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Gaussian states are the backbone of quantum information protocols with continuous-variable systems whose
power relies fundamentally on the entanglement between the different modes. In the case of global pure states,
knowledge of the reduced states in a given bipartition of a multipartite quantum system bears information on the
entanglement in such bipartition. For Gaussian states, the reduced states are also Gaussian, so their determination
requires essentially the experimental determination of their covariance matrix. Here we develop strategies to
determine the covariance matrix of an arbitrary n-mode bosonic Gaussian state through measurement of the total
phase acquired when appropriate metaplectic evolutions, associated with quadratic Hamiltonians, are applied.
Simply one-mode metaplectic evolutions, such rotations, squeezing, and shear transformations, in addition to
a single two-mode rotation, allows us to determine all the covariance matrix elements of an n-mode bosonic
system. All the single-mode metaplectic evolutions are applied conditionally to a state in which an ancilla qubit
is entangled with the n-mode system. The ancillary system provides, after measurement, the value of the total
phase of each evolution. The proposed method is experimentally suited to implement in the most currently used
continuous-variable systems.
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I. INTRODUCTION

Quantum information processing is a research area devoted
to the study of information processing with quantum states. Its
importance relies on the great advantages its protocols have in
comparison with the currently known protocols of classical
information processing. The theoretical realm of quantum
information processing comprises quantum computation or
simulation, and quantum communication protocols, with em-
phasis on quantum teleportation and quantum cryptography.

Whereas the first advances regarding the theoretical de-
velopment and the experimental implementation of quantum
information processing arose in systems with finite Hilbert
spaces, more recently almost all the quantum information pro-
tocols have been extended to systems with infinite-dimensional
Hilbert spaces, called continuous-variable (CV) systems [1–4].
For example, two schemes of quantum computation in discrete
variables, i.e., quantum computation based on sequential
applications of quantum gates and the one-way measurement-
based quantum computation based on cluster states, were
recently generalized to continuous-variable systems [5–7]. The
same goes for the protocols of quantum teleportation, quantum
cloning, quantum dense coding, and quantum cryptography
[2,8–11], some of which have already been experimentally
implemented [12–15].

It is worth noting that in the transition from discrete-
to continuous-variable systems some advantages are gained,
since several quantum information protocols are optimized
using infinite-dimensional Hilbert spaces [2]. Moreover, the
entanglement, the main resource in quantum processing
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protocols, can be efficiently produced using squeezed light
and linear optics [16]. In addition, entanglement can also be
detected more efficiently because the detectors for CVs in
the optical domain are traditionally more efficient. Indeed,
the generation and manipulation of highly entangled states is
achievable in CV systems [17,18] and very often continuous-
variable entanglement surpasses its discrete counterpart.

When dealing with entangled CV systems, Gaussian states
(GSs) stand out as the paradigmatic ones [19–24]. These states
constitute a powerful setting for quantum communication
and quantum information protocols [10,25,26] and lie at
the heart of CV optical and atomic technologies [27–29].
Considerable effort has been devoted to characterizing the
informational properties and the entanglement structure of GSs
[3,23,24,30–42]. Particularly noteworthy is the exceptional
role of GSs in CV systems, since they are extremal with respect
to various applications [43].

Highly multipartite entangled GSs (cluster states) can be
produced, for example, by multimode frequency combs gener-
ated by a synchronously pumped optical parametric oscillator
(SPOPO) [6,17,44–46]. Within this setup, a frequency comb
with 60 entangled modes of the electromagnetic field was
reported in [17]. Also, Gaussian states are easy to prepare and
control in trapped ions, atomic ensembles, and optomechanical
systems [3]. In particular, a trapped ionic system manipulated
by laser light is now one of the most developed settings
for the experimental investigation of quantum effects and
processing of quantum information [28,47,48]. The trapping
potential confines the system to a harmonic motion in the
vibrational modes, whose ground state is a GS [28,49].
A scheme of quantum computation over the vibrational
modes of a single trapped ion was recently suggested [50].
Highly entangled Gaussian states can also be generated, to
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a good approximation, with twin photons generated in the
spontaneous parametric down-conversion (SPDC), since they
can be performed as generalizations of two-mode squeezed
states [29,51–53].

The complete determination of a generic (non-Gaussian)
state relies on a fully tomographic process. However, GS
characterization is achieved by specifying only its first and
second canonical moments. The first moments can be freely
adjusted by local phase-space displacements and play no role
in determining entanglement properties of the state. Instead,
the second moments determine the so-called covariance
matrix (CM) and fully characterize the relevant informational
properties of the GS, particularly its entanglement structure.

Each physical type of continuous-variable systems has its
particular method for the determination of the covariance
matrix of the system state. In the context of quadrature modes
of the quantized electromagnetic field the traditional method
is homodyne detection, which involves the interference of the
input field to be probed with a local oscillator in a beam splitter.
In this case, the value of the chosen measured quadrature is
directly obtained from the difference of the photocurrent at
the output ports of the beam splitter. The fluctuations around
the mean values give the variances needed to infer the matrix
elements of the CM of the input field quantum state. In CV
systems where the quadrature measurement is not directly
accessible, there exist two different strategies to determine the
covariance matrix. These CV systems are generically massive
oscillators and the first strategy involves the measurement of a
qubit ancilla properly coupled to the oscillators, which directly
gives phase-space values of the Weyl characteristic function
of the quantum state. For one-vibrational modes of a trapped
ion this strategy was outlined in [54] and later generalized for
a network of oscillators in [55]. The second strategy is more
suitable in the context of optomechanical systems. It consists
in using a CV probe entangled with the oscillators [56,57]. In
this case an intracavity electromagnetic mode is coupled via
radiation pressure to a mechanical mode through one mobile
cavity mirror. The covariance matrix of the mechanical mode
is inferred through homodyne detection of the leaking field of
the cavity, which contains information about the intracavity
mode and hence about the mechanical mode. In the context of
the CV system corresponding to the spatial transverse modes
of single photons, the best method available to determine the
CM of a quantum state (Gaussian or not) was reported in [58].

Here we present a unified method to determine the co-
variance matrix of Gaussian states that can be implemented
in any CV system. The tools involved in our method are
unitary evolutions that preserve the Gaussianity of the evolved
state and the total phase acquired by the state under such
evolutions. The former corresponds to the metaplectic group
of unitary operations M̂S generated by quadratic Hamiltonians
in the position and momentum canonical conjugate operators
[22,59], which are characterized by a symplectic matrix S [59].
The second tool is the total phase acquired by the Gaussian
state ρ̂G through the evolution, given by [60]

φ = arg[Tr(M̂Sρ̂G)]. (1)

This is a particular case of a general extension of the total
phase φ = arg[〈ψ |Û |ψ〉], originally defined for pure states

ρ̂ = |ψ〉〈ψ |, where it was defined as the sum of the geometric
and dynamical phases of the evolution [61].

The feasibility of the method developed here relies basically
on two main features. The first one is that the required
unitary evolutions are one-mode metaplectic operators (such
as rotations, shearings, and squeezings [19,59,62]) and a single
two-mode rotation (i.e., a beam-splitter-like rotation [22]). The
second one is that these evolutions imprint the information
of the covariance matrix elements in the corresponding total
phases φ. Hence, by means of a protocol experimentally
favorable for measuring these total phases, the information
of the full covariance matrix can be recovered, irrespective of
the CV system involved. In particular, here we propose such
experimental protocols in three paradigmatic CV systems:
the quantized electromagnetic field, the vibrational modes in
trapped ions, and the transverse spatial degrees of freedom of
entangled single photons.

The work is structured as follows. In Sec. II we review the
Weyl-Wigner formalism that will allow us to calculate the total
phase acquired by Gaussian states under arbitrary metaplectic
evolutions. The metaplectic group, with special attention
paid to the Weyl and Wigner symbols of the metaplectic
operators, is introduced in Sec. III. The total phase acquired
by an n-mode arbitrary GS under metaplectic evolutions is
calculated in Sec. IV. In Sec. V we present the strategies that
allow for full determination of the covariance matrix (and
hence the GS) through the implementation of appropriate
metaplectic evolutions in different copies of the GS, plus
further measurement of the corresponding acquired phases.
Section V C is devoted to a brief outline of the main features
of Gaussian entanglement and the applicability of our method
to determine entanglement in bipartitions having 1 × (n − 1)
modes in GS. The general experimental protocol aimed at
measuring the total phase acquired by a general state under
an arbitrary unitary evolution is described in Sec. VI. We
also discuss specifically the case of metaplectic operations
over GSs. In Sec. VII we describe the implementation of the
protocol in the context of the spatial degrees of freedom of twin
photons generated in the SPDC, trapped ions, and quantized
modes of the electromagnetic field. Finally, a summary and
discussion are provided in Sec. VIII.

