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Quantum entanglement has been recently demonstrated as a useful resource in conflicting-interest games of
incomplete information between two players, Alice and Bob [Pappa et al., Phys. Rev. Lett. 114, 020401 (2015)].
The general setting for such games is that of correlated strategies where the correlation between competing
players is established through a trusted common adviser; however, players need not reveal their input to the
adviser. So far, the quantum advantage in such games has been revealed in a restricted sense. Given a quantum
correlated equilibrium strategy, one of the players can still receive a higher than quantum average payoff with
some classically correlated equilibrium strategy. In this work, by considering a class of asymmetric Bayesian
games, we show the existence of games with quantum correlated equilibrium where the average payoff of both the
players exceeds the respective individual maximum for each player over all classically correlated equilibriums.
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I. INTRODUCTION

Quantum entanglement is an invaluable resource for infor-
mation processing tasks [1–3]. Entanglement gives rise to the
phenomenon of quantum nonlocality, which shows that non-
communicating spatially separated parties, by presharing parts
of an entangled quantum state, can generate correlations which
cannot be explained by any local realistic theory [4–6]. Several
applications of nonlocal correlations exists, for example,
in quantum cryptography [7] and nonlocal games of full
cooperation [8]. However, applications of quantum nonlocality
to achieve the best possible solution in Bayesian games of
conflicting interests is a very recent development [9–11].

Games usually model the situation of some conflict between
a given number of parties [12]. An interesting connection
between Bell nonlocality [5] (which can be realized in
quantum mechanics through entangled states) and Bayesian
games introduced by Harsanyi [14] was established in [13].
Soon after, an explicit example of a two-party game with
conflicting interests where an entangled state leads to a better
solution was provided in [9] and has inspired a number of
interesting works along this direction [10,11,15–19]. There
had also been previous attempts to devise quantum strategies
for non-Bayesian games, providing an advantage under certain
specific restrictions [20]; however, the physical applicability
of such results had been debated [21–23]. Subsequent progress
made in Refs. [9–11,13,15–19,24] is essentially along the
direction outlined in Ref. [23].

In a Bayesian game the competing parties have only
partial information about the whole setting in which the game
is played [14]. For example, each player may have some
random private information, such as her (his) input, unknown
to other players. In general, to resolve the conflict in the
best possible way, players can arrange a common trusted
adviser facilitating correlated strategies [25]. By resolution of
conflicts it means all players agree to adopt a strategy which
is a Nash equilibrium [26].
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Nash equilibrium. The Nash equilibrium is defined as
follows: In an n players game, let S be the collection of all
possible global strategies derived from each player’s local
strategies. Let s∗

i for i ∈ {1,...,n} be some local strategy of
the ith player. Then a global strategy s∗ = (s∗

1 ,...,s∗
n) ∈ S is a

Nash equilibrium when, if any one player, say j th, fixes his or
her local strategy to s∗

j and then none of the remaining players
can gain by making unilateral changes in their local strategies.

In this work, we demonstrate a qualitatively stronger
quantum advantage in Bayesian games of conflicting interests.
For this, we introduce a class of asymmetric two-player
Bayesian games with conflicting interests. The general setting
for these games is that of correlated strategies where a common
trusted adviser can provide the two players with some classical
correlation or some entangled state as an advice. Input to each
player is generated uniformly at random and is fully private
information not revealed to the adviser. Payoff to each player
in a given round depends on joint input (type) and joint output
(action) of both the players. The measure of the reward to each
player, on adopting a certain strategy, is the average payoff
when the game is played for many rounds with that strategy.

Many real-world problems can be modeled through such
games; some interesting examples of such models can be found
in Refs. [9,10,13]. Assumption of an uninformed (nevertheless
trusted) adviser insures that no information about one player’s
input can leak to the other player; this assumption has been
motivated in [13] as no-signaling advice and in [10] as belief-
invariant advice.

