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Magic wavelengths of the Ca+ ion for circularly polarized light
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The dynamic dipole polarizabilities of low-lying states of Ca+ ions for circularly polarized light are calculated
by using the relativistic configuration interaction plus core polarization approach. The magic wavelengths
are determined for the magnetic sublevel transitions 4s 1

2 ,m → 4pj ′,m′ and 4s 1
2 ,m → 3dj ′,m′ with total angular

momentum j ′ and its components m′. In contrast to the case of linearly polarized light, several additional magic
wavelengths are found for these transitions. We suggest that accurate measurements on the magic wavelengths
near 851 nm for the 4s 1

2 ,m → 4p 3
2 ,m′ transitions can be used to determine the ratio of the oscillator strengths for

the 4p 3
2

→ 3d 3
2

and 4p 3
2

→ 3d 5
2

transitions.

DOI: 10.1103/PhysRevA.96.042503

I. INTRODUCTION

The magic wavelength is the wavelength of an externally
applied laser field at which the ac Stark shift of a particular
transition energy of the trapped atoms goes to zero, which
was introduced in Refs. [1,2]. This effect is widely used for
optical trapping. Since then, the magic wavelength has been
extensively utilized in ultraprecise optical lattice clocks [3–9]
and state-insensitive quantum engineering [10,11].

The magic wavelengths of alkali-metal and alkaline-earth-
metal atoms for linearly polarized light have been studied
extensively in both experiment and theory [12–18]. For alkali-
metal atoms in a linearly polarized light field, the potential
is the same for the two spin states ms = ± 1

2 of the atoms in
their respective ground states [19], which means the magnetic
sublevels mj = ± 1

2 of the ground states are degenerate.
However, in the case of circularly polarized laser light, this
degeneracy is lifted. In this case, the laser field acts as a
“fictitious magnetic field” due to the vector polarizabilities that
are absent for linearly polarized light [20], and the ac Stark
shift of the ground states of the atoms behaves like a pure
Zeeman shift [21]. Due to this effect, the magic wavelengths
for circularly polarized light have significant applications, such
as in the magnetic-sublevel selective trapping and far-off-
resonance laser trapping [10,19,22]. For this reason, the magic
wavelengths of alkali-metal atoms for circularly polarized light
have been studied as well [10,23–25].

Precision measurements of magic wavelengths and magic-
zero wavelengths (at which the polarizability for a certain
atomic state is zero) are also very important in the studies of
atomic structure [14]. They can be used to test atomic structure
calculations and also provide high-precision determination on
the ratio of line strengths or transition matrix elements [26–29].
For example, the ratio of 87Rb D-line dipole matrix elements
was determined with an accuracy up to 15 ppm by means
of high-precision measurements of the D-line magic-zero
wavelength [30]. Moreover, the measurement on the longest
magic-zero wavelength of the ground state of potassium
determined the ratio of D1 and D2 line strengths with a record
precision, i.e., 2.0005(40) [26].
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All-optical trapping of ions has been achieved in experiment
[31,32] and thus it is very important to pursue the trapping ions
at a magic wavelength. As one of the alkali-metal-like ions, the
Ca+ ion is one of the candidates for optical frequency standard
and quantum computing [33–37]. Just very recently, two
magic wavelengths of the 40Ca+ 4s → 3d 5

2 ,m (m = 1
2 , 3

2 ) clock
transitions for linearly polarized light have been measured with
very high accuracy [14]. The measurement of these two magic
wavelengths determines the ratio of the oscillator strengths
for the 4s → 4p 1

2
and 4s → 4p 3

2
transitions with errors less

than 0.5%, which is much better than the results obtained from
traditional spectroscopic techniques.

In this paper, we calculated the energy levels, electric
dipole matrix elements, and static polarizabilities of Ca+ ions
by using the relativistic configuration interaction plus core
polarization (RCICP) approach. Moreover, the dynamic dipole
polarizabilities of the 4s, 4pj (j = 1

2 , 3
2 ), and 3dj (j = 3

2 , 5
2 )

states of Ca+ were calculated for circularly polarized light. The
magic wavelengths for each of the existing magnetic sublevel
transitions were determined. In the following section, a brief
description of the theoretical method is given. In Sec. III, the
dynamic polarizabilities and magic wavelengths are discussed.
Finally, a few conclusions are made in Sec. IV. The atomic
units (me = 1, e = 1, h̄ = 1) are used throughout this paper
unless stated otherwise, The speed of light is chosen to be
c = 137.0359991.