II. WEYL-WIGNER FORMALISM

We consider a multipartite system composed of n bosonic
modes, described through the column vector of operators
denoted by x̂ := (q̂1,p̂1, . . . ,q̂n,p̂n)�, where q̂j and p̂j stand
for the position and momentum operators, respectively, of
the j th mode. The usual commutation relation between these
operators can be succinctly written as [x̂j ,x̂k] = ih̄Jjk , where
x̂j (k) is the j th (kth) component of x̂, with Jjk being the
elements of the 2n × 2n symplectic matrix

J =
n⊕

j=1

J2, J2 ≡
(

0 1
−1 0

)
(2)

such that J� = −J = J−1. When dealing with only one mode,
it is useful to define the two-component column vector of
canonically conjugate operators x̂(j ) = (q̂j ,p̂j )� such that
[x̂(j )

k ,x̂
(j )
l ] = ih̄(J2)kl .
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An alternative description of n bosonic modes, more
often used in the context of second quantization, resorts
to the annihilation and creation operators of each mode,
âj := (1/

√
2h̄)(q̂j + ip̂j ) and â

†
j := (1/

√
2h̄)(q̂j − ip̂j ), re-

spectively. These operators satisfy the bosonic commutation
relations [âj ,â

†
k] = δjk and [âj ,âk] = [â†

j ,â
†
k] = 0. We will

resort to this description only to specify some quadratic
Hamiltonians that will appear in the following sections.

The Weyl translation operator is defined as [19,59,62]

T̂ξ := T̂ξ (1) ⊗ · · · ⊗ T̂ξ (n) = e(i/h̄)x̂�Jξ , (3)

where we define the chord ξ := (ξq1 ,ξp1 , . . . ,ξqn
,ξpn

)� and
ξ (j ) := (ξqj

,ξpj
). Note that the chord is a column vector

indicating the direction of the translation of the canonically
conjugate operators, i.e., T̂

†
ξ x̂T̂ξ = x̂ + ξ 1̂. Notice that the

translation operator is unitary, so T̂ −1
ξ = T̂

†
ξ = T̂−ξ .

The symplectic Fourier transform of T̂ξ is known as the
reflection operator [62,63], namely,

R̂x := 1

2n
R̂x = 1

2n
(R̂x(1) ⊗ · · · ⊗ R̂x(n) )

=
∫

dξ

(4πh̄)n
e(i/h̄)ξ�JxT̂ξ , (4)

which is a Hermitian and unitary (hence involutory) operator,
that is, R̂2

x = 1̂. Here the center x := (q1,p1, . . . ,qn,pn)� is a
column vector in phase space indicating the reflection point,
i.e., R̂x x̂R̂x = −x̂ + 2x1̂. We also define x(j ) := (qj ,pj ).

An arbitrary operator Â acting on the Hilbert space of
the continuous-variable (n-mode) system can be uniquely
expanded as a linear combination of either translation (3) or
reflection (4) operators [59,62]. These expansions constitute,
respectively, the Weyl and the Wigner representation of Â:

Â =
∫

dξ

(2πh̄)n
A(ξ )T̂ξ , (5a)

Â =
∫

dx

(2πh̄)n
A(x)R̂x. (5b)

The coefficients A(ξ ) and A(x) are, respectively, the Weyl and
the Wigner symbols of the operator Â, given by

A(ξ ) = Tr(ÂT̂
†
ξ ), A(x) = Tr(ÂR̂x), (6)

by virtue of [62]

Tr(T̂ξ T̂
†
ξ ′) = (2πh̄)nδ(ξ ′ − ξ ),

(7)
Tr(R̂xR̂x ′ ) = (2πh̄)nδ(x ′ − x).

The Weyl and Wigner symbols are related to each other via a
symplectic Fourier transform, viz.,

A(ξ ) =
∫

dx

(2πh̄)n
A(x)e(i/h̄)ξ�Jx, (8a)

A(x) =
∫

dξ

(2πh̄)n
A(ξ )e(i/h̄)x�Jξ . (8b)

In particular, the Wigner function W (x) of a quantum state is
(a normalized version of) the Wigner symbol associated with

the corresponding density operator ρ̂ [62–64], that is,

W (x) := Tr

[
ρ̂

(2πh̄)n
R̂x

]
. (9)

Its symplectic Fourier transform is the Weyl symbol (or
characteristic function) of ρ̂ [62]:

χ (ξ ) =
∫

dx

(2πh̄)n
W (x)e(i/h̄)ξ�Jx = Tr

[
ρ̂

(2πh̄)n
T̂

†
ξ

]
. (10)

Thus, for example, for a Gaussian state with null mean values,
Eqs. (9) and (10) lead to

WG(x) = 1

(2πh̄)n
exp

[ − 1
2h̄

x�V−1x
]

√
det V

(11)

and

χG(ξ ) = 1

(2πh̄)n
exp

[
− 1

2h̄
ξ�J�VJξ

]
, (12)

where V is the 2n × 2n covariance matrix with elements

Vij = 1

2h̄
Tr[ρ̂(x̂i x̂j + x̂j x̂i)]. (13)

Notice that since the mean values of a general state ρ̂ can be
made equal to zero by simply performing a translation [that
is, a local operation in each mode; see Eq. (3)] according to
T̂

†
ξ ρ̂T̂ξ , with ξ = −Tr(ρ̂x̂) = −[Tr(ρ̂x̂1), . . . ,Tr(ρ̂x̂2n)]�, we

can restrict our attention to Gaussian states with null mean
values, without loss of generality.

III. METAPLECTIC GROUP AND ITS WEYL-WIGNER
REPRESENTATIONS

In this section we introduce the metaplectic operators asso-
ciated with unitary evolutions under quadratic Hamiltonians
and focus on their corresponding Weyl and Wigner symbols.
These symbols will allow us to calculate the total phase
corresponding to metaplectic evolutions over Gaussian states
in the following.

Quadratic Hamiltonians are defined as those of the form

Ĥ = ω

2
x̂�Hx̂, (14)

where H is a 2n × 2n symmetric real matrix known as the
Hessian of Ĥ and ω is a real parameter. These Hamiltonians
constitute the algebra mp(2n,R) of the metaplectic group
[19,22,59,62]. As is usual for Lie groups, when exponentiating
elements in the algebra we obtain elements of the group

M̂S := e−(iωt/2h̄)x̂�Hx̂ . (15)

Here the subindex S highlights the relation between the
metaplectic operator M̂S in Eq. (15) and the matrix

S := eJHωt , (16)

which is an element of the real symplectic group Sp(2n,R),
defined as the set of matrices such that S�JS = J.

Note that JH is an element of the symplectic algebra
sp(2n,R) that is in one-to-one correspondence with the
element in Eq. (14) that belongs to the algebra mp(2n,R).
However, it may be that for some matrices JH there are two
values of ωt that give the same symplectic matrix S in Eq. (16).
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This is a manifestation of the fact that the metaplectic group is
a double covering group of the symplectic one, i.e., there are
two metaplectic operators, namely, ±M̂S, associated with each
symplectic matrix S [19,22]. Another peculiar characteristic of
the metaplectic group is that, as occurs in the symplectic group,
it is not an exponential group [22]. Thus, there are elements
in Mp(2n,R) and in Sp(2n,R) that cannot be written as an
exponentiation of some element in mp(2n,R) and sp(2n,R),
respectively, but rather decompose into products of operators
like that in Eq. (15). In this case the associated symplectic
matrix is the product of symplectic matrices like those in
Eq. (16), corresponding to each factor of the metaplectic
decomposition. In fact, any symplectic matrix can be written
as a product of another symplectic matrices in a nonunique
way. This leads to different decompositions for the associated
metaplectic operator. In particular, it will be useful for later
purposes to resort to the factorization proved in [59] that
establishes that every S ∈ Sp(2n,R) can be written as

S = S′S′′, (17)

where S′ and S′′ are symplectic matrices that are products of
matrices of the form (16) and such that det(S′ + I2n) 
= 0 and
det(S′′ + I2n) 
= 0 (that is, neither S′ nor S′′ has an eigenvalue
equal to −1). The metaplectic operator corresponding to S as
given by Eq. (17) can be chosen as

M̂S = ±M̂S′M̂S′′ . (18)

The indeterminacy of the signal ± is removed once we specify
the time dependence of the symplectic matrix S = S(t) as we
will see in what follows.

The Weyl and Wigner symbols of the metaplectic operator
(15) are given, respectively, by [59,65]

MS(ξ ) = iν
−
S exp

[ − i
4h̄

ξ�JC
−1

S Jξ
]

√| det(S − I2n)| (19)

and

MS(x) = 2niν
+
S exp

[ − i
h̄
x�CSx

]
√|det(S + I2n)| . (20)

Here the symmetric matrix

CS = −J
S − I2n

S + I2n

(21)

stands for the Cayley parametrization of S. Note that, depend-
ing on S, the above symbols may not be defined, since CS or its
inverse may not exist. When both symbols MS(ξ ) and MS(x)
in Eqs. (19) and (20) have no divergences, they are related by
the symplectic Fourier transform and the index ν+

S is given by

ν+
S = ν−

S + 1
2 sngCS(mod4), (22)

where sngX is the number of positive eigenvalues minus
the number of negative eigenvalues of the matrix X and ν−

S
is the Conley-Zehnder (CZ) index [59,62,65,66]. This index
determines the sign of the metaplectic operator associated with
the single matrix S. This can be summarized in the definition√

det(S − I2n) := i−ν−
S

√
| det(S − I2n)|, (23)

where ν−
S acquires the values {0,2} if det(S − I2n) > 0 and

{1,3} if det(S − I2n) < 0. For an invertible CS, 1
2 sngCS is an

integer, thus ν+
S is also an integer number in the set {0,1,2,3}

[59], in accord with Eq. (22). Notice that the symbols in (19)
and in (20) diverge, respectively, when an eigenvalue of S
becomes 1 and −1. In this case the symbols do exist, yet they
are not calculated via Eqs. (19) and (20), but instead using, for
example, Eq. (25).