Our results can be summarized as follows. We define a
one-parameter family of asymmetric games (which includes
the game defined in [9] as a special case). For the considered
class of game, we compute and analyze uncorrelated Nash
equilibriums. Next, we analyze classically correlated Nash
equilibriums for our games and find that the sum of average
payoff of two players in these games is equivalent to the
Bell–Clauser-Horne-Shimony-Holt (CHSH) expression up to
scaling. Then we show that with Popescu-Rohrlich–box
(PR-box) correlations, the achieved Nash equilibrium has
a strong feature (also noted in [11]). Finally, we discuss
a quantum correlated strategy and show that in a certain
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TABLE I. Utility functions of Alice and Bob for the considered
class of games G(ε) where 0 � ε � 3/4.

xA ∧ xB = 0 xA ∧ xB = 1

yB = 0 yB = 1 yB = 0 yB = 1

yA = 0
(
1 − ε, 1

2 + ε
)

(0,0) (0,0)
(

3
4 , 3

4

)
yA = 1 (0,0)

(
1
2 ,1

) (
3
4 − ε, 3

4 + ε
)

(0,0)

parameter range there are quantum Nash equilibriums in
which individual rewards to each player exceed their respective
average payoff over the set of all possible classically correlated
Nash equilibriums. This is the main result of our paper.

II. CLASS OF TWO-PARTY BAYESIAN GAMES

Consider a class of Bayesian games, {G(ε) : 0 � ε � 3/4},
played between two spatially separated players, Alice and Bob.
In each single round of the game, both the players receive some
type (input) from the set {0,1}. No player has any information
about the type (input) of the other player. Let types of Alice and
Bob be denoted by xA and xB , respectively, and suppose that
joint input x = (xA,xB ) is sampled from a uniform distribution.
After receiving their types, players perform some action y =
(yA,yB) where yA is an action (output) of Alice and yB is an
action of Bob. The utility (payoff) function, ui(x,y) where
i ∈ {A,B}, of the game is given in Table I, where we use the
symbol A (B) as a shorthand for Alice (Bob).

In Table I, utilities of Alice and Bob are ordered as (uA,uB).
Note that for achieving high payoffs both players need to
correlate their actions when xA ∧ xB = 0 and anticorrelate
their actions when xA ∧ xB = 1. When xA ∧ xB = 0: (i)
for 0 � ε < 1/2, Alice receives a higher payoff when the
correlated action of Alice and Bob is (0,0) and Bob receives a
higher payoff when the correlated action of Alice and Bob is
(1,1); (ii) for ε = 1/2, correlating either way gives the same
payoff to both the players; and (iii) for 1/2 < ε � 3/4, Alice
benefits from (1,1) and Bob from (0,0) correlation. On the
other hand, when xA ∧ xB = 1, Alice prefers (0,1) and Bob
prefers (1,0) correlated outcome for the entire range of ε.

The average payoff that each player receives in games G(ε)
after a large number of rounds can be computed from Table I
and can be expressed as follows:

〈uA〉 = 1
4

{
(1 − ε)P (00|00) + 1

2P (11|00)
}

+ 1
4

{
(1 − ε)P (00|01) + 1

2P (11|01)
}

+ 1
4

{
(1 − ε)P (00|10) + 1

2P (11|10)
}

+ 1
4

{(
3
4 − ε

)
P (10|11) + 3

4P (01|11)
}
. (1)

〈uB〉 = 1
4

{(
1
2 + ε

)
P (00|00) + P (11|00)

}
+ 1

4

{(
1
2 + ε

)
P (00|01) + P (11|01)

}
+ 1

4

{(
1
2 + ε

)
P (00|10) + P (11|10)

}
+ 1

4

{(
3
4 + ε

)
P (10|11) + 3

4P (01|11)
}
. (2)

We conclude this section by noting the following: (i)
The game G(0) corresponding to ε = 0 is the symmetric
conflicting-interest game introduced and analyzed by Pappa

and co-authors in [9]. (ii) For ε �= 0, all the games G(ε) are
asymmetric and Bob has some advantage over Alice. (Such
situations can occur, for instance, in example 3 of the game
discussed in [13], when the two competing companies A and
B can be of different size.)