II. THEORETICAL METHOD

In the present paper, the energy levels and transition arrays
involved are calculated by using the RCICP method which
has been developed recently by us [39]. The method is similar
to the one used by Tang et al. in the calculations of magic
wavelengths of Ca+ for linearly polarized light [15]. The
only difference is that they used the B-spline basis to expand
atomic state wave functions instead of the L- and S-spinor
basis as we used. S-spinors can be treated as relativistic
generalizations of the Slater-type orbitals. L-spinors can be
treated as relativistic generalizations of the Laguerre-type
orbitals [40,41]. The Laguerre bases are orthogonal to each
other and can be enlarged towards completeness without the
problem of linear dependence, which guarantees tiny errors
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TABLE I. Magic wavelengths (in nm) for the 4s 1
2 ,m → 4p 1

2 ,m′ transitions of Ca+ for left-handed circularly polarized light, which are
compared with the ones for linearly polarized light. �λ (in nm) denotes the difference of magic wavelengths between the two kinds of
polarization. λres represents the wavelength of resonance transition. The numbers in the parentheses are uncertainties caused by assuming that
matrix elements are calculated within ±2% uncertainties.

Resonances λres A = 0 A = −1

λmagic λmagic �λ λmagic �λ λmagic �λ λmagic �λ

4s 1
2

→ 4p 1
2

4s 1
2 ,− 1

2
→ 4p 1

2 ,− 1
2

4s 1
2 , 1

2
→ 4p 1

2 , 1
2

4s 1
2 ,− 1

2
→ 4p 1

2 , 1
2

4s 1
2 , 1

2
→ 4p 1

2 ,− 1
2

4p 1
2

→ 3d 3
2

866.2
691.24(12.29) 778.37(6.39) 87.13 603.43(17.73) −87.81 600.43(18.05) −90.81 779.00(6.35) 87.76

4s 1
2

→ 4p 1
2

396.8
395.1788(377) 395.5410(688) 0.3622 394.5839(41) −0.5949 394.1570(227) −1.0218

4s 1
2

→ 4p 3
2

396.4
4p 1

2
→ 5s 1

2
370.6

368.0221(1412) 361.83(69) −6.1921 362.38(67) −5.64
4p 1

2
→ 4d 3

2
315.9

caused by the incompleteness of the basis set used in actual
calculations.

The present approach is based on the frozen-core model, in
which an atom is partitioned into a core and valence electrons.
We first perform a Dirac-Fock calculation on the ground
state of the core. The orbitals of the core are expressed as
linear combinations of S-spinors. Thereafter, valence electron
wave functions are calculated by using a semiempirical-
polarization-potential method. For atomic systems with a
single valence electron, the effective interaction potential of

the valence electron with the core is written as

H = cα · p + βc2 + Vcore(r), (1)

where α and β denote 4 × 4 matrices of the Dirac operator, and
p is the momentum operator of electrons [42]. Moreover, Vcore

represents the core interaction operator and is expressed as

Vcore(r) = −Z

r
+ Vdir(r) + Vexc(r) + Vp(r). (2)

TABLE II. Same as Table I but for the 4s 1
2 ,m → 4p 3

2 ,m′ transitions.

Resonances λres A = 0 A = −1

λmagic λmagic �λ λmagic �λ λmagic �λ λmagic �λ

4s 1
2

→ 4p 3
2 , 1

2
4s 1

2 ,− 1
2

→ 4p 3
2 ,− 1

2
4s 1

2 , 1
2

→ 4p 3
2 , 1

2
4s 1

2 ,− 1
2

→ 4p 3
2 , 1

2
4s 1

2 , 1
2

→ 4p 3
2 ,− 1

2

4p 3
2

→ 3d 5
2

854.2

850.1164(1) 851.0555(21) 0.9391 850.4771(21) 0.3607 850.4770(6) 0.3606 851.0556(21) 0.9392
4p 3

2
→ 3d 3

2
849.8

687.51(10.33) 722.97(10.35) 35.46 631.85(16.85) −55.66 629.33(17.14) −58.18 724.11(10.24) 36.6
4s 1