Here we are interested in metaplectic operators associated
with a temporal evolution, so let us assume that S depends
continuously on a real parameter t . An example is given in (16),
where S belongs to a uniparametric subgroup of Sp(2n,R);
however, in the general case S = S(t) does not necessarily
belong to any uniparametric subgroup. At each time t the
metaplectic operator associated with S has a definite sign that
can be traced out by continuity of the operator with respect to
S, in accord with

lim
t→0+

S = I2n =⇒ lim
t→0+

M̂S = +1̂. (24)

This continuity property reflects in the behavior of the Weyl
and Wigner symbols of M̂S through the indices ν±

S , which
must change accordingly whenever there exists a discontinuity
of the symbol MS(ξ ) or MS(x) in Eqs. (19) and (20), that
is, whenever S has an eigenvalue 1 or −1, respectively.
For example, when t = 0 the Wigner symbol of the identity
operator is 1(x) = 1, so ν+

S = 0 for t = 0 and all t > 0 until
an eigenvalue of S becomes −1, which occurs, say, at t = t∗.
Then, as long as S(t∗) does not have an eigenvalue equal to
1, we can switch the representation and calculate the Weyl
symbol of the metaplectic operator. The continuity of the
symbols in the vicinity of t = t∗ is guaranteed by the relation in
Eq. (22). If at some time t , S(t) has simultaneous eigenvalues
1 and −1, we rely on the decomposition in Eq. (18) and
calculate the Wigner symbol of the composition such that
M̂S = M̂S′M̂S′′ using the following expression [62]:

MS(x) =
∫

dx ′

(πh̄)n

∫
dx ′′

(πh̄)n
MS′(x ′)MS′′(x ′′)

× e(2i/h̄)(x ′′−x)�J(x ′−x), (25)

where MS′(x) and MS′′(x) are the Wigner symbols of M̂S′ and
M̂S′′ , respectively, whose structure is given in Eq. (20).

IV. TOTAL PHASE OF GAUSSIAN STATES UNDER
METAPLECTIC EVOLUTIONS

Consider the unitary evolution Û = e−(i/h̄)Ĥ t generated by
the Hamiltonian Ĥ . As a quantum state ρ̂ evolves accordingly,
it acquires a total phase defined as [61]

φ = arg[Tr(Û ρ̂)], (26)

with the argument function defined as

arg(x + iy) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

arctan
(

y

x

)
if x > 0

arctan
(

y

x

) + π if x < 0, y � 0
arctan

(
y

x

) − π if x < 0, y < 0
+π

2 if x = 0, y > 0
−π

2 if x = 0, y < 0
undefined if x = y = 0.

(27)

This implies that −π � φ � π . It is important to notice, for
future analysis, that we always have |Tr(Û ρ̂)| � 1.
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In what follows we will calculate this phase for an initial
n-mode arbitrary Gaussian state with null mean value ρ̂ = ρ̂G,
subject to a unitary evolution generated by a generic meta-
plectic operator Û = M̂S(t), that is, a generic composition of
evolutions like those in Eq. (15). As for the density operator, we
can expand it in the Weyl representation, with the coefficients
given by Eq. (12), or rather we can resort to its Wigner
representation, and employ Eq. (11). Then, using Eqs. (5) for
Â = M̂S, we can write Tr(ρ̂GM̂S) as

Tr(ρ̂GM̂S) =
∫

dξ χG(ξ )MS(−ξ ) (28a)

=
∫

dx WG(x)MS(x). (28b)

We now resort to Eqs. (11), (12), (19), and (20) and perform
the Gaussian integrations to get

Tr(ρ̂GM̂S) = iν
−
S√

|det(S − I2n)| det
(
V − i

2 C−1
S

) (29a)

= iν
+
S√

|det(S + I2n)| det
(

1
2 I2n + iVCS

) , (29b)

where
√

z is the square root with a positive real part of the
complex number z. Notice that Eq. (29a) holds whenever S
does not have an eigenvalue equal to 1, whereas Eq. (29b) is
valid as long as none of the eigenvalues of S equals −1. If S
possess eigenvalues 1 and −1, we can resort to the factorization
in Eq. (17), decompose M̂S according to Eq. (18), and write

Tr(ρ̂GM̂S) = Tr(ρ̂GM̂S′M̂S′′) =
∫

dx WG(x)MS(x), (30)

where the symbol MS(x) is given in Eq. (25). After performing the integration in (30), we obtain

Tr(ρ̂GM̂S) = iν
+
S′+ν+

S′′√|det(S′ + I2n) det(S′′ + I2n)|

√
det

(
V + i

2 J
)−1√

det
[(

V − i
2 J

) − (
V + i

2 CS′�
)(

V + i
2 J

)−1(
V + i

2 CS′′�
)] . (31)

Finally, Eqs. (29a), (29b), and (31), together with Eq. (26), allow us to write the total phase φS[ρ̂G] acquired by an arbitrary (null
mean value) n-mode Gaussian state evolving under the metaplectic evolution M̂S as

φS[ρ̂G] = π

2
ν−

S − 1

2
arg

[
det

(
V − i

2
C−1

S

)]
(32a)

= π

2
ν+

S − 1

2
arg

[
det

(
1

2
I2n + iVCS

)]
(32b)

= π

2
(ν+

S′ + ν+
S′′ ) − 1

2
arg

{
det

[(
V − i

2
J
)

−
(

V + i

2
CS′�

)(
V + i

2
J
)−1(

V + i

2
CS′′�

)]}
. (32c)

Here Eq. (32a) holds whenever S does not have an eigenvalue
equal to 1, Eq. (32b) whenever S does not have an eigenvalue
equal to −1, and Eq. (32c) for any symplectic matrix S once
the factorization in Eq. (17) is found. For a matrix S that does
not have eigenvalues ±1, Eqs. (32) above coincide.

V. DETERMINATION OF THE GAUSSIAN STATE
THROUGH THE TOTAL PHASE

In what follows we exploit Eq. (32b) to design strategies
that allow for the complete determination of the covariance
matrix V, hence the complete specification of an arbitrary
Gaussian state ρ̂G, by the mere implementation of appropriate
metaplectic evolutions over one and two modes, once an
adequate measure of the total phase acquired in each evo-
lution is performed. This section deals specifically with the
development of the strategies (assuming that the total phases
are known), whereas a particular experimental protocol for
measuring such phases in the context of any CV system is left
for Sec. V C.

Since the state ρ̂G to be determined will evolve under
suitable metaplectic evolutions, we will refer to it as the initial

state. In addition, ρ̂G is a quantum state in the interaction
picture representation, in relation to a free evolution of the CV
system represented by a metaplectic evolution (generically,
though not necessarily, a harmonic one). Therefore, the total
phase φ is the phase of the evolution in the interaction picture,
associated exactly with the Hamiltonian in Eq. (14), without
any constant factors added.

We start by writing the n-mode covariance matrix of the
initial state ρ̂G in the block form

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V(1) E(1,2) · · · · · · · · · · · · E(1,n)

E(2,1) . . .
... · · · ...

...
...

... · · · V(j ) · · · E(j,k) · · · ...

...
...

...
. . .

...
...

...
... · · · E(k,j ) · · · V(k) · · · ...
...

...
... · · · ...

. . .
...

E(n,1) · · · · · · · · · · · · · · · V(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(33)
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where V(i) stands for the covariance matrix of the (initial) re-
duced ith-mode state �̂(i) ≡ Tr{l}(ρ̂G) (with l = 1, . . . ,n such
that l 
= i) and E(j,k) denotes the intermodal correlation matrix
between the modes j and k; note that since V is symmetric,
E(k,j ) = (E(j,k))�. With this notation, the covariance matrix
of the two (j and k) modes, corresponding to the reduced
state �̂(jk) = Tr{l}(ρ̂G), with l = 1, . . . ,n such that l 
= j,k,
reads

V(j,k) =
(

V(j ) E(j,k)

E(k,j ) V(k)

)
. (34)

Our method for determining the matrix V is based on
determining first the elements of the matrices V(i) and then
the elements of the matrices E(j,k) as follows.