III. UNCORRELATED NASH EQUILIBRIUM

Consider all the possible pure (deterministic) strategies for
playing the game. Then, each player can choose from the
following four strategies:

Si
1 : yi = 0, Si

2 : yi = 1, Si
3 : yi = xi,

Si
4 : yi = xi ⊕ 1, (3)

where xi is the uniformly random local input bit of the ith
player and yi is the output bit according to any of the four
possible deterministic strategies {Si

1,S
i
2,S

i
3,S

i
4}; here the index

i ∈ {A,B} is the label for the two players Alice and Bob. Thus
there are a total of 16 pure strategies for playing the game.
Table II lists the average payoff for each player for all possible
pure strategies.

From Table II one can easily find all the pure Nash
equilibriums for the considered class of games G(ε). In the
parameter range 0 � ε � 1/4 the strategies (SA

1 ,SB
3 ), (SA

3 ,SB
4 ),

and (SA
4 ,SB

2 ) are Nash equilibriums; for 1/4 � ε � 1/2 the
strategies (SA

1 ,SB
1 ), (SA

3 ,SB
4 ), and (SA

4 ,SB
2 ) are Nash equilibri-

ums; and for 1/2 � ε � 3/4, (SA
1 ,SB

1 ), (SA
2 ,SB

4 ), and (SA
4 ,SB

3 )
are Nash equilibriums. For all values of ε there are multiple
equilibriums, and one can easily check that the two players
will have different preferred equilibrium and therefore there
are conflicting interests in this game for all values of ε.
For example, in the parameter range 0 � ε < 1/4, the most
preferred strategy for Alice is (SA

1 ,SB
3 ) whereas Bob gives

highest preference to (SA
4 ,SB

2 ).
The two players can also play this game by adopting some

mixed strategies. In a mixed strategy Alice (Bob) chooses to
implement from four pure strategies given in Eq. (3) according
to some probability distribution. First we note that any pure
equilibrium point remains an equilibrium point in the general
setting, which extends to all possible mixed strategies. Are
there any other uncorrelated mixed Nash equilibriums for
this game? In general it is mathematically complex to find all
mixed Nash equilibriums, and in the latter part of the paper
we will note that it is not necessary to explicitly compute
them for our purposes.

IV. CLASSICAL-CORRELATED STRATEGIES

In a correlated strategy for the game, a trusted common
adviser is introduced. It is assumed, as in [9], that the adviser
has no information about types that each player receive in
any given round, meaning that the type of each player in
any given round is fully private. Therefore, the adviser can
send advice even before the start of every round of the
game. Any classically correlated advice is simply a set of
separate instructions to both players to implement a strategy
(SA

i ,SB
j ) according to some probability distribution {pij : i,j ∈

{1,2,3,4}}. The advice from the adviser is like a preshared
correlation between the two players before receiving their
types (for example, preshared randomness). It is well known
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TABLE II. Average payoffs of Alice and Bob ordered as (〈uA〉,〈uB〉) for different pure strategies for the considered class of games
G(ε). In parameter range 0 � ε � 1/4 the strategies (SA

1 ,SB
3 ), (SA

3 ,SB
4 ), and (SA

4 ,SB
2 ) are Nash equilibriums, marked in bold with round

brackets; for 1/4 � ε � 1/2, (SA
1 ,SB

1 ), (SA
3 ,SB

4 ), and (SA
4 ,SB

2 ) are Nash equilibriums, marked in bold with curly brackets; and for 1/2 � ε �
3/4, (SA

1 ,SB
1 ), (SA

2 ,SB
4 ), and (SA

4 ,SB
3 ) are Nash equilibriums, marked in bold with square brackets.