2
→ 4p 1

2
396.8

396.2297(218) 394.5946(33) −1.6351 395.1904(340) −1.0393
4s 1

2
→ 4p 3

2
393.4

4p 3
2

→ 5s 1
2

373.7
369.6523(1849) 370.30(26) 0.6477 370.57(24) 0.9177

4p 3
2

→ 4d 3
2

318.1
4s 1

2
→ 4p 3

2 , 3
2

4s 1
2 ,− 1

2
→ 4p 3

2 ,− 3
2

4s 1
2 , 1

2
→ 4p 3

2 , 3
2

4s 1
2 ,− 1

2
→ 4p 3

2 , 3
2

4s 1
2 , 1

2
→ 4p 3

2 ,− 3
2

4p 3
2

→ 3d 5
2

854.2

850.9217(15) 851.8764(65) 0.9547 851.8770(66) 0.9533
4p 3

2
→ 3d 3

2
849.8

672.89(15.33) 803.96(3.39) 131.07 563.06(17.95) −109.83 559.31(18.35) −113.58 804.28(3.37) 131.39
4p 1

2
→ 4s 1

2
396.8

395.7729(19) 394.5596(60) −1.2133 395.7744(461) 0.0015
4p 3

2
→ 4s 1

2
393.4

358.21(1.44) 359.25(1.42)
4p 3

2
→ 4d 3

2
318.1
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Vdir and Vexc represent direct and exchange interactions with
core electrons [39], respectively. Vp is an extension of the
semiempirical polarization potential. Such a core polarization
potential is introduced to approximate the correlation interac-
tion between the core and valence electrons [43]. Vp can be
written as

Vp(r) = −
3∑

k=1

α(k)
core

2r [2(k+1)]

∑
l,j

g2
k,l,j (r)|l,j 〉〈l,j |, (3)

where l and j are orbital and total angular momenta. The
factors α(k)

core represent kth-order static polarizabilities of the
core electrons. In our calculations, dipole polarizability α(1)

core
of the core is taken as 3.26 a.u., quadrupole polarizability
α(2)

core is 6.9 a.u., and octupole polarizability α(3)
core is 34 a.u.

[44]. g2
k,l,j (r) is a cutoff function designed to make the

polarization potential finite at the origin, which has the
form g2

k,l,j (r) = 1 − exp[−r [2(k+2)]/ρ
[2(k+2)]
l,j ] [39]. The cutoff

parameters ρl,j that are tuned to reproduce binding energies of
the corresponding states are listed in Supplemental Material,
Table I [45]. The effective Hamiltonian for the valence
electrons was diagonalized in a large S-spinor and L-spinor
basis. The present RCICP calculations typically used 35
positive-energy and 35 negative-energy L-spinors for each
(l, j ) symmetry.

For an arbitrarily polarized light, the dynamic polarizability
for an atomic state i is given by [22,46,47]

αi(ω) = αS
i (ω) + Acosθk

mji

2ji

αV
i (ω)

+
(

3cos2θp − 1

2

)
3m2

ji
− ji(ji + 1)

ji(2ji − 1)
αT

i (ω), (4)

where αS
i (ω), αV

i (ω), and αT
i (ω) represent the scalar, vector,

and tensor polarizabilities for the state i, respectively; mji

is the component of the total angular momentum ji . It is
noted that there is no tensor polarizability for the states with
j � 1

2 . θk is the angle between the wave vector and z axis as
defined below. θp relates to the polarization vector and z axis.
It is obtained from a geometrical consideration that θk and θp

satisfy the relation cos2θk + cos2θp � 1 [22,46]. A represents
the degree of polarization. For linearly polarized light, A = 0,
and thus we choose the polarization vector as the z axis, which
is perpendicular to the wave vector. In this case, cosθk = 0 and
cosθp = 1, which simplify Eq. (4) to

αi(ω) = αS
i (ω) + 3m2

ji
− ji(ji + 1)

ji(2ji − 1)
αT

i (ω). (5)

However, for circularly polarized light (A = 1 for the right-
handed and −1 for the left-handed), the z axis is chosen along
the wave vector. As a consequence, cosθk = 1 and cos2θp =
0. Equation (4) is thus simplified as

αi(ω) = αS
i (ω) + Amji

2ji

αV
i (ω) − 3m2

ji
− ji(ji + 1)

2ji(2ji − 1)
αT

i (ω).

