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3Institute of Theoretical Physics and Astronomy, Vilnius University, LT-10222 Vilnius, Lithuania
4Group for Materials Science and Applied Mathematics, Malmö University, S-20506 Malmö, Sweden

(Received 25 August 2017; published 12 October 2017)

The present work reports results from systematic multiconfiguration Dirac-Hartree-Fock calculations of
electronic isotope-shift factors for a set of transitions between low-lying states in neutral zinc. These electronic
quantities, together with observed isotope shifts between different pairs of isotopes, provide the changes in
mean-square charge radii of the atomic nuclei. Within this computational approach, different models for electron
correlation are explored in a systematic way to determine a reliable computational strategy and to estimate
theoretical error bars of the isotope-shift factors.
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I. INTRODUCTION

When the effects of the finite mass and the extended spatial
charge distribution of the nucleus are taken into account in
a Hamiltonian describing an atomic system, the electronic
energy levels undergo a small, isotope-dependent shift [1]. The
isotope shift (IS) of spectral lines, which consists of the mass
shift (MS) and the field shift (FS), plays a key role in extracting
the changes in mean-square charge radii of the atomic nuclei
[2–4]. For a given atomic transition k with frequency νk , it is
assumed that the electronic response of the atom to variations
of the nuclear mass and charge distribution can be described
by only two factors: the mass-shift factor �Kk,MS and the
field-shift factor Fk . The observed IS δν

A,A′
k between any pair

of isotopes with mass numbers A and A′ is related to the
difference in nuclear masses and in mean-square charge radii,
δ〈r2〉A,A′

[1,2].
This work focuses on two transitions between low-lying

levels of neutral zinc (Zn I), the lightest element of group
12 (II B), that have been under investigation in laser spec-
troscopy experiments along the Zn isotopic chain. Campbell
et al. [5] measured the isotope shifts between stable iso-
topes (64,66−68,70Zn) for the 4s2 1S0 → 4s4p 3P o

1 transition
(307.6 nm) using a crossed atomic-laser-beam experiment.
Specific mass shifts (SMSs) were extracted, and a large
value has been assigned to the ground state, emphasizing
the substantial 3d core-valence polarization. Recently, Yang
et al. [6] investigated the 4s4p 3P o

2 → 4s5s 3S1 transition
(481.2 nm) in a bunched-beam collinear laser spectroscopy
experiment to determine nuclear properties of the 79Zn isotope.
The isomer shift between the nuclear ground state and the
long-lived 1/2+ isomeric state was measured, and the change
of the mean-square charge radii of 79,79mZn has been extracted
via the MS and FS electronic factors. The latter were obtained
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from a King-plot process [2] using the root-mean-square
charge radii of isotopes from Refs. [5] and [7].

There are many theoretical studies of properties such as
oscillator strengths, lifetimes, polarizabilities, and hyperfine
structure constants in Zn I and Zn-like ions [8–27]. By contrast,
to the best of our knowledge, no recent paper reporting on
theoretical IS electronic factors in Zn I has been published
since the pioneering works led by Bauche and Crubellier
[28,29] reporting only on SMS factors, and by Blundell
et al. [30,31] only on FS factors. Hence, we reinvestigate the
two above-cited transitions in Zn I by performing ab initio
calculations of IS electronic factors using the multiconfig-
uration Dirac-Hartree-Fock (MCDHF) method implemented
in the RIS3/GRASP2K program package [1,32]. Using the
MCDHF method, the computational scheme is based on the
estimation of the expectation values of the one- and two-body
recoil Hamiltonian for a given isotope, including relativistic
corrections derived by Shabaev [33,34], combined with the
calculation of the total electron densities at the origin.

This approach has recently been performed on neutral
copper (Cu I) [35,36] to determine a set of δ〈r2〉65,A′

val-
ues from the corresponding observed IS. Later on, it has
been applied to neutral magnesium (Mg I) [37] and neutral
aluminum (Al I) [38], where IS factors have been computed
for transitions between low-lying states. In the present work,
different electron correlation models are applied to Zn I to
estimate theoretical error bars of the IS factors.

In Sec. II, the principles of the MCDHF method are
summarized. In Sec. III, the relativistic expressions of the
MS and FS factors are recalled. Section IV presents the active
space expansion strategies adopted for the electron correlation
models. In Sec. V, numerical results of the MS and FS factors
are reported for each of the two studied transitions in Zn I.
Section VI reports conclusions.

II. NUMERICAL METHOD

The MCDHF method [39], as implemented in the GRASP2K

program package [32,40], is the fully relativistic counter-
part of the nonrelativistic multiconfiguration Hartree-Fock
(MCHF) method [41,42]. The MCDHF method is employed
to obtain wave functions that are referred to as atomic state
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functions (ASFs), i.e., approximate eigenfunctions of the
Dirac-Coulomb Hamiltonian given by

HDC =
N∑

i=1

[c αi · pi + (βi − 1)c2 + Vnuc(ri)] +
N∑

i<j

1

rij

, (1)

where Vnuc(ri) is the nuclear potential corresponding to an
extended nuclear charge distribution function, c is the speed
of light, and α and β are the (4×4) Dirac matrices. An ASF,
�(γ �JMJ ), is given as an expansion over NCSFs jj -coupled
configuration state functions (CSFs), 	(γν�JMJ ), with the
same parity �, total angular momentum J , and its projection
on the z axis, MJ :

|�(γ �JMJ )〉 =
NCSFs∑
ν=1

cν |	(γν �JMJ )〉. (2)

In the MCDHF method, the one-electron radial functions
used to construct the CSFs and the expansion coefficients cν are
determined variationally so as to leave the energy functional

E =
NCSFs∑
μ,ν

cμcν〈	(γμ �JMJ )|HDC|	(γν �JMJ )〉 (3)

and additional terms for preserving the orthonormality of
the radial orbitals stationary with respect to their variations.
The resulting coupled radial equations are solved iteratively
in the self-consistent field (SCF) procedure. Once radial
functions have been determined, a configuration-interaction
(CI) diagonalization of Hamiltonian (1) is performed over the
set of configuration states, providing the expansion coefficients
for building the potentials for the next iteration. The SCF and
CI coupled processes are repeated until convergence of the
total wave function (2) and energy (3) is reached.