A/B SB
1 SB

2 SB
3 SB

4

SA
1

[{
3
4 − 3ε

4 , 3
8 + 3ε

4

}] (
3
16 , 3

16

) (
11
16 − ε

2 , 7
16 + ε

2

) (
1
4 − ε

4 , 1
8 + ε

4

)
SA

2

(
1
8 , 1

4

) (
3
8 , 3

4

) (
1
8 , 1

4

) [
7
16 − ε

4 , 11
16 + ε

4

]
SA

3

(
11
16 − 3ε

4 , 7
16 + 3ε

4

) (
1
8 , 1

4

) (
1
4 − ε

4 , 1
8 + ε

4

) {(
9
16 − ε

2 , 9
16 + ε

2

)}
SA

4

(
1
4 − ε

4 , 1
8 + ε

4

) {(
7
16 , 11

16

)} [
9
16 − ε

4 , 9
16 + ε

4

] (
1
8 , 1

4

)

that such an assumption leads to bounds on certain functions
of joint conditional probabilities of player outputs which are
known as Bell-type inequalities.

It turns out that the class of games that we consider has a
nice connection with the Bell-CHSH inequalityB = 〈A0B0〉 +
〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 � 2 [27]. It can be shown (see
Appendix A for steps in the derivation) that the sum of
average payoff of the two players is related to the value
of the Bell-CHSH expression as 〈uA〉 + 〈uB〉 = 3

16 (B + 4).
Then from the local bound on the Bell-CHSH expression it
immediately follows that

〈uA〉C + 〈uB〉C � 9

8
, (4)

where the subscript C stands for classical. Thus when the
game is played with any classically correlated strategy the
sum of average payoff of the two players is bounded as given
by Eq. (4).

On the other hand, the average payoff of the individual
player Alice (Bob) for any classically correlated Nash equi-
librium is bounded by the maximum of all average payoffs of
Alice (Bob) when the game is played with uncorrelated pure
strategies. These bounds can be computed from Table II and
are as follows:

〈uA〉C �

⎧⎪⎨
⎪⎩

3
4 (1 − ε) for 0 � ε � 1

4 ,

11
16 − ε

2 for 1
4 < ε � 1

2 ,
7

16 for 1
2 < ε � 3

4 .

(5)

〈uB〉C �

⎧⎪⎨
⎪⎩

3
4 for 0 � ε � 1

4 ,
11
16 + ε

4 for 1
4 < ε � 1

2 ,

7
16 + 3ε

4 for 1
2 < ε � 3

4 .

(6)

Note that these bounds for 〈uA〉C and 〈uB〉C may not be tight
bounds on an average payoff for correlated Nash equilibriums.
However, we will see in the following section that these bounds
are sufficient to reveal a feature of strategies which use PR-box
correlations in which they outperform all classically correlated
strategies in the parameter range 0 � ε � 5/8. Incidentally, for
a different class of conflicting-interest games, such a feature
of strategies which use PR-box correlation was also revealed
in a recent work [11].

V. NONLOCAL PR-BOX STRATEGY

Suppose Alice and Bob share the PR-box correlation
[28] provided to them as an advice from the adviser. These

correlations are the extremal no-signaling nonlocal correlation
with two input and two output bits. Although known not to exist
in nature, these correlations are widely used as a conceptual
tool to gain insight into plausible applications of physically
assessable nonlocal quantum correlations.

Nonlocal strategy PR∗—Alice (Bob) feed type xA (xB) as
an input bit to her (his) part of the PR box and output bit
yA(yB) is the action bit. Then the joint probabilities of the
player’s actions given their types must satisfy

P (yA,yB |xA,xB) =
{

1
2 if yA ⊕ yB = xA ∧ xB,

0 otherwise.
(7)

With this strategy the average payoffs of the two players are
as follows:

〈uA〉PR∗ = 1
2

(
3
2 − ε

)
, (8)

〈uB〉PR∗ = 1
2

(
3
2 + ε

)
. (9)

Proposition 1. The nonlocal strategy PR∗ is a Nash equi-
librium for all G(ε) in the parameter range 0 � ε � 5/8.