(6)

Equation (6) can also be written as

αi(ω) =
∑

n

F S
i,n(ω) + A

∑
n

F V
i,n(ω) +

∑
n

F T
i,n(ω), (7)

where the factors FS
i,n(ω), FV

i,n(ω), and FT
i,n(ω) characterize,

respectively, the scalar, vector, and tensor contributions to the
polarizability, and are defined as

FS
i,n(ω) = fi,n

�E2
i,n − ω2

, (8)

FV
i,n(ω) = −3mji

2ji

√
6ji(2ji + 1)

(ji + 1)

{
1 1 1
ji ji jn

}

× (−1)ji+jn
fi,n

�E2
i,n − ω2

ω

�Ei,n

, (9)

and

FT
i,n(ω) = −3m2

ji
− ji(ji + 1)

2ji(2ji − 1)
× 6

√
5ji(2ji − 1)(2ji + 1)

6(ji + 1)(2ji + 3)

×
{

1 1 2
ji ji jn

}
(−1)ji+jn

fi,n

�E2
i,n − ω2

. (10)

In these expressions, �Ei,n is the transition energy from state
n to state i. Dipole absorption oscillator strength fi,n is defined
as

fi,n = 2�Ei,n|〈ψi‖rC(1)(r̂)‖ψn〉|2
3(2ji + 1)

, (11)

where C(1)(r̂) is the first-order spherical tensor.

TABLE III. The contributions of individual transitions to the
polarizabilities (in a.u.) of the 4s 1

2 ,± 1
2

and 4p 3
2 ,± 1

2
states at the magic

wavelengths. These results are calculated for left-handed polarized
light.

A = −1

ω (a.u.) 0 0.05357388 0.05353745
λ (nm) ∞ 850.4770(6) 851.0556(21)

4s 1
2 ,− 1

2
4s 1

2 ,+ 1
2

4p 1
2

24.1492 16.4645 45.2599
4p 3

2
47.9069 75.0544 46.8459

5p 1
2

0.0091 0.0076 0.0113
5p 3

2
0.0135 0.0154 0.0126

Remains 0.2261 0.2280 0.2292
Core 3.1596 3.1635 3.1635
Total 75.4644 94.9333 95.5224

4p 3
2 ,+ 1

2
4p 3

2 ,− 1
2

4s 1
2

−47.9069 −8.1883 −22.2757
3d 3

2
−0.7769 −4491.7847 −2593.9354

3d 5
2

−42.3461 4534.9763 2649.1186

5s 1
2

24.1915 10.7904 4.2022
4d 3

2
0.8356 7.1650 6.4367

4d 5
2

45.0045 34.3492 44.1184

6s 1
2

1.1309 0.3820 0.2245
5d 3

2
0.0489 0.3775 0.3516

5d 5
2

2.6432 1.9378 2.2875

Remains 2.6896 1.7648 1.8306
Core 3.1596 3.1635 3.1635
Total −11.3262 94.9333 95.5224
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TABLE IV. The contributions of individual transitions to the polarizabilities (in a.u.) of the 4s 1
2 ,± 1

2
and 4p 3

2 ,− 3
2

states for left-handed

polarized light at the corresponding magic wavelengths.
∑

represents the sum of FS , AFV , and FT .

λmagic = 851.8770 (nm) λmagic = 851.8764 (nm)
ω1 = 0.053485833 (a.u.) ω2 = 0.053485871 (a.u.)

FS AFV FT
∑

FS AFV FT
∑

4s 1
2 ,+ 1

2
4s 1

2 ,− 1
2

4p 1
2

30.8474 14.3743 45.2218 30.8474 −14.3744 16.4731
4p 3

2
60.8996 −14.0646 46.8350 60.8996 14.0646 74.9642

5p 1
2

0.0094 0.0018 0.0113 0.0094 −0.0018 0.0076
5p 3

2
0.0140 −0.0014 0.0126 0.0140 0.0014 0.0154

Remains 0.2286 0.0006 0.2292 0.2286 −0.0006 0.2280
Core 3.1635 0.0000 3.1635 3.1635 0.0000 3.1635
Total 95.1625 0.3108 95.4733 95.1626 −0.3108 94.8518

4p 3
2 ,− 3

2
4p 3

2 ,− 3
2

4s 1
2

−30.4498 −21.0969 −15.2249 −66.7716 −30.4498 −21.0969 −15.2249 −66.7716
3d 3

2
−899.4967 −538.5314 359.7987 −1078.2295 −899.7872 −538.7057 359.9149 −1078.5780