A. Determination of the reduced single-mode
covariance matrices of the initial state ρ̂G

In order to relate the total phase φS[ρ̂G] with single-mode
covariance matrices of the initial state ρ̂G, we apply local
metaplectic operations with respect to the modes j and k,
associated with symplectic matrices S of the form

S = I2j−2 ⊕ S(j ) ⊕ I2k−2j−2 ⊕ S(k) ⊕ I2n−2k. (35)

Resorting to Eqs. (2) and (21) this
gives

CS = 02j−2 ⊕ CS(j ) ⊕ 02k−2j−2 ⊕ CS(k) ⊕ 02n−2k, (36)

where 0j is the j × j null matrix and CS(j ) = J(j )
2 (I2 −

S(j ))(I2 + S(j ))−1. The block matrix V(j ) (equivalently V(k))
can be selected by choosing S(k) = I2 (equivalently S(j ) = I2)
in Eq. (35). This corresponds to evolving the single mode j

(or k) and consequently the total phase φS[ρ̂G] depends only
on the reduced state �̂(j ) (equivalently �̂(k)). As long as none
of the eigenvalues of S(k) (equivalently S(j )) equals −1, the
total phase results in

φS(k) [�̂(k)] = π

2
ν+

S(k) − 1

2
arg

[
det

(
1

2
I2 + iV(k)CS(k)

)]
,

(37)

and similarly for the mode j . Naturally, Eq. (37) is the single-
mode version of Eq. (32b), and since V(k) is a 2 × 2 matrix,
Eq. (37) reduces to

φS(k) [�̂(k)]

= π

2
ν+

S(k) − 1

2
arg

[
1

4
− det(V(k)CS(k) ) + i

2
Tr(V(k)CS(k) )

]
.

(38)

This expression allows us to determine the elements of the
matrix

V(k) =
(

a c

c b

)
, (39)

with a,b > 0, once appropriate one-mode metaplectic evo-
lutions are implemented and the phase φS(k) [�̂(k)] is
known.

In what follows we describe three strategies to do so.
The single-mode transformations involved are rotation R,

squeezing Z, position shear F, and momentum shear M,
corresponding to the Hamiltonians

ĤR = h̄ω(â†â + 1/2), (40a)

ĤZϕ
= h̄ω

2
(â†2eiϕ + e−iϕ â2), (40b)

ĤF = − h̄ω

4
(â† − â)2, (40c)

ĤM = h̄ω

4
(â† + â)2, (40d)

respectively. All these metaplectic transformations are de-
scribed in detail in the Appendix, where the total phases
acquired by the reduced (single-mode) Gaussian state for each
evolution are shown to be (here τ = detV(i) = ab − c2 � 1/4
and β = TrV(k) = a + b > 0)

φR = π

2
ν+

R − 1

2
arg

[
1

4
− τ tan2 θ

2
+ i

2
βtan

θ

2

]
(41)

whenever θ = ωt 
= π,3π ;

φZϕ
= −1

2
arg

[
1

4
+ τ tanh2 ζ

2

+ i

(
a − b

2
cos ϕ + c sin ϕ

)
tanh

ζ

2

]
, (42)

where ζ = ωt is the squeezing parameter;

φF = − 1
2 arg(1 + ibs), (43)

where s = ωt � 0; and

φM = − 1
2 arg(1 + ias), (44)

where s = ωt � 0.
Under a particular metaplectic evolution, the initial single-

mode Gaussian state �̂(k) acquires a total phase given by one
of Eqs. (41)–(44). Such a phase depends on the evolution
parameter as well as on the elements of V(k). Therefore, a
single evolution (hence knowledge of a single φ) does not
suffice to invert the equations and completely determine all
the elements of V(k). Thus, a set of evolutions over the initial
state (or rather a set of phases) is needed to determine V(k).

For each evolution an acquired φ is determined, all of which
depend on the same (initial) covariance matrix. Ultimately,
when a sufficient number of phases are known, this allows for
the inversion of the set of equations and the determination of
all the elements of V(k).

1. First strategy

This strategy is more suitable to be used in the determi-
nation of Gaussian states within the context of CV systems
corresponding to vibrational modes of trapped ions. It involves
the application of two different rotations and two different
squeezing transformations.

For 0 � θ < π we have ν+
R = 0 [see Eq. (A8)]. Then,

according to Eq. (41), tan(−2φR) = tan(arg[z]) with z =
1
4 − τ tan2 θ

2 + i
2βtan θ

2 and Im(z) � 0. Therefore, z could be
in the first or second quadrant of the complex plane. In both

042341-6



UNIFIED FRAMEWORK TO DETERMINE GAUSSIAN . . . PHYSICAL REVIEW A 96, 042341 (2017)

cases we have

tan(−2φR) = Im[z]

Re[z]
= 2β tan θ

2

1 − 4τ tan2 θ
2

. (45)

Assume that two values of the total phase, namely, φ′
R :=

φR(θ ′) and φ′′
R := φR(θ ′′), are known, corresponding to two

distinct rotation angles θ ′ and θ ′′, both in the interval [0,π ).
Then, substituting these two values in Eq. (45), we can set up
a linear system in the variables τ and β, whose solution is

β =
(

cot2 θ
2

′ − cot2 θ
2

′′)
tan(2φ′

R) tan(2φ′′
R)

2 cot θ
2

′′
tan(2φ′

R) − 2 cot θ
2

′
tan(2φ′′

R)
, (46a)

τ = cot θ
2

′
tan(2φ′

R) − cot θ
2

′′
tan(2φ′′

R)

4 tan θ
2

′
tan(2φ′

R) − 4 tan θ
2

′′
tan(2φ′′

R)
. (46b)

On the other hand, the real part of the complex number z′
in the argument function in Eq. (42) is always positive. So z′
could be in the first or fourth quadrant of the complex plane.
In both cases we have

tan(−2φZϕ
) = Im[z′]

Re[z′]
= 2(a − b) cos ϕ + 4c sin ϕ

1 + 4τ tanh2 ζ

2

tanh
ζ

2
.

(47)

Once the value of τ has been obtained from Eq. (46b), it
only remains to perform a squeezing transformation (with
squeezing parameter ζ ) and determine the value of the phase
φZϕ

to obtain c from Eq. (47) with ϕ = π/2:

c = −1 + 4τ tanh2 ζ

2

4 tanh ζ

2

tan(2φZπ/2 ).

(48)

Finally, applying a second squeezing transformation with the
same squeezing parameter ζ , but now with ϕ = 0, we get from
Eq. (47) the following value for γ := b − a:

γ = 1 + 4τ tanh2 ζ

2

2 tanh ζ

2

tan(2φZ0 ). (49)

Then, as we have a + b = β and b − a = γ , we can calculate
a = (β − γ )/2 and b = (β + γ )/2 and in this way completely
determine the covariance matrix (39).

2. Second strategy

This strategy is more suitable to be used in the de-
termination of Gaussian states within the context of CV
systems corresponding to quadrature modes of the quantized
electromagnetic field. It relies on three different rotations and
a squeezing transformation, but here only the total phases
corresponding to the rotations have to be determined, as we
will see.

First, the trace β and the determinant τ of the matrix (39)
are calculated by performing two different rotations, exactly
as we did in Eqs. (46a) and (46b). Then a unitary evolution
corresponding to a squeezing transformation is performed over
the state ρ̂G with Hamiltonian (40b) setting ϕ = 0, so the
evolved state will be ρ̂ ′

G = M̂Z0 ρ̂GM̂
†
Z0

. The corresponding

symplectic transformation is given by (A10), leading to a
covariance matrix of the evolved state equal to V′ = Z0VZ�

0 .
Now a third rotation of an angle θ ′′′ ∈ [0,π ) is performed

to obtain the phase using (45) for the new (squeezed) state ρ̂ ′
G.

Thus, defining φ′′′
R := φR(θ ′′′), one gets

tan(2φ′′′
R ) = 2β ′ tan θ

2

4τ tan2 θ
2 − 1

, (50)

where we have used detV′ = detV = τ and β ′ := TrV′ =
β cosh(2ζ ) − 2c sinh(2ζ ). Solving Eq. (50) for c, one finds

c = 1 − 4τ tan2 θ
2

4 tan θ
2 sinh(2ζ )

tan(2φ′′′
R ) + β

2
cotanh(2ζ ). (51)

With this, and β and τ given by Eqs. (46a) and (46b), respec-
tively, the system of equations β = a + b and τ = ab − c2 can
be solved to get a =

√
β − τ − c2 and b = β −

√
β − τ − c2.

It is worth noting that, in this strategy, it is necessary to
determine only phases associated with rotations. The evolution
phase corresponding to the intermediate application of a
squeezing transformation does not need to be determined.

3. Third strategy

Although the first and second strategies can be implemented
in the determination of Gaussian states within the context
of CV systems corresponding to spatial transverse degrees
of freedom of single photons, this third strategy would be
experimentally less demanding in this particular system.
It involves the implementation of two squeezing plus a
coordinate or momentum shear transformation.