Proof. Suppose Alice deviates from the strategy PR∗,
whereas Bob’s strategy is fixed. In general, Alice can deviate
from the strategy by preprocessing the received type and
feeding the result as an input to her end of the PR box and
answer after some postprocessing of the outcome from the PR
box. Any such local preprocessing and postprocessing can lead
to some new joint probability distribution P̃ (yA,yB |xA,xB)
which can be different from the PR-box correlation given by
Eq. (7). However, it follows from the no-signaling principle
that P̃ (yA,yB |xA,xB ), obtained by local processing, must be-
long to the set of no-signaling distribution. The same argument
holds when Alice keeps her strategy fixed and Bob deviates.

Now the idea of the proof is that in the parameter range
0 � ε � 5/8, it is sufficient to maximize 〈uA〉 and 〈uB〉,
given by Eqs. (1) and (2), respectively, over the set of all no-
signaling correlations. The set of no-signaling joint probability
distributions for two parties with binary inputs and outputs is
fully characterized by Barrett et al. in [29]. The set forms an
eight-dimensional polytope with 24 vertices—16 local vertices
and 8 nonlocal vertices. Therefore, the maximum value of any
linear function of joint probabilities P (yA,yB |xA,xB ) over the
set of no-signaling correlations is achieved at some vertex of
the polytope.

By computing the value of 〈uA〉, given by Eq. (1), for all 24
vertices, we find that 〈uA〉max = 1

2 ( 3
2 − ε) and this maximum

value is achieved at the PR-box correlation given by Eq. (7).
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This proves that Alice cannot increase her average payoff
by any unilateral deviation. For the case when Alice keeps
her strategy fixed and Bob deviates, by computing the value
of 〈uB〉, given by Eq. (2), for all 24 vertices, we find that
〈uB〉max = 1

2 ( 3
2 + ε) and is achieved at the PR-box correlation

given by the Eq. (7). This proves that Bob cannot increase his
average payoff by any unilateral deviation.

From the bounds given by conditions (5) and (6) it
follows that the PR∗ strategy has a strong property that
〈uA〉PR∗ > max(〈uA〉C) and 〈uB〉PR∗ > max(〈uB〉C) over all
possible classically correlated strategies and for all {G(ε) :
0 � ε � 5/8}}. This result indicates that a similar feature
may exist when G(ε) is played with quantum entanglement
as an advice. In the following section we show that indeed this
feature also holds for quantum strategies, albeit for a smaller
range of the parameter ε.

VI. QUANTUM STRATEGY

Consider a quantum protocol for playing G(ε), which is the
well-known protocol for achieving the maximum violation
for the Bell-CHSH inequality [8]. We give essentially the
same protocol as in [8], but the shared entangled state and
measurements by the players are slightly modified (rotated).

Quantum strategy Q∗. Let the singlet state |�−
AB〉 =

1√
2
(|01〉 − |10〉) be the quantum advice shared between Alice

and Bob. The strategy of Alice is to measure σz on receiving
the type 0 and σx on receiving type 1, whereas Bob performs
measurement − 1√

2
(σx + σz) on receiving 0 and measurement

1√
2
(σx − σz) on receiving 1. The action of Alice and Bob is to

answer with 0 (1) when the +1 (−1) eigenstate clicks. With
this quantum strategy for playing the game, the average payoffs
of Alice and Bob are as follows:

〈uA〉Q∗ = 1

4

(
1 + 1√

2

)(
3

2
− ε

)
, (10)

〈uB〉Q∗ = 1

4

(
1 + 1√

2

)(
3

2
+ ε

)
. (11)

The sum of the average payoff 〈uA〉Q∗ + 〈uB〉Q∗ = 3
4 (1 + 1√

2
),

and this value corresponds to the maximum Bell-CHSH
violation in quantum mechanics [30].

Theorem 1. The quantum strategy Q∗ is a Nash equilibrium
for all G(ε).