III. ISOTOPE-SHIFT THEORY

The finite mass of the nucleus gives rise to a recoil effect
that shifts the level energies slightly, called the mass shift
(MS). Due to the variation of the IS between the upper and
lower levels, the transition IS arises as a difference between
the IS for the two levels. Furthermore, the transition frequency
MS between two isotopes, A and A′, with nuclear masses M

and M ′, is written as the sum of normal mass shift (NMS) and
specific mass shift (SMS),

δν
A,A′
k,MS ≡ νA

k,MS − νA′
k,MS = δν

A,A′
k,NMS + δν

A,A′
k,SMS, (4)

and can be expressed in terms of a single parameter

δν
A,A′
k,MS =

(
1

M
− 1

M ′

)
�Kk,MS

h
=

(
1

M
− 1

M ′

)
�K̃k,MS.

(5)

Here, the mass-shift factor �Kk,MS = (Ku
MS − Kl

MS) is the
difference of the KMS = KNMS + KSMS factors of the upper
(u) and lower (l) levels involved in the transition k. For
the �K̃ factors, the unit (GHz u) is often used in the
literature. As far as conversion factors are concerned, we use
�Kk,MS [meEh] = 3609.4824 �K̃k,MS [GHz u].

Neglecting terms of higher order than δ〈r2〉 in the Seltzer
moment (or nuclear factor) [43],

λA,A′ = δ〈r2〉A,A′ + b1δ〈r4〉A,A′ + b2δ〈r6〉A,A′ + · · · , (6)

the line frequency shift in the transition k arising from
the difference in nuclear charge distributions between two
isotopes, A and A′, can be written as [31,44,45]

δν
A,A′
k,FS ≡ νA

k,FS − νA′
k,FS = Fk δ〈r2〉A,A′

. (7)

In the expression above, δ〈r2〉A,A′ ≡ 〈r2〉A − 〈r2〉A′
and Fk

is the electronic factor. Although not used in the current
work, it should be mentioned that there are computationally
tractable methods to include higher-order Seltzer moments in
the expression for the transition frequency shift [46,47].

The total transition frequency shift is obtained by merely
adding the MS, (4), and FS, (7), contributions:

δν
A,A′
k = δν

A,A′
k,NMS + δν

A,A′
k,SMS + δν

A,A′
k,FS

=
(

1

M
− 1

M ′

)
�K̃k,MS + Fk δ〈r2〉A,A′

. (8)

In this approximation, it is sufficient to describe the total
frequency shift between the two isotopes A and A′ with only
the two electronic parameters given by the mass-shift factor
�K̃k,MS and the field-shift factor Fk . Furthermore, they relate
line frequency shifts to nuclear properties given by the change
in mass and mean-square charge radius. Both factors can be
calculated from atomic theory, which is the subject of this
work.

The main ideas of the method that is applied to compute
these quantities are outlined here. More details can be found in
the works by Shabaev [33,34] and Palmer [48], who pioneered
the theory of the relativistic mass shift used in the present
work. Gaidamauskas et al. [49] derived the tensorial form of
the relativistic recoil operator implemented in RIS3 [1] and its
extension [46].

The nuclear recoil corrections within the (αZ)4m2
e/M ap-

proximation [33,34] are obtained by evaluating the expectation
values of the one- and two-body recoil Hamiltonian for a given
isotope,

HMS = 1

2M

N∑
i,j

[
pi · pj − αZ

ri

(
αi + (αi · r i)r i

r2
i

)
· pj

]
.

(9)

Separating the one-body (i = j ) and two-body (i �= j ) terms
that respectively constitute the NMS and SMS contributions,
the Hamiltonian (9) can be written

HMS = HNMS + HSMS. (10)

The NMS and SMS mass-independent K factors are defined
by the following expressions:

KNMS ≡ M〈�|HNMS|�〉, (11)

KSMS ≡ M〈�|HSMS|�〉. (12)

042502-2



MULTICONFIGURATION CALCULATIONS OF ELECTRONIC . . . PHYSICAL REVIEW A 96, 042502 (2017)

TABLE I. MR configurations for the lower and upper states of the two studied transitions in Zn I. The MR cutoff value εMR determines the
set of CSFs in the MR space. NCSFs is the number of CSFs describing each MR space.

Transition εMR J � MR configurations NCSFs

4s2 1S0 → 4s4p 3P o
1 0.01 0+ [Ar]3d10{4s2,4p2,4d2}, [Ar]3d9{4s4p2,4s4p4f,4s24d} 18

1− [Ar]3d10{4s4p,4p4d}, [Ar]3d9{4s4p4d,4s4d4f,4p3,4p24f,4s24p} 31

4s4p 3P o
2 → 4s5s 3S1 0.01 2− [Ar]3d10{4s4p,4p4d}, [Ar]3d9{4s4p4d,4s4d4f,4p3,4p24f,4s24p} 31

1+ [Ar]3d10{4s5s,4p2}, [Ar]3d9{4s4d5s,4p25s,4p4f 5s} 14

Within this approach, the electronic factor Fk for the
transition k is estimated by

Fk = Z

3h̄

(
e2

4πε0

)
�|�(0)|2k, (13)

which is proportional to the change of the total electron
probability density at the origin between levels l and u,

�|�(0)|2k = �ρe
k (0) = ρe

u(0) − ρe
l (0). (14)

As the potential Vnuc(ri) of Eq. (1) is isotope dependent,
the radial functions vary from one isotope to another, which
defines isotopic relaxation. However, the latter is very small
and is hence neglected along the isotopic chain. Thus the
wave function � is optimized for a specific isotope within
this approach.