Let us assume that two values of the total phase, namely,
φ′

Z := φZπ/2 (ζ ′) and φ′′
Z := φZπ/2 (ζ ′′), are known, correspond-

ing to squeezing transformations for two distinct values of the
squeezing parameter ζ and ϕ = π/2. Then, from Eq. (47) we
can set up a linear system of equations with unknown variables
c and τ , whose solution is

c =
1
4

[
tanh2 ζ ′′

2 − tanh2 ζ ′
2

]
tan(2φ′

Z) tan(2φ′′
Z)

tanh ζ ′′
2 tanh ζ ′

2

[
tanh ζ ′′

2 tan(2φ′′
Z) − tanh ζ ′

2 tan(2φ′
Z)

] ,

(52a)

τ =
1
4 tanh ζ ′

2 tan(2φ′′
Z) − 1

4 tanh ζ ′′
2 tan(2φ′

Z)

tanh ζ ′′
2 tanh ζ ′

2

[
tanh ζ ′

2 tan(2φ′
Z) − tanh ζ ′′

2 tan(2φ′′
Z)

] .

(52b)

In order to determine the matrix elements a and b we need
to perform either a position or a momentum shear and use
Eq. (43) or (44). Thus, for example, if we perform a position
shear so that φF is known, Eq. (43) leads to

b = −1

s
tan(2φF). (53)

Then, once b, c, and τ are known, it is straightforward to
determine a according to a = (τ + c2)/b. Alternatively, we
can perform a momentum shear transformation, determine the
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total phase φM, and resort to Eq. (44) to get

a = −1

s
tan(2φM). (54)

Once a, c, and τ are known, we can obtain the matrix element
b according to b = (τ + c2)/a.

B. Determination of the two-mode intermodal correlation
matrices of the initial state ρ̂G

The preceding section provided a method for determining
the one-mode covariance matrices V(i) with i = j,k. Here we
will assume that these two matrices are already known and
develop a strategy for determining the elements of a generic
two-mode correlation matrix

E(j,k) =
(

v w

y z

)
. (55)

The method exhibits the same spirit as that for de-
termining V(k) in the sense that it resorts to the imple-
mentation of appropriate metaplectic evolutions to extract
information regarding the matrix elements of E(j,k). How-
ever, it differs from the strategies of Sec. V A in that
here, before the determination of the evolution phases,
an extra two-mode and single-mode rotations must be
implemented.

We first apply a (nonlocal) two-mode rotation, corre-
sponding to the Hamiltonian Ĥ (j,k) = (h̄ω/2)(â†

kâj + âkâ
†
j )

(when the continuous-variable system refers to the quan-
tized electromagnetic fields, Ĥ (j,k) represents the beam
splitter evolution over modes j and k). If the rota-
tion is performed by an angle θ = ωt = π/2, the sym-
plectic matrix associated with the n-mode transformation
reads

S = I2j−2 ⊕ S(j,k) ⊕ I2n−2k, (56)

with the (2k − 2j + 2) × (2k − 2j + 2) matrix S(j,k) given by

S(j,k) = 1√
2

⎛
⎜⎜⎜⎜⎝

I2 02 · · · 02 J2

02 I2 · · · 02 02
...

...
. . .

...
...

02 02 · · · I2 02

J2 02 · · · 02 I2

⎞
⎟⎟⎟⎟⎠. (57)

This matrix corresponds to the unitary metaplectic evolution
M̂S(j,k) corresponding to a two-mode rotation by angle ωt =
π/2. The total (n-mode) metaplectic evolution associated with
S in Eq. (56) is thus M̂S = 1̂j−1 ⊗ M̂S(j,k) ⊗ 1̂n−k , where 1̂j−1

is the identity operator acting on the first j − 1 modes and the
evolved state is ρ̂ ′

G = M̂Sρ̂GM̂
†
S.

Let V′(j,k) denote the covariance matrix of the reduced
two-mode evolved state �̂′(jk) = Tr{l}(ρ̂ ′

G), with l = 1, . . . ,n

such that l 
= j,k. Such a matrix is related to the original
(nonevolved) covariance matrix V(j,k) in (34) according
to

V′(j,k) = 1

2

(
I2 J2

J2 I2

)
V(j,k)

(
I2 J2

J2 I2

)�
. (58)

The diagonal blocks of the above matrix are the single-mode
covariance matrices given by

V′(j ) = V(j ) + J2E(k,j ) − E(j,k)J2 − J2V(k)J2, (59a)

V′(k) = V(k) − J2V(j )J2 − E(k,j )J2 + J2E(j,k), (59b)

corresponding to the reduced single-mode states �̂(i) ≡
Tr{l}(ρ̂ ′

G) (with l = 1, . . . ,n such that l 
= i = j,k). Solving
Eqs. (59) for E(j,k), we obtain

2J2E(k,j )J2 + 2E(j,k) = V′(j )J2 − J2V′(k)
. (60)

Once the matrices V′(j ) and V′(k) are determined using some
strategy, as explained above, Eq. (60) becomes a linear system
for the matrix elements of E(j,k) in (55). From this system, one
is able to obtain

w = 1
4 [V′(j )J2 − J2V′(k)]1,2, (61a)

y = 1
4 [V′(j )J2 − J2V′(k)]2,1. (61b)

In order to determine v and z, we perform an additional (single-
mode local) operation over the mode j of the evolved state ρ̂ ′

G,
with the symplectic matrix J(j )

2 , so that

S′ = I2j−2 ⊕ [S(j,k)(J2 ⊕ I2k−2j )] ⊕ I2n−2k, (62)

with S(j,k) given in Eq. (57). The single-mode operation
1̂j−1 ⊗ M̂J(j )

2
⊗ 1̂n−j is implemented via a rotation with the

angle θ = π/2 (see the Appendix, Sec. 1) and the evolved state
is ρ̂ ′′

G = M̂S′′ ρ̂ ′
GM̂

†
S′′ , where now M̂S′′ = 1̂j−1 ⊗ M̂J(j )

2
⊗ 1̂n−j .

Denoting by V′′(i) the covariance matrix of mode i after the
evolution, we proceed as we did to arrive at Eqs. (59) and get

V′′(j ) = J2[V(j ) + V(k) + E(j,k) + E(k,j )]J�
2 , (63a)

V′′(k) = V(j ) − E(k,j ) − E(j,k) + V(k). (63b)

Solving Eqs. (63) for E(j,k), we are led to the linear system

−2(E(k,j ) + E(j,k)) = J2V′′(j )J2 + V′′(k)
, (64)

from which we obtain the matrix elements

v = − 1
4 [J2V′′(j )J2 + V′′(k)]1,1, (65a)

z = − 1
4 [J2V′′(j )J2 + V′′(k)]2,2. (65b)

Therefore, the elements w, y, v, and z of the matrix E(j,k) are
written in terms of single-mode CMs, which can be determined
using some strategy developed in Sec. V A.

Gathering results, we have provided a method that allows
us to determine any (all) two-mode covariance matrices (34)
with due implementation of one- and two-mode metaplectic
evolutions. By applying the method repeatedly (varying j

and k), the complete covariance matrix (33) of an arbitrary
Gaussian state can be determined.

Finally, it is important to notice that the strategies developed
here, involving the unitary operations as simply as possible,
are suitable for several paradigmatic CV systems. In general,
the same procedure can be applied with any combination of
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metaplectic evolutions (or equivalently quadratic Hamiltoni-
ans) and the same results are obtained with alternative designed
strategies, as long as the new set of evolutions allows one to
extract the covariance matrix V from Eqs. (32)

C. Determination of entanglement in pure Gaussian states

Though all the informational properties of a GS are
contained in its covariance matrix, in certain cases partial
information of the full CM suffices to extract information
regarding the entanglement between the modes. For example,
in the case of n-mode pure Gaussian states ρ̂

pure
G , the amount

of entanglement in an arbitrary bipartition A|B with nA × nB

modes (such that nA + nB = n) can be computed resorting
only to the covariance matrix of any of the reduced Gaussian
states, namely, �̂A or �̂B [24]. In this regard, our method,
like other methods in general, allows us to determine such
reduced covariance matrices. However, it has the advantage
that it provides an experimentally favorable way to determine
the purity of the reduced single-mode states [which allows us
to measure the entanglement in bipartitions having 1 × (n − 1)
modes] without the need to determine the full reduced
covariance matrix.

The purity of the reduced ith-mode Gaussian state �̂(i) is
given by

Tr(�̂(i))2 = h̄

2
√

detV(i)
= h̄

2
√

τ
(66)

and can be determined, according to Eq. (46b), from the
knowledge of the total phases associated with only two local
rotations, which determine the value of τ . Once τ is known, the
amount of entanglement E between the ith and the remaining
n − 1 modes can be computed using the pure-state Rényi
entropy of entanglement [24,67]

Sα(�̂(i)) = ln[Tr(�̂(i))α]

1 − α
, (67)

with α = 2, which gives

E = S2(�̂(i)) = (1/2) ln(τ ) − ln(h̄/2). (68)

VI. MEASUREMENT PROTOCOL OF THE TOTAL PHASE

In this section we describe our protocol to measure both the
real and the imaginary parts of Tr(ρ̂Û ), in order to compute φ

resorting to Eq. (26). The main idea is to entangle the n-mode
system in an arbitrary state ρ̂ with a qubit ancilla, using the
conditional evolution

Û (c) ≡ exp

[
−i

t

2h̄
(1̂ + σ̂3) ⊗ Ĥ

]
, (69)

with Ĥ an arbitrary Hamiltonian acting on the n-mode system.
We use |j,±〉 to denote the eigenstates of the Pauli operators
σ̂j (j = 1,2,3), so that σ̂j |j,±〉 = ± |j,±〉.