Proof. The main steps in the proof are as follows; details of
calculation are provided in Appendix B. First we consider that
Alice unilaterally changes her local measurements and Bob
keeps his measurements fixed to those in the quantum strategy
Q∗. On receiving types 0 and 1, Alice respectively performs
some two-outcome positive operator-valued measure (POVM)
measurement {X00 + X01 = I} and {X10 + X11 = I}, where
X00, X01, X00, and X01 are positive operators acting on
the two-dimensional complex Hilbert space C2. In each case
Alice answers with the measurement outcome. We then derive
the expression for maximum average payoff of Alice over all
possible POVM measurements and find that the maximum
is achieved with the strategy Q∗. This implies that Alice
cannot increase her average payoff by deviating unilaterally
from the quantum strategy Q∗. We then prove the same

result when Alice’s measurements are fixed and Bob changes
his measurements to all possible POVMs. The calculations
involved in the proof are provided in Appendix B. Finally,
since we have maximized over all possible unilateral changes
in one party measurement, it is easy to check that the results
hold even under any preprocessing of inputs or postprocessing
of measurement outcomes.

The quantum strategy Q∗, unlike the PR∗ strategy, cannot
beat the bounds on average payoffs for Alice and Bob given by
conditions (5) and (6). Interestingly, however, by making one
of these bounds tighter, as derived in the following lemma, we
can recover the strong property shown by the PR∗ strategy for
a subset of the games G(ε).

Lemma 1. In the parameter range 1/4 � ε � 1/2, no
classical-correlated equilibrium exists where Bob can play the
strategy SB

3 with a nonzero probability.
Proof. In a classically correlated strategy players are

advised to implement strategy (SA
i ,SB

j ) according to some
probability distribution {pij : i,j ∈ {1,2,3,4}}. This would
mean that Alice adopts strategy SA

i with probability μi =∑4
j=1 pij , and Bob plays strategy SB

j with probability λj =∑4
i=1 pij . Now, for the parameter range 1/4 � ε � 1/2, from

Table II, one can easily verify that any probability distribution
pij with

∑4
i=1 pi3 �= 0 (i.e., Bob playing SB

3 with a nonzero
probability) cannot be a classically correlated equilibrium.
This is due to the fact that if Alice plays with such an
advice (where

∑4
i=1 pi3 �= 0), Bob can always deviate from

his recommended strategy and increase his average payoff.
Theorem 2. The quantum strategy Q∗ gives a strong advan-

tage if 3
14 (3 − √

2) � ε � 1
4 (−8 + 7

√
2), in the sense that, in

this range, both the players beat their individual maximum
average payoff over all possible classical-correlated Nash
equilibriums.

Proof. Using Lemma 1 we get a tighter bound on the average
payoff of Alice for classical-correlated equilibrium, which is
as follows:

〈uA〉C � max

{
7

16
,
3

4
− 3ε

4
,

}
for

1

4
� ε � 1

2
.

For Bob, in the parameter range 1/4 � ε � 1/2 we apply
the same bound as given in the condition (6). From these
bounds, we find that 〈uA〉Q∗ > 〈uA〉C and 〈uB〉Q∗ > 〈uB〉C if
c1 � ε � c2, where c1 = 3

14 (3 − √
2) � 0.34 and c2 = (−8 +

7
√

2)/4 � 0.47.
Theorem 2 shows that in the class of conflicting-interest

Bayesian games that we consider, there are several examples
of games where quantum entanglement gives a much stronger
advantage than any such game proposed so far [9,11]. For
example, G(2/5),G(3/8), etc. have the property that the
individual average payoff of both players with the quantum
strategy Q∗ exceeds the maximum average payoff that each
player can achieve in any classically correlated equilibrium;
this property does not hold, for example, for the game G(0)
proposed in [9].