IV. ACTIVE SPACE EXPANSION

To effectively capture electron correlation, CSFs of a
particular symmetry J and parity � are generated through
substitutions within an active space (AS) of orbitals, consisting
of orbitals occupied in the reference configurations and
correlation orbitals. From hardware and software limitations,
it is impossible to use complete AS wave functions that would
include all CSFs with appropriate J and � for a given orbital
AS. Hence the CSF expansions have to be constrained, ensur-
ing that major correlation substitutions are accounted for [42].

Single (S), double (D) (and triple (T), see Sec. IV C)
substitutions are performed on either a single-reference (SR)
set or a multireference (MR) set, the latter containing the
CSFs that have large expansion coefficients and account
for the major correlation effects. These substitutions take
into account valence-valence (VV) and core-valence (CV)
correlations. While the VV correlation model allows only SD
substitutions from valence orbitals, the VV+CV correlation
model considers restricted substitutions from core and valence
orbitals. The restriction is applied to double (and triple)
substitutions, denoted as SrD(T), in such a way that only one
electron is substituted from the core shells; the other one (or
two) has (have) to be substituted from the valence shells.

Zn I has two valence electrons (n = 4) outside an [Ar] 3d10

core. The MR sets (see Sec. IV B) are obtained by performing
SrDT substitutions from the 3d and the occupied valence
orbitals to the n = 4 valence orbitals + 5s, {5s,5p},or {5s,6s},
depending on the targeted state 4s2 1S0, 4s4p 3P o

1,2, or 4s5s 3S1

(maximum of one hole in the 3d orbital). An SCF procedure is
then applied to the resulting CSFs, providing the orbital set and
the expansion coefficients. Due to limited computer resources,
such an MR set would be too large for subsequent calculations.

Hence, only the CSFs whose expansion coefficients are, in
absolute value, larger than a given MR cutoff are kept, i.e.,
|cν | > εMR. The εMR values and the resulting MR sets are
listed in Table I for both transitions.

The 1s orbital is kept closed in all calculations, i.e., no
substitutions from this orbital are allowed. Tests show that
opening the 1s orbital does not affect the MS and FS factors
within the accuracy attainable in the present calculations.
Only orbitals occupied in the single configuration DHF
approximation are treated as spectroscopic, i.e., are required to
have a node structure similar to the corresponding hydrogenic
orbitals [42]. The occupied reference orbitals are frozen in
all subsequent calculations. A layer is defined as a subset of
virtual orbitals with different angular symmetries, optimized
simultaneously in one step and frozen in all subsequent
ones [42]. One layer of {s,p,d,f,g} symmetries and four of
{s,p,d,f,g,h} are successively generated. At each step of the
generation of the virtual orbital set, only the orbitals belonging
to the last layer are subject to the variational SCF procedure,
while all previously generated layers are kept frozen.

The effect of adding the Breit interaction to the Dirac-
Coulomb Hamiltonian, (1), is found to be much smaller than
the uncertainty in the transition IS factors with respect to
the correlation model. This interaction has therefore been
neglected in the procedure.

Within the three following correlation models, separate
orbital basis sets are optimized for the lower state and the upper
state of each studied transition. For each state, the optimization
procedures are summarized as follows:

A. SrD-SR model

(1) Perform a calculation using an SR set consisting
of CSF(s) with the form 2s22p63s23p6 3d10nln′l′J�, with
nln′l′ = 4s2, 4s4p, or 4s5s (following the considered state).

(2) Keep the orbitals fixed from step (1), and optimize an
orbital basis layer-by-layer up to nl = 9h described by CSFs
with the J� symmetry of the state. These CSFs are obtained
by SrD substitutions (at most one from the 2s22p63s23p63d10

core) on the SR set from step (1).

B. SrD-MR model

(1) Perform a calculation using an MR set consist-
ing of CSFs with two forms: 2s22p63s23p6 3d10nln′l′J�

with nl,n′l′ = 4s,4p,4d,4f + 5s, {5s,5p},or {5s,6s}, and
2s22p63s23p63d9nln′l′ n′′l′′J� with nl,n′l′,n′′l′′ = 4s,4p,

4d,4f + 5s, {5s,5p},or {5s,6s} (following the considered
state). These CSFs account for a fair amount of the VV
correlation, and for CV correlations between the 3d core
orbital and the valence orbitals.
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TABLE II. Level MS factors, KNMS and KSMS (in meEh), and electronic probability density at the origin, ρe(0) (in a−3
0 ), as functions of the

increasing AS for the 4s2 1S0 → 4s4p 3P o
1 transition in Zn I. SrD-SR, SrD-MR, and SrDT-SS results are displayed. �u

l stands for the difference
between the values of the upper level and the lower level, and NCSFs is the total number of CSFs for each AS.