Initially, the n-mode system and the ancilla are assumed
to be in the separable state |1,+〉〈1, + | ⊗ ρ̂, with |1,+〉 =
(1/

√
2)(|3,+〉 + |3,−〉). The reduced state of the qubit ancilla

after the evolution of the complete (n-mode plus ancilla)

system is thus given by

ρ̂q = Trn[Û (c)|1,+〉〈1, +| ⊗ ρ̂Û (c)†]

= 1
2 [|3,+〉〈3, +| + Trn(ρ̂Û )|3,+〉〈3, −|
+ Trn(ρ̂Û †)|3,−〉〈3, +| + |3,−〉〈3, −|], (70)

where Trn(· · · ) denotes the trace over the n-mode system and
Û = exp(−i t

h̄
Ĥ ) is a unitary evolution acting only on the

n-mode system.
Then a π/2 rotation Ûπ/2(ϑ) around an axis in the

equator of the Bloch sphere that makes an angle ϑ with
the x axis is performed on the qubit ancilla. From the
probability measurement of the qubit’s populations P±(ϑ) :=
Trq[|3,±〉〈3, ± |Ûπ/2(ϑ)ρ̂qÛ

†
π/2(ϑ)] we get

P−(ϑ) − P+(ϑ) = Im[eiϑTr(ρ̂Û )]. (71)

Thus, by choosing qubit rotations with ϑ = 0 and ϑ = π/2 we
obtain the imaginary and real parts, respectively, of Tr(ρ̂Û ) and
hence the total phase φ = arg[Tr(ρ̂Û )] can be determined.

A. Total phase acquired by an evolved reduced
state in an n-mode system

Let us now assume that Ĥ in Eq. (69) has the form Ĥ =
ĤA ⊗ 1̂B , where ĤA is a Hamiltonian acting on subsystem
A consisting of m modes and 1̂B is the (n − m) × (n − m)
identity operator acting on subsystem B. In this case Û reduces
to Û = exp(−i t

h̄
ĤA) and we should write Tr(ρ̂Û ) = TrA(�̂Û )

in Eq. (71), with �̂ the reduced (m-mode) state �̂ = TrBρ̂.
In order to measure the phase acquired by the arbitrary

reduced state �̂ we need to entangle only the m modes of
interest with the qubit ancilla through the conditional evolution
(69), with Ĥ = ĤA ⊗ 1̂B . This is the strategy required to mea-
sure the total phases that allow us to determine the covariance
matrix of an arbitrary Gaussian state �̂G = TrBρ̂G, considering
only (as has been shown in Sec. V) metaplectic evolutions
of the form in (15), such that Ĥ = ĤA = ω(x̂�

A Hx̂A)/2 with
x�

A := (q1,p1, . . . ,qm,pm). In fact, it is worth noting that,
according to the method described in Sec. V, we only need
to implement conditional evolutions over one mode, viz.,

Û (c) = exp

[
− it

2h̄
(1̂ + σ̂3) ⊗ 1̂j−1 ⊗ Ĥ (j ) ⊗ 1̂n−j

]
, (72)

where Ĥ (j ) is one of the Hamiltonians in Eqs. (40). This is so
because the two-mode rotation and the additional single-mode
operation, described in Sec. V B and needed to determine the
2 × 2 intermodal correlation matrix E(i,k), do not need to be
applied conditionally to the state of the qubit ancilla.

VII. ONE-MODE CONDITIONAL METAPLECTIC
EVOLUTIONS IN SEVERAL CV SYSTEMS

The feasibility of our method for determining Gaussian
states depends on the possibility of implementing one-mode
conditional evolutions such as that in Eq. (72), with Ĥ (j ) one of
the Hamiltonians in Eqs. (40). Here we describe how these con-
ditional evolutions can be implemented in the context of three
CV systems: (i) the transverse spatial degree of freedom of sin-
gle photons, (ii) the vibrational modes in trapped ions, and (iii)
the quadrature modes of the quantized electromagnetic field.
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FIG. 1. Experimental setup to implement the conditional squeez-
ing transformation on the transverse spatial degree of freedom of
single photons, for example, generated with the SPDC process. Here
the conditional squeezing transformation is implemented on the idler
photon. On the signal photon it has to be implemented in an optical
image system in both transverse degrees of freedom (not shown)
before the coincidence measurement of the twin photons. The dashed
rectangles correspond to cylindrical lenses of focal length f , acting
in the transverse y degree of freedom. The acronym HWP denotes
the half waveplate and SLM the spatial light modulator. See the text
for details.

A. Transverse spatial degrees of freedom of single photons

We consider first the implementation of single-mode condi-
tional metaplectic evolutions in the CV system corresponding
to the transverse spatial degrees of freedom (TSDF) of single
photons propagating in the paraxial approximation. This is the
CV systems of twin photons generated in SPDC [29,51,52].
Highly entangled Gaussian states can be generated with twin
photons since, to a good approximation, generalization of
two-mode squeezed states can be performed [51,53].

In order to determine Gaussian states in the TSDF of
single photons, the less demanding experimental strategy is
to implement the one-mode metaplectic operations described
in the third strategy in Sec. V A, involving squeezing and
position shear transformations. We identify the qubit ancilla
with the polarization degrees of freedom of the single photon.
As customary, we associate the horizontally (x direction)
and vertically (y direction) polarized linear states with
|H 〉 := |3,+〉 and |V 〉 := |3,−〉. The linearly polarized states
rotated 45◦ in the counterclockwise direction with respect to
x and y are identified, respectively, with |+45◦〉 := |1,+〉
and |−45◦〉 := |1,−〉. Finally, the states |R〉 := |2,+〉 and
|L〉 := |2,−〉 are put into correspondence with the right-
and left-circularly polarized states. With these identifications,
measuring the polarization is equivalent to measuring the Pauli
observables σ̂j corresponding to the qubit-ancilla polarization
degrees of freedom. The conditional evolutions, entangling
the polarization and the transverse spatial degrees of freedom,
are implemented using a spatial light modulator (SLM) that
imprints a phase only on the horizontal polarization component
(transverse spatial x direction). It is worth noting that the qubit

FIG. 2. Experimental setup to implement the conditional position
shear transformation on the transverse spatial degree of freedom of
single photons, for example, generated with the SPDC process. Here
the conditional position shear transformation is implemented on the
idler photon. On the signal photon it has to be implemented in an
optical image system in both transverse degrees of freedom (not
shown) before the coincidence measurement of the twin photons.
The shaded ovals correspond to spherical lenses with focal length f .
See the text for details.

rotation that leads to Eq. (71) corresponds, in this context, to
mapping one orientation of linear polarization to another or to
a circular one.

In Fig. 1 we show the experimental setup for the im-
plementation of the conditional evolution corresponding to
squeezing transformation. The half waveplate rotates 45◦ the
initial polarization originally in the x direction. The first and
second SLMs, with focal lengths f1 and f2, respectively,
implement thin lenses in the x direction, whereas they act
only as mirrors in the y direction. Each of these lenses
implements thus a Fourier transform in the x spatial degree
of freedom [68] (π/2 rotation in Lohmann’s type-I optical
configuration [69]), whereas the combination produces a
squeezing transformation with squeezing parameter ζ = f2/f1

[52]. The dashed rectangles represent cylindrical lenses with
focal length f that implement an optical image system in the y

degree of freedom yet do not affect the evolution in the x degree
of freedom. Notice that the total distance of propagation of
the single photon until it enters the polarization measurement
optical circuit is 4f = 2f2 + 2f1.

In Fig. 2 we show the experimental setup that implements
the conditional evolution corresponding to position shear
transformation. The evolution associated with a shear in
position over the single photon is 〈p|�′

G〉 = e−i ωt
2 p2〈p|�G〉,

where 〈p|�G〉 stands for the wave function in the transverse
momentum representation at the source plane z = 0. Thus,
for a shear in position we have to map the momentum
wave function 〈p|�G〉 at z = 0 to the position wave function
〈x ′|�G〉 in the far field, that is, when x ′ = p, where x ′ is the
transverse spatial position of the single photon at a distance
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z′ equal to the distance of the SLM from the source. Then
the phase e−i(ωt/2)p2

is imprinted by the SLM. The map that
changes the representation can be accomplished by a Fourier
transform with Lohmann’s type-I optical configuration such
that z′ = 2f , with f the focal length of the spherical lens. The
second Fourier transform with identical optical configuration
maps the wave function back to the position representation.

B. Vibrational modes in trapped ions

In order to determine Gaussian states in the vibrational
modes of trapped ions [48], one-mode conditional rotation
and squeezing transformations are needed. This constitutes
the first strategy in Sec. V A.