3d 5
2

5848.5182 −5279.5223 584.8518 1153.8477 5847.1531 −5278.2937 584.7153 1153.5747

5s 1
2

14.9799 −9.8596 7.4900 12.6103 14.9799 −9.8596 7.4900 12.6103
4d 3

2
4.8556 −1.0883 −1.9422 1.8251 4.8556 −1.0883 −1.9422 1.8251

4d 5
2

43.5771 14.6415 4.3577 62.5763 43.5771 14.6415 4.3577 62.5763

6s 1
2

0.6062 −0.2358 0.3031 0.6735 0.6062 −0.2358 0.3031 0.6735
5d 3

2
0.2604 −0.0388 −0.1041 0.1174 0.2604 −0.0388 −0.1041 0.1174

5d 5
2

2.3471 0.5241 0.2347 3.1059 2.3471 0.5241 0.2347 3.1059

Remains 2.1268 0.0987 0.3292 2.5548 2.1268 0.0987 0.3292 2.5548
Core 3.1635 0.0000 0.0000 3.1635 3.1635 0.0000 0.0000 3.1635
Total 4990.4882 −5835.1088 940.0940 95.4733 4988.8326 −5834.0546 940.0737 94.8518

III. RESULTS AND DISCUSSION

For illustrating the accuracy of the present calculations, the
energy levels, electric-dipole matrix elements, static polariz-
abilities, and magic wavelength of Ca+ ions are calculated
for linearly polarized light, which are compared with existing
theoretical and experimental results [14,15,48]. Good agree-
ments among them are found (see Supplemental Material,
Tables II–V [45]). For instance, the scalar polarizabilities of
the 4s 1

2
, 3d 3

2
, and 3d 5

2
states are determined to be 75.46, 32.98,

and 32.80 a.u. in the present calculations, as compared to
the many-body perturbation theory results of 76.1, 32.0, and
32.0 a.u. [44], respectively. In the following, we just consider
the case of circularly polarized light.

The dynamic polarizability is different for each of the
magnetic sublevels of an atomic level. According to Eq. (6),
the dynamic polarizabilities of atomic states with negative m

for A = −1 are the same as the ones of states with positive m

for A = +1. For this reason, we give the polarizabilities of the
4s 1

2 ,m, 4pj,m, and 3dj,m states just for left-handed polarized
light in the following discussions.

In order to find the magic wavelengths for all of the
transitions between the 4s 1

2 ,m and 4p 1
2 ,m′ states, Fig. 1 shows

the dynamic polarizabilities of these states, which are plotted
for different pairs of their initial and final states. In Fig. 1(a), for
instance, we give the polarizabilities of the 4s 1

2 ,− 1
2

and 4p 1
2 ,− 1

2

states. As can be seen clearly from Fig. 2, the behaviors of the
dynamic polarizabilities of the 4s 1

2 ,− 1
2

state are different from

the case of linearly polarized light. When the laser wavelength
is close to the 4s → 4p 1

2
transition, α4s → ∞ for linearly

polarized light. For left-handed polarized light (A = −1),
however, the polarizabilities of the 4s 1

2 ,− 1
2

state remain finite
as seen in Fig. 2. This is because the 4s → 4p 1

2
transition

does not contribute to the polarizability when the wavelength
is close to the 4s → 4p 1

2
transition. To be more specific, the

contributions of the scalar and vector terms from the 4s → 4p 1
2

transition cancel each other out, while its tensor term does not
exist, i.e.,

lim
ω→�Ei,4p 1

2

(
FS

i,4p 1
2

− FV
i,4p 1

2

) = 0, (12)

where i represents the 4s 1
2 ,− 1

2
state. A similar behavior occurs

also for the polarizabilities of the 4p 1
2 ,− 1

2
state but when

the wavelength is close to the 4p 1
2

→ 5s 1
2

transition. The
intersections of the dynamic polarizabilities of the 4s 1

2 ,− 1
2

and 4p 1
2 ,− 1

2
states give rise to magic wavelengths, which are

pointed out by arrows.
Table I lists the obtained magic wavelengths of the 4s 1

2 ,m →
4p 1

2 ,m′ transitions together with the ones of the 4s 1
2

→ 4p 1
2

transition for linearly polarized light for comparison. The
differences of the magic wavelengths between the two kinds
of polarization are also given. For each of the transitions, two
or three magic wavelengths are found in the range of 300 to
1000 nm. Take the 4s 1

2 ,− 1
2

→ 4p 1
2 ,− 1

2
transition, for example,
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TABLE V. Same as Table I but for the 4s 1
2 ,m → 3d 3

2 ,m′ and 4s 1
2 ,m → 3d 5

2 ,m′ transitions.