KNMS (units of meEh) KSMS (units of meEh) ρe(0) (units of a−3
0 )

AS NCSFs Lower Upper �u
l Lower Upper �u

l Lower Upper �u
l

SrD-SR
DHF 3 1779.7094 1779.6087 −0.1007 −435.1390 −435.3603 −0.2213 25020.8467 25014.1784 −6.6683
CV 4f 1585 1779.3810 1779.3616 −0.0194 −434.1727 −434.7012 −0.5285 25022.5672 25015.3383 −7.2289
CV 5g 6436 1779.4201 1779.3906 −0.0295 −434.2497 −434.7169 −0.4672 25022.7738 25015.5299 −7.2439
CV 6h 15833 1779.4854 1779.4168 −0.0686 −434.2512 −434.7035 −0.4523 25023.5160 25015.8568 −7.6592
CV 7h 29805 1779.4814 1779.4152 −0.0662 −434.2538 −434.6830 −0.4292 25023.4618 25015.8565 −7.6053
CV 8h 48352 1779.4882 1779.4179 −0.0703 −434.2501 −434.6797 −0.4296 25023.6107 25015.9192 −7.6915
CV 9h 71474 1779.4876 1779.4179 −0.0697 −434.2531 −434.6720 −0.4189 25023.5853 25015.9275 −7.6578

SrD-MR
CV 4f 1088 1779.2665 1779.3470 0.0805 −434.0901 −434.7119 −0.6218 25022.5107 25015.2195 −7.2912
CV 5g 15463 1779.4103 1779.3901 −0.0202 −434.1951 −434.7086 −0.5135 25022.8213 25015.5398 −7.2815
CV 6h 42245 1779.4806 1779.4195 −0.0611 −434.1945 −434.6992 −0.5047 25023.5798 25015.8522 −7.7276
CV 7h 83064 1779.4787 1779.4184 −0.0603 −434.1962 −434.6776 −0.4814 25023.5231 25015.8608 −7.6623
CV 8h 137920 1779.4857 1779.4213 −0.0644 −434.1917 −434.6743 −0.4826 25023.6749 25015.9234 −7.7515
CV 9h 206813 1779.4861 1779.4215 −0.0646 −434.1951 −434.6668 −0.4717 25023.6442 25015.9303 −7.7139

SrDT-SS
CV 4f 1910 1779.3311 1779.3772 0.0461 −434.1038 −434.7129 −0.6091 25022.6098 25015.3267 −7.2831
CV 5g 15158 1779.4141 1779.3852 −0.0289 −434.2114 −434.7181 −0.5067 25022.8130 25015.5123 −7.3007
CV 6h 63142 1779.4690 1779.4149 −0.0541 −434.2092 −434.7107 −0.5015 25023.4879 25015.8049 −7.6830
CV 7h 168471 1779.4748 1779.4133 −0.0615 −434.2096 −434.6877 −0.4781 25023.4273 25015.7942 −7.6331
CV 8h 354053 1779.4835 1779.4204 −0.0631 −434.2005 −434.6866 −0.4861 25023.5226 25015.8584 −7.6642
CV 9h 642796 1779.4831 1779.4186 −0.0645 −434.2020 −434.6844 −0.4824 25023.4961 25015.8391 −7.6570

(2) Keep the orbitals fixed from step (1), and optimize an
orbital basis layer-by-layer up to nl = 9h described by CSFs
with the J� symmetry of the state. These CSFs are obtained
by SrD substitutions (at most one from the 2s22p63s23p63d10

core) on the MR set from step (1).

C. SrDT-SS model

(1) Perform a calculation using a set consisting
of CSFs with two forms: 2s22p63s23p63d9nl n′l′n′′l′′J�

and 2s22p63s23p53d10nln′l′n′′l′′J�, with nl,n′l′,n′′l′′ =
4s,4p,4d,4f + 5s, {5s,5p}, or {5s,6s} (following the con-
sidered state). These CSFs also account for a fair amount
of the VV correlation, and for CV correlations between
the 3p and 3d core orbitals and the valence orbitals. Add
single s substitutions (SS) by including the following CSFs:
2s22p63s3p63d10nln′l′n′′l′′J� and 2s2p63s23p63d10nln′l′
n′′l′′J�, with nln′l′n′′l′′ = 4s25s,4s4p5s, or 4s5s6s.

(2) Keep the orbitals fixed from step (1), and optimize
an orbital basis layer-by-layer up to nl = 9h described by
CSFs with the J� symmetry of the state. These CSFs are
obtained by SrDT-SS substitutions (at most one from the
2s22p63s23p63d10 core) in the same way as in step (1).
Although this model does not include all CV effects deep
down in the core, it includes the ones that are important for
getting accurate electron densities.

It is important to mention that core-core (CC) contributions,
i.e., unrestricted SD substitutions from core orbitals, are not
accounted for, contrary to the strategy adopted in the papers
on Mg I [37] and Al I [38]. Indeed, the CSF expansions in Zn I

become too large when CC correlations within the complete
2s22p63s23p63d10 core orbitals are added to the nl = 9h AS,
counting for the Jπ = 2− state more than 108 CSFs for the
SrD-MR and SrDT-SS models. Such expansions exceed the
capacity of our current computer resources by an order of
magnitude. Restricting the CC correlations to only those within
the 3d core orbital leads to around 107 CSFs. Applying an SCF
procedure takes too much computing time, but the use of the
CI method would be feasible by means of a Brillouin-Wigner
perturbative zero- and first-order partition of the CSF space
[50,51]. However, the computational task for estimating the IS
factors with RIS3 would exceed our current CPU time resources
for such large expansions. Note that the calculations were
performed with MPI programs for computing the energies and
wave functions, and with the serial RIS3 program for estimating
the IS factors.

The CC correlation effects are known to be more balanced
with a common orbital basis for describing both upper and
lower states, resulting in more accurate transition energies,
as mentioned in Refs. [37,38,52]. Hence, neglecting CC
contributions enables us to use separate orbital basis sets, in
which orbital relaxation is allowed.

V. NUMERICAL RESULTS

Let us first study the convergence of the level MS factors,
KNMS and KSMS (in meEh), and the electronic probability
density at the origin, ρe(0) (in a−3

0 ), of a given transition
as a function of the increasing AS. Tables II and III display
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TABLE III. Level MS factors, KNMS and KSMS (in meEh), and electronic probability density at the origin, ρe(0) (in a−3
0 ), as functions of

the increasing AS for the 4s4p 3P o
2 → 4s5s 3S1 transition in Zn I. SrD-SR, SrD-MR, and SrDT-SS results are displayed. �u

l stands for the
difference between the values of the upper level and the lower level, and NCSFs is the total number of CSFs for each AS.