We consider a system of ions confined in an elliptical
trap. To a good approximation, the quantized motion of each
ion’s center of mass along the confined spatial dimensions
can be described by a quantum harmonic oscillator [70].
We define Û0 := ⊗n

j=1 M̂R(j ) , the unitary free evolution of
all the harmonic motions corresponding to local metaplectic
rotations M̂R(j ) in each vibrational mode of the system. In this
way, the Gaussian state to be determined can be written in
the interaction picture with respect to the free evolution as
ˆ̃ρG := Û

†
0 ρ̂GÛ0 and the engineered metaplectic evolution (in

the same representation), needed for the determination of ˆ̃ρG, is
written as ÛI := Û0Û = exp(−i t

h̄
1̂j−1 ⊗ Ĥ

(j )
I ⊗ 1̂n−j ). With

this notation, the trace that appears in Eq. (71) reads Tr[ ˆ̃ρGÛI ].
The qubit ancilla in each single vibrational mode corre-

sponds to two specific electronic states of each ion, namely,
|g〉 := |3,−〉 and |e〉 := |3,+〉. We are interested in a type
of laser excitation in which only the motional degree of
freedom is excited conditioned on the occupation of the
excited level, that is, if the ion is in the state |g〉 nothing
happens, whereas if the ion is in the state |e〉 its vibrational
motion is excited. This can be accomplished with a Raman
excitation of one motional sideband via the virtual excitation
to an auxiliary upper electronic state |aux〉, with E|aux〉 >

E|e〉 [71,72]. The interaction Hamiltonian, in the interaction
picture, that describes the effective action of the laser over the
j th motional degree of freedom (corresponding to a particular
ion) is [71,72]

Ĥ
(j )
I = 1

2 h̄|�0|eiϕf̂k(â†
j âj ,η)âk

j + H.c., (73)

where âj is the annihilation operator of the j th vibrational
mode considered, �0 = |�0|eiϕ is the effective Raman Rabi
frequency, k corresponds to the excitation of the kth upper
motional sideband (blue sideband transition), η is the Lamb-
Dicke parameter, and f̂k(â†

j âj ,η) is a Hermitian operator
function that strongly depends on η [71]. Here we assume
that each ion can be addressed individually.

The conditional rotation on the j th vibrational mode occurs
when the carrier sideband k = 0 is excited and η is not
extremely small so we have f̂0(â†

j âj ,η) ≈ A0 + A1â
†
j âj [72].

Thus, by choosing ϕ = 0, the Hamiltonian in Eq. (73) can be
approximated by Ĥ

(j )
I ≈ h̄ωâ

†
j âj , with ω = (1/2)A1|�0|. The

conditional squeezing transformation of the j th vibrational
mode can be implemented for very small values of the
Lamb-Dicke parameter, that is, for η � 1, when the second
blue sideband is excited, k = 2, so f̂0(â†

j âj ,η) ≈ A0, and

FIG. 3. Experimental setup of the measurement protocol of the
total phase of a rotation of the reduced one-mode Gaussian state �̂(j )

corresponding to the j th mode of a multimode Gaussian state. The
initial qubit-ancilla state corresponds to the mode-entangled state of
one photon (of frequency ω) in the interferometer after the first beam
splitter. The j th mode of frequency ω(j ) is injected and extracted from
one of the arms of the interferometer through suitable dichroic mirrors
(DM). The rotation over �̂(j ) is implemented by the Kerr medium
conditioned to the one-photon occupation of the upper arm or the
interferometer. Finally, the rotation of the qubit ancilla is performed
by the second beam splitter and the measurement of the number of
photons at the output modes determines, through Eq. (76), the total
phase φR(j) once we choose ϕ = 0 and ϕ = π/2.

the Hamiltonian in Eq. (73) becomes approximately Ĥ
(j )
I ≈

h̄ω
2 (â†2

j eiϕ + â2
j e

−iϕ), with ω = A0|�0|. In both cases (condi-
tional rotation and conditional squeezing) the measurement
protocol of the total phase must be initiated with the particular
ion in the electronic state |1,+〉 := (1/

√
2)(|e〉 + |g〉). In

addition, after the conditional evolutions, a π/2 rotation on
the electronic states has to be implemented in order to obtain
the probabilities in Eq. (71) through the measurement of the
population of the excited state |e〉.

C. Quadrature modes of the quantized electromagnetic field

In the quadrature modes of the quantized electromag-
netic field highly entangled multimode Gaussian states can
be generated, for example, in an optical frequency comb
generated by a SPOPO [17,45,46]. This is the specific CV
system that we will consider in this section, and the most
suitable strategy to determine the Gaussian state involves
the one-mode conditional rotations described in the second
strategy in Sec. V A. In a way analogous to the CV system of
vibrational modes of ions, here we will determine the Gaussian
state ˆ̃ρG := Û

†
0 ρ̂GÛ0 at the output of the SPOPO crystal, in the

interaction picture with respect to the harmonic free evolution
Û0 := ⊗n

j=1 M̂R(j ) of the fields.
The experimental setup of the whole measurement protocol

is sketched in Fig. 3. The ancilla system is composed of one
photon in the two-mode output of the first beam splitter, in the
state

|�〉 := M̂BS(0,π/2,0) |1〉1|0〉2

= (1/
√

2)(|0〉1|1〉2 + |1〉1|0〉2), (74)
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where the beam-splitter metaplectic operator is defined as

M̂BS(ψ,θ,φ) = e−iψL̂ze−iθL̂y e−iφL̂z , (75)

with L̂z := (1/2)(â†
1â1 − â

†
2â2) and L̂y := (i/2)(â†

1â2 − â
†
2â1).

The conditional rotation is implemented with a cross-Kerr
nonlinear medium characterized by a third-order electric sus-
ceptibility χ (3) and with an interaction Hamiltonian between
the modes given by ĤK = h̄κâ

†
1â1b̂

†
j b̂j , where â1 (â†

1) and

b̂j (b̂†j ) are the annihilation (creation) operators in the modes
with frequencies ω and ω(j ), respectively. After the interaction
of the modes 1 and j at the Kerr medium we trace out
mode j . Then modes 1 and 2 (both of frequency ω) enter
in a second beam splitter characterized by the metaplectic
operator M̂BS(0,π/2,φ). From photocounting measurements
at the output ports of the second beam splitter we get

〈n̂up〉 − 〈n̂down〉 = Re[e−iφTr(�̂(j )M̂R(j ) )], (76)

where M̂R(j ) = e−iθ b̂
†
j b̂j , θ = κt with t the interaction time of

the fields inside the Kerr medium, and �̂(j ) is the determined
reduced one-mode state. By setting φ = 0 and φ = π/2 we
obtain the real and imaginary parts of the trace in Eq. (76) and
therefore the total phase φR(j ) = arg[Tr(�̂(j )M̂R(j ) )]. It is impor-
tant to notice that any value of θ = κt > 0 serves to determine
�̂(j ) following the steps described in Sec. V. Thus, the current
technological limitation of very small values of the coupling
constant κ in Kerr media is not a problem in our scheme.

According to the second strategy described in Sec. V A, it
still remains to implement a squeezing transformation over the
one-mode reduced state �̂(j ) before the determination of the
total phase associated with a rotation. This squeezing transfor-
mation over the j th mode does not need to be implemented
conditionally to the state of the ancilla. Therefore, we resort
to the same experimental setup as before, but now introduce
a type-I nonlinear crystal characterized by a χ (2) electric
susceptibility before the implementation of the conditional
rotation with the Kerr medium (see Fig. 4). A pump laser beam
of frequency 2ω(j ) [73] enters, together with the field mode of
frequency ω(j ) in the quantum state �̂(j ), in a nonlinear χ (2)

crystal. In the approximation where the pump on the crystal
is treated classically, the down-conversion Hamiltonian of the
degenerate type-I crystal is Ĥ ≈ h̄ω

2 (b̂†2
j eiϕ + b̂2

j e
−iϕ), which

squeezes the quantum state �̂(j ) of the stimulation field on the
crystal. Typically, when the nonlinear crystal characterized by
χ (2) is outside a cavity, the squeezing parameter ζ = ωt (with
t the interaction time inside the crystal) is very small. This,
however, does not represent a limitation in our protocol, since
any squeezing parameter ζ > 0 serves for the determination
of the Gaussian state �̂(j ).

VIII. CONCLUSION

We have designed an experimentally favorable method to
determine Gaussian states of n-mode bosonic systems through
the determination of its full covariance matrix, once the first
moments of the state are experimentally determined and local
translations are implemented so as to make the state one with
null mean values. In particular, we constructed three strategies
to determine the one-mode reduced covariance matrices, based

FIG. 4. Same experimental setup as in Fig. 3, but now before the
conditional rotation in the Kerr medium a squeezing transformation
over the state �̂(j ) is performed. This is done with a stimulated
degenerate parametric down-conversion in a type-I nonlinear crystal,
characterized by a second-order electric susceptibility χ (2). Thus, the
down-conversion process pumped by the field of frequency 2ω(j ) is
stimulated by the mode of frequency ω(j ) in the quantum state �̂(j ).
The converted fields are in the same mode ω(j ) producing a squeezing
effect on �̂(j ).

on the knowledge of the total phases acquired under specific
one-mode metaplectic transformations that include rotations,
squeezing, and shears in position or momentum.