Resonances λres A = 0 A = −1

λmagic λmagic �λ λmagic �λ λmagic �λ λmagic �λ

4s 1
2

→ 3d 3
2 , 3

2
4s 1

2 ,− 1
2

→ 3d 3
2 ,− 3

2
4s 1

2 , 1
2

→ 3d 3
2 , 3

2
4s 1

2 ,− 1
2

→ 3d 3
2 , 3

2
4s 1

2 , 1
2

→ 3d 3
2 ,− 3

2

887.28(3.52) 1580.01(142.74) 692.73 1584.95(143.70) 697.67
1467.8(4) [38] 1549.9(5) [38]

3d 3
2

→ 4p 1
2

866.2
851.1724(42) 851.1728(42)
850.9(2) [38] 851.2(3) [38]

4s 1
2

→ 4p 1
2

396.8
395.7951(1) 394.6394(4) −1.1557 394.6315(2) −1.1636

394.6(9) [38] 394.6(10) [38]
4s 1

2
→ 4p 3

2
393.4

4s 1
2

→ 3d 3
2 , 1

2
4s 1

2 ,− 1
2

→ 3d 3
2 ,− 1

2
4s 1

2 , 1
2

→ 3d 3
2 , 1

2
4s 1

2 ,− 1
2

→ 3d 3
2 , 1

2
4s 1

2 , 1
2

→ 3d 3
2 ,− 1

2

1307.60(96.2) 876.28(2.61) −431.321035.46(20.15) −271.14 1036.70(20.30) −270.9 876.07(2.59) −431.53
875.56(2) [38] 1013.4(5) [38] 1031.4(4) [38] 870.7(3) [38]

3d 3
2

→ 4p 1
2

866.2
850.3301(18) 853.5974(266) 3.2673 853.5998(264) 3.2697

853.1(2) [38] 853.5(4) [38]
3d 3

2
→ 4p 3

2
849.8

4s 1
2

→ 4p 1
2

396.8
395.7962(1) 394.6362(1) −1.16 394.6335(1) −1.1627

394.6(9) [38] 394.6(10) [38]
4s 1

2
→ 4p 3

2
393.4

4s 1
2

→ 3d 5
2 , 5

2
4s 1

2 ,− 1
2

→ 3d 5
2 ,− 5

2
4s 1

2 , 1
2

→ 3d 5
2 , 5

2
4s 1

2 ,− 1
2

→ 3d 5
2 , 5

2
4s 1

2 , 1
2

→ 3d 5
2 ,− 5

2

1726.68(198.7) 1732.77(200.04)
4s 1

2
→ 4p 1

2
396.8

395.7949(1) 394.6400(4) −1.1549 394.6311(3) −1.1638
394.64(2) [38] 394.63(3) [38]

4s 1
2

→ 4p 3
2

393.4
4s 1

2
→ 3d 5

2 , 3
2

4s 1
2 ,− 1

2
→ 3d 5

2 ,− 3
2

4s 1
2 , 1

2
→ 3d 5

2 , 3
2

4s 1
2 ,− 1

2
→ 3d 5

2 , 3
2

4s 1
2 , 1

2
→ 3d 5

2 ,− 3
2

1073.80(31.61) 1185.07(46.46) 111.27 1187.42(46.79) 113.62
1150.39(2) [38] 1173.5(2) [38]

3d 5
2

→ 4p 3
2

854.2

4s 1
2

→ 4p 1
2

396.8
395.7958(1) 394.6377(2) −1.1581 394.6324(2) −1.1634

394.64(3) [38] 394.63(3) [38]
4s 1

2
→ 4p 3

2
393.4

4s 1
2

→ 3d 5
2 , 1

2
4s 1

2 ,− 1
2

→ 3d 5
2 ,− 1

2
4s 1

2 , 1
2

→ 3d 5
2 , 1

2
4s 1

2 ,− 1
2

→ 3d 5
2 , 1

2
4s 1

2 , 1
2

→ 3d 5
2 ,− 1

2

1337.30(115.38)894.81(4.06) −442.49 986.63(14.76) −350.67 987.60(14.87) −349.7 894.50(4.03) −442.8
893.4(3) [38] 975.6(4) [38] 982.7(2) [38] 891.4(3) [38]