KNMS (meEh) KSMS (meEh) ρe(0) (a−3
0 )

AS NCSFs Lower Upper �u
l Lower Upper �u

l Lower Upper �u
l

SrD-SR
DHF 2 1779.6069 1779.5190 −0.0879 −435.3606 −435.2350 0.1256 25014.1581 25016.5128 2.3547
CV 4f 1878 1779.3680 1779.3562 −0.0118 −434.7083 −434.6908 0.0175 25015.3327 25017.6406 2.3079
CV 5g 8294 1779.3906 1779.3685 −0.0221 −434.7230 −434.6866 0.0364 25015.5156 25017.8105 2.2949
CV 6h 21127 1779.4165 1779.3704 −0.0461 −434.7079 −434.6412 0.0667 25015.8484 25018.1404 2.2920
CV 7h 40409 1779.4131 1779.3759 −0.0372 −434.6870 −434.6470 0.0400 25015.8434 25018.1825 2.3391
CV 8h 66140 1779.4152 1779.3800 −0.0352 −434.6836 −434.6517 0.0319 25015.9080 25018.2378 2.3298
CV 9h 98320 1779.4153 1779.3800 −0.0353 −434.6765 −434.6451 0.0314 25015.9164 25018.2753 2.3589

SrD-MR
CV 4f 1849 1779.3530 1779.3132 −0.0398 −434.7178 −434.6881 0.0297 25015.2232 25017.5319 2.3087
CV 5g 23228 1779.3908 1779.3614 −0.0294 −434.7132 −434.6779 0.0353 25015.5309 25017.8255 2.2946
CV 6h 63694 1779.4181 1779.3681 −0.0500 −434.7005 −434.6348 0.0657 25015.8400 25018.1319 2.2919
CV 7h 125477 1779.4165 1779.3794 −0.0371 −434.6794 −434.6419 0.0375 25015.8486 25018.2033 2.3547
CV 8h 208577 1779.4193 1779.3832 −0.0361 −434.6761 −434.6464 0.0297 25015.9133 25018.2413 2.3280
CV 9h 312994 1779.4195 1779.3833 −0.0362 −434.6694 −434.6390 0.0304 25015.9190 25018.2852 2.3662

SrDT-SS
CV 4f 3200 1779.3812 1779.3536 −0.0276 −434.7171 −434.6938 0.0233 25015.3273 25017.6190 2.2917
CV 5g 26910 1779.3867 1779.3616 −0.0251 −434.7232 −434.6949 0.0283 25015.5067 25017.7892 2.2825
CV 6h 115307 1779.4137 1779.3602 −0.0535 −434.7115 −434.6473 0.0642 25015.7964 25018.0507 2.2543
CV 7h 310609 1779.4120 1779.3770 −0.0350 −434.6903 −434.6580 0.0323 25015.7839 25018.1262 2.3423
CV 8h 655770 1779.4183 1779.3822 −0.0361 −434.6888 −434.6538 0.0350 25015.8467 25018.1656 2.3189
CV 9h 776840 1779.4187 1779.3822 −0.0365 −434.6816 −434.6471 0.0345 25015.7979 25018.1282 2.3303

the SrD-SR, SrD-MR, and SrDT-SS values, respectively, for
the 4s2 1S0 → 4s4p 3P o

1 and 4s4p 3P o
2 → 4s5s 3S1 transitions.

The AS is extended until convergence of the differential results
�u

l is achieved, which requires the nl = 9h correlation layer
(denoted as “CV 9h”).

Let us start the analysis with the 4s2 1S0 → 4s4p 3P o
1

transition. A satisfactory convergence is found for the
three correlation models. The relative difference between
the “CV 8h” and “CV 9h” values is 0.3%–2.2% for
�KNMS, 0.8%–2.5% for �KSMS, and 0.4%–0.5% for
�ρe(0), following the model. The analysis is similar for the
4s4p 3P o

2 → 4s5s 3S1 transition, where the CV 8h − CV 9h

relative differences reach 0.3%–1.1% for �KNMS, 1.4%–2.4%
for �KSMS, and 0.5%–1.6% for �ρe(0).

For both transitions, the relative differences are larger
for �KSMS, as expected from the two-body nature of the
SMS operator, which makes it more sensitive to electron
correlation than the one-body NMS and density operators.
However, the convergence achieved for the SMS factors is
highly satisfactory, remembering that small variations in the
level values due to correlation effects can lead to a significant
variation in the transition values. This illustrates the challenge
of obtaining reliable values for the SMS factors with such a
computational approach.

At this stage, convergence within the three correlation
models has been investigated. However accuracy is not
obviously implied, simply because the models may not be
suitable for the studied properties. Hence, one also needs
to compare the obtained results of the transition energies

and IS factors with reference values. Table IV displays the
energies, �E (in cm−1), of the two studied transitions in
Zn I. The SrD-SR, SrD-MR, and SrDT-SS CV 9h values are
compared with experimental NIST data [53] and theoretical
results [10,15,19,20,23,26].

Let us consider the 4s2 1S0 → 4s4p 3P o
1 transition.

Głowacki and Migdałek [15] performed relativistic CI com-
putations with Dirac-Fock wave functions using an ab initio
model potential. Liu et al. [19] used the MCDHF method,
adopting a strategy on which the SrDT-SS model is based.

TABLE IV. Energies �E (in cm−1) of the two studied transitions
in Zn I. Comparison with experimental NIST data [53] and theo-
retical results [10,15,19,20,23,26]. Values from Refs. [10] and [26]
correspond to nonrelativistic computations.

