum oscillates
with the same period as the electronic motion. Although it
may appear that pulses with a large bandwidth have little
advantage in energy-resolved measurements, we argue below
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FIG. 6. Left column: ensemble-averaged doubly differential
probabilities for scattering of 1-fs (FWHM) electron pulses from
a 2s → 2p population transfer of the valence electron in the lithium
atom at five time delays: td = 1.0, 3.7 − T/2, 3.7, 3.7 + T/2, and
6.0 ps. The azimuthal scattering angle is ϕ = 0◦ and the beat
period between the 2s and 2p states is T = 2.13 fs. Right column:
asymmetry [defined in Eq. (46)] of the angle-resolved spectra at the
corresponding time delays.

that such measurements can still provide valuable insight into
the interpretation of the electronic motion.

Owing to the asymmetric motion, the diffraction pattern
displays an asymmetric angular distribution. In order to quan-
tify the asymmetry, we define the asymmetry of the spectrum
as the difference in the differential scattering probabilities for
the electrons to be scattered toward positive and negative z

directions (i.e., ϕ = 0◦ and 180◦), normalized by their sum,
i.e.,

Asym(Ea,θ ) ≡ d2P(ϕ = 0◦) − d2P(ϕ = 180◦)

d2P(ϕ = 0◦) + d2P(ϕ = 180◦)
, (46)

where d2P stands for the EADDP. Nonzero asymmetry
indicates the diffraction pattern breaks the centrosymmetry
dictated by Friedel’s law [63], and positive asymmetry means
more electrons are scattered toward the positive z direction.
The right column of Fig. 6 shows the asymmetry of the
angle-resolved spectrum as a function of delay. At td = 1.0 and
6.0 ps the asymmetry is essentially zero since a single parity
dominates the target state ψ1(t). However, when about half of
the population is transferred to the 2p state around td = 3.7 ps,
the diffraction patterns of the middle three panels show
nonzero asymmetry. More importantly, the asymmetry shows
an energy- and θ -dependent distribution. The energy regions
9.998–10.000 keV and 10.000–10.002 keV show opposite
asymmetries that are roughly mirror-symmetric patterns with
respect to Ea ≈ 10 keV. Moreover, the sign of the asymmetry

FIG. 7. Right column: time-dependent charge density of the
valence electron of the lithium atom in the y-z plane in a sequence
of time intervals T/8. The wiggling motion starts at tref = 3.6992 ps
and extends over half the beat period T . Left column: asymmetries
[defined in Eq. (46)] of the angle-resolved scattering spectra at the
corresponding time delays for the 1-fs electron pulses.

at lower energy (Ea � 9.998 keV) depends on the scattering
angle θ . Without energy-resolved measurements, these details
in the energy-dependent diffraction pattern would not be
observed in the measurements.

In order to establish the correlation between the electronic
motion and the asymmetry, we compare in Fig. 7 the time-
varying charge density of the valence electron in the y-z
plane with the corresponding asymmetry in a sequence of
T/8 intervals. The series starts at tref = 3.6992 ps and spans
half the beat period. As shown in the right column of
Fig. 7, the wiggling begins with the electron density localized
on the right side of the core. As time elapses, the peak
moves toward the negative z direction, reaching the leftmost
point between tref + 2T/8 and tref + 3T/8. Then, the electron
oscillates back toward positive z. The asymmetry follows
the electronic motion with the asymmetry steadily evolving
in time between +1 and −1 at any given point of Ea and
θ . While the temporal behavior of the asymmetry reflects
the electronic motion, the asymmetries in the density and
the spectrum are not synchronized. The minimum overall
asymmetry of the spectrum at td = tref + 2T/8 basically
corresponds to the maximum asymmetry of the electron
density.

042706-11



HUA-CHIEH SHAO AND ANTHONY F. STARACE PHYSICAL REVIEW A 96, 042706 (2017)

This asynchrony between the temporal behavior of the
diffraction spectrum and that of the charge density can be
explained from the viewpoint of momentum transfer. First, we
focus on the asymmetry around the 10.000–10.002 keV region,
in which, according to Fig. 4, the spectrum is dominated by the
transitions to the 2s state. During the first half of the series of
time delays shown in Fig. 7, the electron charge density moves
toward the left, so its momentum distribution is skewed toward
the negative z direction whereas the momentum distribution
of the final 2s state is symmetric with respect to the origin.
Therefore, when the electron receives a momentum transfer
antiparallel to its existing momentum, the target state ψ1(t)
is brought toward the origin in momentum space and, hence,
the shifted momentum distribution is more equally distributed
with respect to the origin. Thus, the overlap between the
displaced target state and the 2s state can increase with
an appropriate momentum kick. On the other hand, if the
momentum transfer is parallel to the electronic motion, ψ1(t) is
shifted further away from the origin and the overlap decreases
accordingly. In order to yield a momentum transfer antiparallel
to the electron’s motion, the projectile electron has to be
scattered (or recoiled) in the same direction as that of the
target electron’s motion. Therefore, the asymmetry in the
10.000–10.002 keV region is negative in the first half of
the motion. When the electron begins to oscillate back (as
shown in the last half of the series of time delays shown in
Fig. 7), its momentum wave function is shifted toward the
positive z axis, so the asymmetry changes sign, becoming
positive.

Next, we turn to the asymmetry in the 9.998–10.000 keV
region. As shown in Fig. 4, the main contribution in this region
is the transition to the 2p state, whose symmetry differs from
that of the 2s state. The 2p state is antisymmetric along the z

axis. Therefore, when the target electron receives a momentum
transfer such that its wave function ψ1(t) is shifted toward the
origin, the overlap between the displaced ψ1(t) and the 2p state
can reduce the transition amplitude owing to a cancellation
between the positive and negative momentum components
stemming from the sign change in the 2p state. Therefore,
in this energy region, the asymmetry has the opposite sign to
that in the 10.000–10.002 keV region.

V. SUMMARY AND CONCLUSIONS

In summary, we have presented a theory to model ultrafast
electron diffraction from a time-dependent population transfer
driven by a chirped laser pulse. During this pump process, the
valence electrons of lithium atoms are transferred from the 2s

state to the 2p state, and this electronic motion is imaged by
energy- and angle-resolved measurements. Simulations have
been performed to calculate the diffraction images as a function
of time delay for electron pulses having durations of 100
and 1 fs. Depending on the pulse duration, different layers of
information about the electronic motion can be retrieved from
the energy-resolved diffraction images. In the case of 100-fs
pulses, due to its narrow bandwidth, state-resolved measure-
ment is possible. Therefore, the time-dependent population,
the time evolution of the target state symmetry, and the energy
content of the target state can be deduced from a detailed
analysis of different channels. In addition, the results have been
interpreted from a momentum-transfer viewpoint. In the case
of a 1-fs electron pulse, whereas state-resolved measurements
may not be possible (cf. [43]), the energy-resolved diffraction
images show asymmetric patterns that reflect the wiggling
motion of the valence electron in the coherent superposition
state of the target lithium atom. This asymmetry has been
interpreted from the viewpoint of momentum transfer to the
time-varying momentum distribution of the target state.

Although electronic motions in atoms are relatively simple,
they nevertheless provide a stepping stone toward understand-
ing the more complicated electron dynamics in molecular
systems. Owing to its simplicity, our system provides a testbed
that enables one to understand the dynamics of ultrafast
electron diffraction. Our analyses and simulations, therefore,
aim to provide useful knowledge for the future development
of ultrafast techniques to directly image electronic motions in
complex systems.
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