Each strategy is more suitable to be implemented in
one of the three CV systems considered: the vibrational modes
of trapped ions, the transverse spatial degrees of freedom
of entangled single photons, and the quadrature degrees of
freedom of n-mode quantized electromagnetic fields. Some
of the one-mode transformations in each strategy must be
implemented conditionally to the state of an ancilla qubit
that, when measured, allows one to extract the total phase
of each evolution, which bears the information of the matrix
elements of the reduced single-mode covariance matrices.
The same method used to determine the single-mode reduced
covariance matrices is applied in order to determine each
pair of two-mode intermodal correlation matrices after the
application of a single beam-splitter-like two-mode rotation,
plus an additional single-mode rotation that does not need
to be applied conditionally to an ancilla’s state. Further, the
method proposed here is suitable for determining and quanti-
fying entanglement in bipartitions having 1 × (n − 1) modes
associated with pure Gaussian states, via the measurement of
only two total phases associated with two local rotations.

The strategy proposed here represents an alternative to
homodyne detection in the quadrature mode CV system of
the quantized electromagnetic field in which a local oscillator
is not necessary and the detector used in order to measure
the one-photon qubit ancilla is a click-nonclick detector.
Our strategy shows advantages in CV systems in which the
quadrature measurement is not directly accessible, as, for
instance, in vibrational modes of trapped ions and generically
in networks of massive oscillators. In such systems the existing
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strategies [54,55] (like ours) involve the entanglement with
a qubit ancilla and consist in a qubit measurement from
which it is possible to determine the phase-space values of
the Weyl characteristic function of the GS. The determination
of the covariance matrix in these strategies requires knowing
a considerable number of phase-space points of the Weyl
characteristic function around the origin, which in turn requires
many measurements of the qubit ancilla. In contrast, our
strategy involves only a few measurements of the qubit ancilla.

Optomechanical systems are also CV systems in which
the quadrature measurement is not directly accessible and for
which our strategy could offer advantages over the existing
methods [56,57]. In these systems the CM of the mechanical
mode is indirectly determined by measuring the leaking field
of the cavity, which is entangled with an oscillating mirror.
It is worth noting that the determination of the CM through
this method is considerably noisy. In this regard, our strategy
might represent a less noisy alternative that could deserve
further investigation.

The method advanced in [58] to determine the CV corre-
sponding to the spatial transverse modes of single photons can
be applied in any quantum state (Gaussian or not). This strategy
shares with ours the fact that it resorts to a controlled unitary
operator implemented by a SLM and that the ancilla qubit to
be measured (in order to extract the second-order moments of
the x̂ and p̂ operators that build the CM) is the polarization
state of the photon. However, the drawback of this strategy is
that it rests on a very precise alignment between the region in
the SLM where the unitary operation is implemented and the
region of effective support of the quantum state of the photon
in the spatial transverse degrees of freedom. In contrast, our
strategy is free of this alignment problem.

ACKNOWLEDGMENTS

F.N. and F.T. acknowledge financial support from the
Brazilian agencies FAPERJ, CNPq, CAPES, and the INCT-
Informação Quântica. A.V.-H. acknowledges financial support
from DGAPA, UNAM through Project PAPIIT IA101816.
A.P.M. acknowledges the Argentinian agency SeCyT-UNC
and CONICET for financial support. We are grateful to S. P.
Walborn, A. Z. Khoury, G. H. Aguilar, and R. Medeiros de
Araújo for fruitful discussions.

APPENDIX: TOTAL PHASE OF METAPLECTIC
EVOLUTIONS OVER A SINGLE-MODE GAUSSIAN STATE

In this appendix we calculate the total phase acquired when
different metaplectic evolutions of interest are performed over
a single-mode Gaussian state. In this case the (one-mode)
covariance matrix is of the form (39). For such 2 × 2 matrices,
Eq. (32b) reduces to

φS[ρ̂G] = π

2
ν+

S − 1

2
arg

[
1

4
− det(VCS) + i

2
Tr(VCS)

]
,

(A1)

which is equivalent to the phase given in Eq. (38).

1. Rotations

The unitary dynamics of a rotation is performed by the
Hamiltonian of a harmonic oscillator ĤR = h̄ω(â†â + 1/2),
corresponding to Eq. (14) with the Hessian HR = I2. The cor-
responding symplectic matrix and its Cayley parametrization
are

R =
(

cos θ sin θ

− sin θ cos θ

)
, CR = tan

(
θ

2

)
I2, (A2)

with θ = ωt . The function sngCR is thus

sngCR = −sng(JC
−1

R J) =

⎧⎪⎨
⎪⎩

2, 0 < θ < π

−2, π < θ < 2π

2, 2π < θ < 3π

−2, 3π < θ < 4π.

(A3)

In order to determine the index ν+
R for all θ , we proceed

as follows. First, according to the lines below Eq. (24), we
fix the index ν+

R equal to 0 for θ = 0. The continuity of the
Wigner symbol (20) in θ then allows us to set ν+

R = 0 for
θ ∈ [0,π ). For θ = π , R has eigenvalues equal to −1 and the
symbol (20) diverges. To surmount this difficulty we resort to
the Weyl symbol (19) before the divergence, that is, at θ = π−.
Thus, using Eq. (22) we write

ν−
R(π−) = ν+

R(π−) − 1
2 sngCR(π−) = −1(mod4) = 3. (A4)

Due to the continuity of (19) we have ν−
R(θ) = ν−

R(π−) for θ ∈
(0,2π ). For θ = π+ we employ again the Wigner symbol (20)
and use

ν+
R(π+) = ν−

R(π+) + 1
2 sngCR(π+) = −2(mod4) = 2. (A5)

Since (20) is continuous in (π,3π ) we set ν+
R(θ) = ν+

R(π+) for
θ ∈ (π,3π ). At θ = 3π , the Wigner symbol exhibits a second
divergence, so as before we resort to the Weyl representation
at θ = 3π−, thus getting

ν−
R(3π−) = ν+

R(3π−) − 1
2 sngCR(3π−) = −3(mod4) = 1 (A6)

and ν−
R(θ) = ν−

R(3π−) for θ ∈ (2π,4π ), due to the continuity of
the Weyl symbol in that interval. Finally, the Wigner symbol
in the interval θ ∈ (3π,4π ] has the index

ν+
R(3π+) = ν−

R(3π+) + 1
2 sngCR(3π+) = −4(mod4) = 0. (A7)

Gathering results, we are led to

ν+
R =

⎧⎨
⎩

0, 0 � θ < π

2, π < θ < 3π

0, 3π < θ � 4π,

ν−
R =

{
3, 0 < θ < 2π

1, 2π < θ < 4π.

(A8)

We now resort to Eq. (38), write τ = det V = ab − c2, and get
the result in Eq. (41).

2. Squeezing

The dynamics associated with a squeezing is now deter-
mined by the quadratic Hamiltonian

ĤZϕ
= i

h̄ω

2
(â†2eiϕ + e−iϕ â2),
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with the Hessian

HZϕ
=

(
cos ϕ sin ϕ

sin ϕ − cos ϕ

)
. (A9)

The associated symplectic matrix and its Cayley parametriza-
tion are given, respectively, by

Zϕ =
(

cosh ζ + sin ϕ sinh ζ − cos ϕ sinh ζ

− cos ϕ sinh ζ cosh ζ − sin ϕ sinh ζ

)
,

CZϕ
= tanh ζ

2

(
cos ϕ sin ϕ

sin ϕ − cos ϕ

)
, (A10)

with ζ = ωt . The eigenvalues of CZϕ
are ± tanh ζ

2 , hence
sngCZϕ

= 0 and ν−
Zϕ

= ν+
Zϕ

. According to the condition (24),

we have ν+
Zϕ

= 0 for ζ = ωt = 0. Moreover, since the symbol

(20) has no divergences, we have ν−
Zϕ

= ν+
Zϕ

= 0 for all ζ and
ϕ. Therefore, since Zϕ has positive eigenvalues, Eq. (38) gives,
for the total phase under squeezing, the result in Eq. (42).

3. Coordinate shear

This transformation corresponds to the Hamiltonian ĤF =
− h̄ω

4 (â† − â)2 with the Hessian given by

HF =
(

0 0
0 1

)
. (A11)

The symplectic matrix and its Cayley parametrization are,
respectively,

F =
(

1 s

0 1

)
, CF =

(
0 0
0 s/2

)
, (A12)

where s = ωt � 0. The index ν+
F is null by (24) and the symbol

in (20) never diverges although the symbol in (19) does not
exist for any value of s. Thus, by Eq. (38), the total phase is
the result in Eq. (43).

4. Momentum shear

This transformation corresponds to the Hamiltonian ĤM =
h̄ω
4 (â† + â)2 characterized by the following Hessian:

HM =
(

1 0
0 0

)
. (A13)

In this case the symplectic matrix and its Cayley parametriza-
tion are given, respectively, by

M =
(

1 0
−s 1

)
, CM =

(
s/2 0
0 0

)
, (A14)

where s = ωt � 0. By the same reasoning as in the previous
example, the index ν+

M is null, thus, using Eq. (38), we obtain
the result in Eq. (44).
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