VII. CONCLUDING REMARKS

To conclude, in this work, by designing a class of two-player
conflicting-interest Bayesian games {G(ε) : 0 � ε � 3/4}, we
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show the existence of games where entanglement acts as a
more powerful resource than those discovered so far [9,11],
leading to strong quantum solution(s). Our work also gives
several examples of unfair quantum Nash equilibriums con-
jectured in [11]. Interestingly, for a given quantum advice (an
entangled state), there are unfair quantum Nash equilibrium
solutions, which also gives the optimal social welfare solutions
discussed in [11].

In contrast to the classically correlated advice, a quantum
setting for the games which provides entanglement as quantum
advice and gives freedom to arbitrarily choose measurement
settings to both the players is a weaker quantum advice and
can still give strong quantum solutions. It will be reasonable to
consider in future works an even stronger version of quantum
advice where the distributed quantum correlation is exactly
specified, i.e., where the adviser provides both the entangled
state and the measurements to the players as black boxes
generating exactly one quantum correlation (i.e., a single
quantum probability distribution). In such frameworks it is
quite likely that the quantum social welfare solutions presented
in [11] also turn out to be Nash equilibrium.

The key quantum feature which leads to better quantum
Nash equilibriums is the existence of nonlocal correlations
in the quantum (physical) world. Since all bipartite pure
entangled states demonstrate this feature [31], it may hold
that any such a quantum state will give better quantum Nash
equilibrium in some Bayesian games of conflicting interests.

ACKNOWLEDGMENTS

Part of the work was done during the first author’s visit
to the R. C. Bose Centre for Cryptology and Security,
Indian Statistical Institute Kolkata. Fruitful discussions with
the authors of Ref. [11] are thankfully acknowledged. This
work was supported in part by the European Union Seventh
Framework Programme (FP7/2007-2013) under the RAQUEL
(Grant Agreement No. 323970) project, QALGO (Grant
Agreement No. 600700) project, the ERC Advanced Grant
MQC, and the Brazilian ministries MEC and MCTIC. The
authors also take this opportunity to thank the anonymous
reviewer(s) for the editorial and technical feedback that helped
to achieve a more coherent presentation.

APPENDIX A: RELATION BETWEEN THE GAMES G(ε)
AND BELL-CHSH INEQUALITY

Consider the following Bell-CHSH inequality:

B = 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 � 2. (A1)

For i,j ∈ {0,1}, Ai,Bj take a value ±1 and are results
(outputs) of observables of the two parties, respectively
indexed by i and j . In the language of our game, it can be
thought that i,j are the types (input) of the two players,
and Ai,Bj ∈ {±1} are their respective actions (output). The
expected values of product of outcomes are

〈AiBj 〉 = P (−1,−1|i,j ) + P (+1, + 1|i,j ) − P (−1,+1|i,j ) − P (+1,−1|i,j ).

We do a following relabeling of the outcomes, −1 
→ 0 and +1 
→ 1, and then we get

〈AiBj 〉 = P (0,0|i,j ) + P (1,1|i,j ) − P (0,1|i,j ) − P (1,0|i,j ). (A2)

Upon inserting Eq. (A2) in the Bell-CHSH expression B = 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉, using normalization
conditions for probabilities, and from the expressions for 〈uA〉 and 〈uB〉 respectively given by Eqs. (1) and (2), one can
obtain that 〈uA〉 + 〈uB〉 = 3

16 (B + 4).

APPENDIX B: COMPLETE PROOF OF THEOREM 1

In the quantum strategy Q∗ the state shared between Alice and Bob is the two-qubit singlet state:

|�−
AB〉 = 1√

2
(|01〉 − |10〉). (B1)

Suppose one player’s measurement strategy is fixed to that of Q∗. Let the other player deviate from Q∗, which he or she can do
by choosing two arbitrary POVM measurements on receiving the respective types 0 and 1, which in general can be respectively
expressed by M0 : X00 + X01 = I and M1 : X10 + X11 = I, where

X00 = 1

2

(
a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

)
, where a0,a1,a2,a3 ∈ R and

√
a2

1 + a2
2 + a2

3 � a0 � 2 −
√

a2
1 + a2

2 + a2
3, (B2)