�E (cm−1)

This work NIST [53] Theory

4s2 1S0 → 4s4p 3P o
1

SrD-SR 31 878 32 501.421 32 153 [15]
SrD-MR 32 561 31 804 [19]
SrDT-SS 32 460 32 193 [20]

32 338 [23]
4s4p 3P o

2 → 4s5s 3S1

SrD-SR 20 769 20 781.928 20 547 [10]
SrD-MR 20 794 22 488 [26]
SrDT-SS 20 732
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Froese Fischer and Zatsarinny [20] carried out MCHF and
B-spline R-matrix calculations, including Breit-Pauli cor-
rections. Finally, Chen and Cheng [23] used B-spline basis
functions for large-scale relativistic CI computations including
QED corrections. Table IV shows that the SrD-SR model
provides a relative error of 1.9% in comparison with NIST data.
Better agreement is found with the more elaborate SrD-MR
(0.2%) and SrDT-SS models (0.1%). It is clear from the
comparison with the four above-cited theoretical works that
our SrD-MR and SrDT-SS results show better agreement with
NIST data.

In contrast to the 4s2 1S0 → 4s4p 3P o
1 transition, very few

papers investigated the 4s4p 3P o
2 → 4s5s 3S1 transition. To our

knowledge, the only existing theoretical works were led by
Biémont and Godefroid [10] using the MCHF method and by
Liu et al. [26] using the R-matrix method in the LS-coupling
scheme. Both works are nonrelativistic, and the transition
energies must be compared with the J -averaged value �E =
20 975.905 cm−1 from NIST. Table IV shows that the SrD-SR
model provides a relative error of 0.06% in comparison
with NIST data, while the SrD-MR and SrDT-SS models
respectively provide 0.06% and 0.24%. Excellent agreement
is thus found for all three models, and correlation beyond the
SrD-SR model does not improve the accuracy on �E.

Let us now compare the computed ab initio IS electronic
factors with reference results from the literature. As pointed
out in Sec. I, most theoretical works report on properties in Zn I

and Zn-like ions other than IS factors. The only existing papers
discussing SMS factors in Zn I are seminal works in which low
associated confidence is shown, compared with the accuracy
to which IS measurements can be made [5]. In addition, high-
precision study of ISs has been carried out in the Zn+ ion
(Zn II). Kloch et al. [54] published measurements of optical
ISs in the stable 64,66−68,70Zn isotopes for the 3d104p 2P o

1/2 →
3d94s2 2D3/2 transition (589.4 nm) in Zn II. Foot et al. [55]
interpreted these measurements in terms of variations in the
nuclear charge distribution. The measured ISs were separated
into MS and FS contributions by combining the data with
δ〈r2〉 results from electron scattering and muonic (μ-e) IS
experiments performed by Wohlfahrt et al. [56].

Campbell et al. [5] measured ISs between the same stable
isotopes for the 4s2 1S0 → 4s4p 3P o

1 transition (307.6 nm).
The ratio of FS factors, F589.4/F307.6 = −3.06(16), was ex-
tracted from a King plot using the IS measurements from

Refs. [54] and [55]. The F -factor calculations of Blundell et al.
[30,31] enabled an estimate of F307.6 = −1260 MHz/fm2 to
be made. Note that the original value of −1510 MHz/fm2

appearing in Ref. [5] is actually a misprint [57].
Finally, the separation of the MS contribution proceeded

through a King plot using the corrected F307.6 value together
with δ〈r2〉μ−e data from Ref. [56]. Dividing the obtained MS
between 66Zn and 64Zn isotopes, δν

66,64
MS = 921(31) MHz, by

(1/M66 − 1/M64) yields �K̃MS = −1970(29) GHz u. The
nuclear masses M66 and M64 are calculated by subtracting the
mass of the electrons from the atomic masses and by adding
the binding energy [58–60].

Yang et al. [6] measured ISs between the same stable
isotopes for the 4s4p 3P o

2 → 4s5s 3S1 transition (481.2 nm).
To calibrate the FS factor, a King plot was made using their
set of ISs against the measured ISs from Ref. [5]. This process
enabled an estimate of F481.2 = 301(51) MHz/fm2 to be made,
assuming an error of 10% on the erroneous F307.6 value of
−1510 MHz/fm2.

To calibrate the MS factor, another King plot involving
their set of ISs together with the calibrated F481.2 value
and δ〈r2〉μ−e data from Ref. [56] enabled the extraction
of �K̃MS = −59(18) GHz u, adopting the sign conventions
(4) and (7) of the present work. After correction of the
F307.6 value from −1510 MHz/fm2 to −1260 MHz/fm2, the
FS and MS factors become F481.2 = 251(42) MHz/fm2 and
�K̃MS = −73(15) GHz u [61].

Experimentalists often split the total MS into the NMS and
SMS contributions by estimating the NMS factor, �K̃k,NMS,
with the scaling law approximation as

�K̃k,NMS ≈ −meν
expt
k , (15)

where me is the mass of the electron, and ν
expt
k is the

experimental transition energy of transition k, available in the
NIST database [53]. Doing so, one obtains �K̃NMS = −535
GHz u for the 4s2 1S0 → 4s4p 3P o

1 transition and �K̃NMS =
−342 GHz u for the 4s4p 3P o

2 → 4s5s 3S1 transition, respec-
tively yielding the SMS contributions �K̃SMS = −1435(29)
GHz u and �K̃SMS = 269(15) GHz u. Table V displays
the SrD-SR, SrD-MR, and SrDT-SS CV 9h MS factors,
�K̃NMS,�K̃SMS, and �K̃MS (in GHz u), and FS factors, F (in
MHz/fm2), of the two studied transitions in Zn I. The values of
�K̃NMS are compared with the results from Eq. (15) (“Scal.”),
those of �K̃SMS and F with results from Refs. [5,6,61].