3d 5
2

→ 4p 3
2

854.2

4s 1
2

→ 4p 1
2

396.8
395.7963(1) 394.6357(1) −1.1606 394.6339(1) −1.1624

394.64(2) [38] 394.63(4) [38]
4s 1

2
→ 4p 3

2
393.4

which has two magic wavelengths. One is 395.5410 nm,
which lies between the 4s 1

2
→ 4p 1

2
and 4s 1

2
→ 4p 3

2
transition

wavelengths. This magic wavelength is very close to the
395.1788-nm one for the case of linearly polarized light.
The difference is only 0.3622 nm. Another one is 778.37
nm that occurs between the 4p 1

2
→ 4s and 4p 1

2
→ 3d 3

2

transition energies. In contrast, this magic wavelength has

87-nm difference from the magic wavelength 691.24 nm for
the 4s → 4p 1

2
transition in the case of linearly polarized

light.
Table II lists the magic wavelengths of the 4s 1

2 ,m →
4p 3

2 ,m′ transitions, which are obtained from the corresponding
dynamic polarizabilities as shown in Supplemental Material,
Figs. 2 and 3 [45]. Much attention should be paid to the
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FIG. 1. Dynamic polarizabilities for the 4s 1
2 ,± 1

2
and 4p 1

2 ,± 1
2

states of Ca+ for left-handed circularly polarized light. (a–d) The 4s 1
2 ,− 1

2
→

4p 1
2 ,− 1

2
, 4s 1

2 ,+ 1
2

→ 4p 1
2 ,+ 1

2
, 4s 1

2 ,− 1
2

→ 4p 1
2 ,+ 1

2
, and 4s 1

2 ,+ 1
2

→ 4p 1
2 ,− 1

2
transitions, respectively. The obtained magic wavelengths are

illustrated by arrows. The vertical lines identify the resonance transition wavelengths.

magic wavelengths near 851 nm, since these wavelengths
arise due to a cancellation in the polarizabilities from two
transitions of 4p 3

2
→ 3dj spin-orbital splitting. Table III gives

the contributions of individual transitions to the polarizabilities
of the 4s 1

2 ,m (m = ± 1
2 ) and 4p 3

2 ,m′ (m′ = ± 1
2 ) states at

the magic wavelengths. The notation “Remains” includes
the contributions of highly excited bound and continuum
states of the valence electrons. The notation “Core” denotes
the contributions from the excitations of core electrons. It
can be found that the 4s 1

2 ,m polarizability is dominated by
the 4s 1

2
→ 4pj transitions and the 4p 3

2 ,m′ polarizability is
dominated by the 4p 3

2
→ 3dj transitions. With the use of the

experimental matrix elements of the 4s 1
2

→ 4pj transitions,
the measurement of these magic wavelengths can be used
to determine the ratio of the oscillator strengths for the
4p 3

2
→ 3d 3

2
and 4p 3

2
→ 3d 5

2
transitions. Supposing that all

the remaining components (including the 4p 3
2

→ 5s 1
2

and 4dj

contributions) of the 4p 3
2

polarizability are estimated with an
accuracy of 5%, the overall uncertainty of the polarizability is
less than 1%.

It also can be seen that the difference of the magic
wavelengths 851.8770 and 851.8764 nm for the 4s 1

2 , 1
2

→
4p 3

2 ,− 3
2

and 4s 1
2 ,− 1

2
→ 4p 3

2 ,− 3
2

transitions is just 0.0006
nm, which could be resolved in present-day experiments
[14,26,30]. By performing high-precision measurements on
these two magic wavelengths, the ratio of the oscillator
strengths for the 4p 3

2
→ 3d 3

2
and 4p 3

2
→ 3d 5

2
transitions can

be determined with very high accuracy. To further explain
this, Table IV tabulates the contributions to the polarizabil-
ities of the corresponding states at the magic wavelengths
851.8770 nm (ω1 = 0.053485833 a.u.) and 851.8764 nm
(ω2 = 0.053485871 a.u.). At these two magic wavelengths
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FIG. 2. Dynamic polarizabilities for the 4s 1
2 ,− 1

2
state of Ca+ in the

wavelength range 393–400 nm for linearly (A = 0, red solid line) and
left-handed circularly (A = −1, blue dotted line) polarized light. The
approximate positions of the 4s 1

2
→ 4pj resonances are indicated by

vertical lines.