X10 = 1

2

(
b0 + b3 b1 − ib2

b1 + ib2 b0 − b3

)
, where b0,b1,b2,b3 ∈ R and

√
b2

1 + b2
2 + b2

3 � b0 � 2 −
√

b2
1 + b2

2 + b2
3. (B3)

Let us denote
√

a2
1 + a2

2 + a2
3 = ||�a|| and

√
b2

1 + b2
2 + b2

3 = ||�b||. Note that 0 � a0,b0,||�a||,||�b|| � 1, and for all i ∈ {1,2,3}, ai �
||�a|| and bi � ||�b||.

The proof of Theorem 1 is as follows:
Proof. Let Bob’s strategy be fixed, i.e., his measurements are − 1√

2
(σx + σz) on receiving 0 and 1√

2
(σx − σz) on receiving 1,

and let Alice’s two measurements be M0 and M1. Then on calculating, the analytical expression for Alice’s average payoff turns
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out to be

〈uA〉Q = 1

32
[(9 − 4ε) + {(2 − 4ε)a0 + (3

√
2 − 2

√
2ε)a3} + {b0 + (3

√
2 − 2

√
2ε)b1}]. (B4)

Case 1. If 0 � ε � 1/2, then,

〈uA〉Q � 1

32
[(9 − 4ε) + {(2 − 4ε)(2 − ||�a||) + (3

√
2 − 2

√
2ε)||�a||} + {(2 − ||�b||) + (3

√
2 − 2

√
2ε)||�b||}]

= 1

32
[(15 − 12ε) + {(−2 + 3

√
2) + (4 + 2

√
2)ε}||�a|| + {(3

√
2 − 1) − 2

√
2ε}||�b||]

� 1

32
[(15 − 12ε) + {(−2 + 3

√
2) + (4 + 2

√
2)ε} + {(3

√
2 − 1) − 2

√
2ε}]

= 1

4

(
1 + 1√

2

)(
3

2
− ε

)
.

Case 2. If 1/2 < ε � 3/4, then,

〈uA〉Q � 1

32
[(9 − 4ε) + {(2 − 4ε)||�a|| + (3

√
2 − 2

√
2ε)||�a||} + {(2 − ||�b||) + (3

√
2 − 2

√
2ε)||�b||}]

= 1

32
[(11 − 4ε) + {(2 + 3

√
2) − (4 + 2

√
2)ε}||�a|| + {(3

√
2 − 1) − 2

√
2ε}||�b||]

� 1

32
[(11 − 4ε) + {(2 + 3

√
2) − (4 + 2

√
2)ε} + {(3

√
2 − 1) − 2

√
2ε}]

= 1

4

(
1 + 1√

2

)(
3

2
− ε

)
.

Therefore for any 0 � ε � 3/4, the maximum value of 〈uA〉Q over all M0 and M1 turns out to be 1
4 (1 + 1√

2
)( 3

2 − ε), which is
the same as 〈uA〉Q∗ . Hence, Alice cannot increase her average payoff by deviating.

Now let Alice’s strategy be fixed, i.e., her measurements are σz on receiving 0 and σx on receiving 1, and let Bob’s two
measurements be M0 and M1. Then, upon calculating, the analytical expression for Bob’s average payoff turns out to be

〈uB〉Q = 1

32
[15 + {(−2 + 4ε)a0 + (−3 − 2ε)a1 + (−3 − 2ε)a3} + {(−1 + 4ε)b0 + (3 + 2ε)b1 + (−3 − 2ε)b3}]. (B5)

By similar steps as adopted for maximizing the analytical expression for Alice’s average payoff, one can obtain the maximum
for Bob. The maximum value of 〈uB〉Q over all M0 and M1 turns out to be 1

4 (1 + 1√
2
)( 3

2 + ε), which is same as 〈uB〉Q∗ . Thus
Bob cannot increase his average payoff by deviating. Therefore, we can finally conclude that the quantum strategy Q∗ is a Nash
equilibrium.
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