TABLE V. MS factors, �K̃NMS,�K̃SMS, and �K̃MS (in GHz u), and FS factors, F (in MHz/fm2), of the two studied transitions in Zn I.
Comparison of �K̃NMS with values from the scaling law (15), and of �K̃SMS and F with results from Refs. [5,6,61].

�K̃NMS (GHz u) �K̃SMS (GHz u) �K̃MS (GHz u) F (MHz/fm2)

This work Scaling law (15) This work Other This work Other This work Other

4s2 1S0 → 4s4p 3P o
1

SrD-SR −252 −535 −1512 −1435(29) [5] −1764 −1970(29) [5] −1131 −1260 [5]
SrD-MR −233 −1703 −1936 −1139
SrDT-SS −233 −1741 −1974 −1130

4s4p 3P o
2 → 4s5s 3S1

SrD-SR −127 −342 113 269(15) [6,61] −14 −73(15) [6,61] 348 251(42) [6,61]
SrD-MR −131 110 −21 349
SrDT-SS −132 125 −7 343
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FIG. 1. MS factors, �K̃NMS and �K̃SMS (in GHz u), as functions of the increasing AS for (a)−(b) the 4s2 1S0 → 4s4p 3P o
1 transition and

(c)−(d) the 4s4p 3P o
2 → 4s5s 3S1 transition in Zn I. “RNMS” and “RSMS” labels (solid lines) refer to the expectation values of the relativistic

recoil Hamiltonian (9) while “NMS” and “SMS” labels (dashed lines) refer to the expectation values of its non-relativistic counterpart. �K̃NMS

are compared with values from the scaling law (15), and �K̃SMS with results from Refs. [5,6,61]. The horizontal dashed-dotted lines in (b) and
(d) correspond to experimental uncertainties on �K̃SMS.

Equation (15) is only strictly valid in the nonrelativistic
framework, and the relativistic nuclear recoil corrections to
�K̃NMS can be computed with RIS3 as the expectation values
of the relativistic part of the one-body term in the nuclear recoil
Hamiltonian (9), as shown in Fig. 1.

Let us start the comparison of the IS factors with the
4s2 1S0 → 4s4p 3P o

1 transition. After correction, the FS factor
from Ref. [5] is in better agreement with our values, the relative
difference reaching 10%. Moreover, the three models provide
values in the same range, as expected from the one-body nature
of the density operator. Turning to the total MS factor, it
is seen that �K̃MS is in excellent agreement with Ref. [5]
for the SrDT-SS model while it does not agree within the
experimental error bars for the SrD-MR model, although the
discrepancies are not large. By contrast, the SrD-SR model
provides a number 200 GHz u higher, illustrating the sensitivity
to electron correlation of the two-body SMS operator. Hence,
correlation beyond the SrD-SR model improves the accuracy
on �K̃MS.

Analyzing the NMS and SMS factors separately, Table V
shows that the three models provide �K̃NMS values in the
same range as for the FS factor. Moreover, these results totally

disagree with the number from the scaling law. Figure 1 shows
that the relativistic nuclear recoil corrections to �K̃NMS are
important (134 GHz u), representing around +33% of the
NMS results obtained when neglecting them. The extracted
�K̃SMS value is also in disagreement with the results from
the three models, as expected from the analysis of �K̃NMS.
Figure 1 shows that the relativistic corrections to �K̃SMS are
much less important (62 GHz u), representing around +3% of
the SMS results obtained when neglecting them. In addition,
these corrections on both MS factors are insensitive to electron
correlation, staying constant along the increasing AS and being
independent from the model.

It is shown from this analysis that only the sum of the
NMS and SMS factors can be comparable with observation,
the total HMS being the only MS operator corresponding to
an observable. The relativistic corrections partly cancel when
summing �K̃NMS and �K̃SMS, leading to 196 GHz u for the
three models, which represent 10%–11% of the relativistic
�K̃MS values displayed in Table V. Hence, neglecting these
corrections would bring the SrD-MR and SrDT-SS values
around 200 GHz u too low in comparison with the experimental
number.
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The analysis is different for the 4s4p 3P o
2 → 4s5s 3S1

transition. None of the computed FS factors, whose average
value is F = 346(3) MHz/fm2, agrees with the number from
Refs. [6] and [61], although the three models provide values
very close to each other. Turning to the total MS factor, an
average of �K̃MS = −14(7) GHz u can be deduced from
the three computed values. Thus, an important discrepancy
is found between this result and the number from Refs. [6] and
[61].

Moreover, it is not clear that correlation beyond the
SrD-SR model improves the accuracy of �K̃MS for this
transition. Indeed, in contrast to the previous transition, a
strong cancellation is observed between the values of the NMS
and SMS factors. Hence, small variations of the SMS factor
due to correlation effects can significantly influence the total
MS factor, leading to large theoretical error bars on the latter
when comparing the models.

Analyzing the NMS and SMS factors separately, Table V
shows that the three models provide �K̃NMS values in the
same range, as it was the case for the previous transition.
Again, these results totally disagree with the number from the
scaling law. Figure 1 shows that the relativistic corrections
to �K̃NMS remain as important as in the previous transition
(−34 GHz u), representing around −33% of the NMS results
obtained when neglecting them. The extracted �K̃SMS value is
also in disagreement with our results. Figure 1 shows that the
relativistic corrections to �K̃SMS are twice less important than
for �K̃NMS (−23 GHz u), representing around −17% of the
SMS results obtained when neglecting them. In addition, these
two corrections are also insensitive to electron correlation.