(frequencies),

α4p 3
2 ,− 3

2
(ω1) = α4s 1

2 , 1
2
(ω1), (13)

α4p 3
2 ,− 3

2
(ω2) = α4s 1

2 ,− 1
2
(ω2). (14)

Using Eq. (7) and the numbers in Table IV, the subtraction of
Eq. (13) from Eq. (14) gives rise to

C1f4p 3
2
,3d 3

2
+ C2f4p 3

2
,3d 5

2
≈ αV

4s 1
2

(ω1), (15)

where

C1 = 3

5

(
1

�E2
i,b − ω2

1

− 1

�E2
i,b − ω2

2

)

− 3

5�Ei,b

(
ω1

�E2
i,b − ω2

1

− ω2

�E2
i,b − ω2

2

)
, (16)

C2 = 11

10

(
1

�E2
i,q − ω2

1

− 1

�E2
i,q − ω2

2

)

+ 9

10�Ei,q

(
ω1

�E2
i,q − ω2

1

− ω2

�E2
i,q − ω2

2

)
. (17)

In these expressions, i, b, and q represent the 4p 3
2
, 3d 3

2
,

and 3d 5
2

states, respectively. In Eq. (15), once the vector

polarizability αV
4s 1

2

(ω1) is determined, the measurement on the

magic wavelengths ω1 and ω2 can give the ratio of the oscillator
strengths for the 4p 3

2
→ 3d 3

2
and 4p 3

2
→ 3d 5

2
transitions.

Actually, the main contribution of αV
4s 1

2

(ω1) comes from the

4pj and 5pj states, and reaches 99.77% as seen from Table IV
and can be determined very accurately [14].

The magic wavelengths for the 4s 1
2 ,± 1

2
and 3dj,m states

are listed in Table V and compared with the results from a
very recent work [38] performed with the use of a relativistic
coupled-cluster (RCC) method. Good consistency is obtained

for the magic wavelengths shorter than 1000 nm. For example,
the differences of the magic wavelengths near 394.6 nm be-
tween the present RCICP calculations and the RCC results [38]
are less than 0.01%. However, the magic wavelengths longer
than 1000 nm have a big difference. For instance, the present
magic wavelength 1580.01 nm of the transition 4s 1

2 , 1
2

→ 3d 3
2 , 3

2

is longer by 112.21 nm than the RCC result 1467.8 nm. One
reason is that the static polarizabilities of the 4s and 3dj states
have about 2% differences between the RCICP and the RCC
[38] results, as can be seen in Supplemental Material, Table IV
[45]. Another one is that the polarizabilities of the 4s 1

2 ,m and
3dj ′,m′ states change slowly with the wavelengths longer than
1000 nm as can be seen in Supplemental Material, Figs. 4 and
5 [45]. It should be noted that the uncertainties of these magic
wavelengths were estimated less than 0.5 nm in Ref. [38]. We
believe these uncertainties were improperly estimated as the
uncertainty of the static polarizability of 3dj is as large as 1.8
a.u. (5.4%) in Ref. [38].

We found that the magic wavelengths near 394.6 nm lie
between the 4s → 4pj resonant transitions which are smaller
by about 1 nm than 395.79 nm of the 4s → 3dj,m transitions
for linearly polarized light. The measurements on the magic
wavelengths near 394.6 nm can be used as an additional tool
for determining the ratio of the oscillator strengths for the
4s → 4pj transitions. Moreover, the measurement of magic
wavelengths near 851 nm for 4s 1

2 ,m → 3d 3
2 ,m′ can be used to

determine the ratio of the oscillator strengths for the 3d 3
2

→
4p 1

2
and 3d 3

2
→ 4p 3

2
transitions. Supplemental Material,

Tables XI–XXI list the individual transitions contributions of
the polarizabilities at the magic wavelengths [45].

IV. CONCLUSIONS

The dynamic dipole polarizabilities of the 4s, 4pj , and 3dj

states of Ca+ ions are calculated for linearly and circularly
polarized light. The magic wavelengths are determined for
each of the magnetic sublevel transitions 4sj,m → 4pj ′,m′ and
4sj,m → 3dj ′,m′ . The magic wavelengths for linearly polarized
light agree very well with the available results [13,15].
Moreover, the magic wavelengths for circularly polarized light
also agree with very recent theoretical results for the magic
wavelengths shorter than 1000 nm, but the magic wavelengths
longer than 1000 nm have a big difference [38]. We suggest
that the measurement on the magic wavelength near 851
nm for the 4s 1

2 ,m → 4p 3
2 ,m′(m = ± 3

2 , ± 1
2 ) transitions can be

used to determine the ratio of the oscillator strengths for the
3d 3

2
→ 4p 3

2
and 4p 3

2
→ 3d 5

2
transitions.
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