Again, one concludes from this analysis that only the
total MS factor is likely to be comparable with observation,
although the discrepancy between theory and experiment
is much higher than for the first transition. When sum-
ming �K̃NMS and �K̃SMS, the relativistic corrections reach
−57 GHz u for the three models, which represents more
than twice the relativistic �K̃MS values displayed in Table V.
Hence, neglecting these corrections would change the sign of
all three values, and the agreement with the experiment would
be worse.

Finally, fully nonrelativistic MCHF computations of SMS
factors are carried out for the two transitions of interest
using the ATSP2K program package [41] and following the
computational strategy of the SrD-SR and SrDT-SS models.
For the 4s2 1S0 → 4s4p 3P o

1 transition, the CV 9h values are
�K̃SMS = −1511 GHz u for SrD-SR and −1731 GHz u for
SrDT-SS, in excellent agreement with the fully relativistic re-
sults displayed in Table V. Hence, the relativistic corrections to
the wave functions counterbalance the relativistic corrections
to the HSMS operator for this transition. For the 4s4p 3P o

2 →
4s5s 3S1 transition, the CV 9h values are �K̃SMS = 178 GHz u
for SrD-SR and 175 GHz u for SrDT-SS, around 50–60 GHz u
higher than the relativistic results from Table V. Hence, the
relativistic corrections to the wave functions add to those of
the HSMS operator for this transition.

Attempts to solve the discrepancies highlighted in this work
are ongoing [62]. Yang et al. are reinvestigating the extraction
of the MS factor for the 4s4p 3P o

2 → 4s5s 3S1 transition
using the present computed average value of F481.2 = 348(1)

MHz/fm2 (with an associated 10%–15% error) in several King
plots, together with their 481.2-nm ISs, the 589.4-nm ISs
from Ref. [55], and δ〈r2〉μ−e data from Ref. [56]. Since it
is shown that inconsistency occurs in both FS and MS factors
when plotting the 481.2-nm ISs against the 307.6-nm ones,
the coauthors of [62] try to calibrate the MS factor without
using Ref. [5]. Moreover, as the present �K̃NMS values do not
agree with the scaling law, the NMS factor will not be fixed
in the fit processes, contrary to the procedure adopted in the
previous calibration. Note that the actual aim of Ref. [62]
is the determination of accurate δ〈r2〉 values between the
64,66−68,70Zn stable isotopes using the present computed F481.2

factor and the new calibrated 481.2-nm MS factor.

VI. CONCLUSIONS

This work describes ab initio relativistic calculations
of IS electronic factors in many-electron atoms using the
MCDHF approach. The adopted computational approach for
the estimation of the MS and FS factors for two transitions
between low-lying states in Zn I is based on the expectation
values of the relativistic recoil Hamiltonian for a given isotope,
together with the FS factors estimated from the total electron
densities at the origin. Three different correlation models
are explored in a systematic way to determine a reliable
computational strategy and estimate theoretical error bars of
the IS factors.

Within each correlation model, the convergence of the level
MS factors and the electronic probability density at the origin,
as a function of the increasing active space, is studied for
the 4s2 1S0 → 4s4p 3P o

1 and 4s4p 3P o
2 → 4s5s 3S1 transitions.

Satisfactory convergence is found within the three correlation
models and for both studied transitions. It is shown that small
variations in the level values due to correlation effects can
lead to more significant variations in the transition values,
concerning mainly the SMS factors.

The accuracy of the results obtained from the different
correlation models is investigated by comparison with ref-
erence values. The transition energies show good agreement
with observation available in the NIST database. Moreover, for
both transitions the �E results are more accurate than numbers
provided by other theoretical works. Since most of these works
report on properties other than IS factors, results obtained in the
present work are compared with numbers extracted from two
experiments. Good agreement of the computed FS and total
MS factors is found for the 4s2 1S0 → 4s4p 3P o

1 transition. By
contrast, the results are not consistent with values extracted
from two King-plot processes for the 4s4p 3P o

2 → 4s5s 3S1

transition.
Significant discrepancies between theory and experiment

appear when using the scaling law approximation (15) to
separate the NMS from the total MS. Indeed, the �K̃NMS

results completely disagree with numbers provided by this
approximation, illustrating the rather fast breakdown of this
law based on nonrelativistic theory with respect to the atomic
number Z. This breakdown has already been highlighted
in heavier systems [63,64]. In consequence, the �K̃SMS

results also disagree with the extracted experimental values.
To investigate these discrepancies, relativistic nuclear recoil
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corrections to �K̃NMS and �K̃SMS are discussed and quantified
for both transitions. It is shown that neglecting them leads
to larger discrepancies with observation for the total �K̃MS

values. Finally, fully nonrelativistic calculations of the SMS
factors are carried out with the MCHF method, considering
the SrD-SR and SrDT-SS models. It is shown that the
relativistic corrections to the wave functions counterbalance
the relativistic nuclear recoil corrections for the 4s2 1S0 →
4s4p 3P o

1 transition, while they add for the 4s4p 3P o
2 →

4s5s 3S1 transition.
From a theoretical point of view, it would be worthwhile

to study the effects of the omitted CC correlations within the
3d core orbital. Considerable code development is necessary
in order to perform such large calculations in a reasonable
time. A common optimization of the orbital sets is also
required. Another possible way to improve the accuracy of the
present results is the use of the partitioned correlation function
interaction (PCFI) approach [65]. It is based on the idea of
relaxing the orthonormality restriction on the orbital basis and
breaking down the very large calculations in the traditional

multiconfiguration methods into a series of smaller parallel
calculations. This method is very flexible for targeting different
electron correlation effects. Additionally, electron correlation
effects beyond the SrD-MR and SrDT-SS models (such as
quadruple substitutions) can be included perturbatively. Work
is being done in these directions.
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