
PHYSICAL REVIEW A 96, 042335 (2017)

Applications of the modified Rydberg antiblockade regime with simultaneous driving
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Through analyzing the effective dynamics of two Rydberg atoms under the dispersive coupling process, we
give a method to modify the traditional antiblockade regime with simultaneous driving without adding any extra
controls and resources. The modified regime can be used to construct controlled-PHASE and controlled-NOT gates
in one step without manipulating the shape and amplitude, and tailoring sequences of the driving pulses. For the
controlled-PHASE gate, only one pumping process from the ground state to the Rydberg state of each atom is
required thus the resource is minimal. And the atomic addressability is not necessary. The scheme can be improved
a lot after adding single-qubit operations since arbitrary phases can be achieved accurately with a short period of
evolution time. For one-step construction of controlled-NOT gate, two schemes with high fidelities are given and
discussed. Besides, the modified regime can also be used to improve the performance of the dissipation-based
quantum entanglement preparation scheme. The optimal value of the modified condition for entanglement
preparation is discussed for a wide range of parameters. Our study enriches the physics and applications of the
simultaneous-driving-based Rydberg antiblockade regime without adding any operation complexity.
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I. INTRODUCTION

The classical laser field with resonant frequency driving
a ground state to the Rydberg state of one atom cannot
excite two or more Rydberg atoms simultaneously [1,2]; this
interesting phenomenon is called the Rydberg blockade. The
root cause for this phenomenon is that the collective jumped
Rydberg states would interact directly and strongly with each
other within the blockade radius range due to their large
electric dipole [3–5]. Based on the Rydberg blockade regime,
the conditional dynamics can be easily constructed through
driving the atoms step by step [1,2,6–10]. The phase [1] or
the exchange between two ground states of the latter Rydberg
atoms [7] based on electromagnetically induced transparency
would be achieved or not conditioned on whether the former
atom is excited to the Rydberg state. Besides, combining
adiabatic passage and the Rydberg blockade regime can also
lead to robust creation of the maximal entanglement and
quantum logic gates [11–18]. Experimentally, a suppression
of the excitation in the Rydberg gas [19–21] and the evidence
for coherent Rydberg excitation of frozen Rydberg gases in
the strong blockade regime [22] have been observed. And
the blockade with two Rydberg atoms [23,24] have been
demonstrated. Recently, entanglement between neutral atoms
[25], optical nonlinearity [26], many-body quantum dynamics
[27–29], and the energy transport [30] induced by the Rydberg
blockade have also been observed.

The Rydberg blockade can be generalized to Rydberg atoms
that largely stay in the ground state via the Rydberg-dressed
state method [31–39], whereby dispersive Rydberg excitation
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admixes a small percentage of the Rydberg state into the
ground-state wave function. Via the Rydberg-dressed state
method, many-body interferometry of the spin lattice [40] and
the entanglement with the spin-flip blockade [41] are realized
experimentally. Besides, the Rydberg interactions and the
induced blockade phenomenon are also useful for achievement
of the quantum devices, such as the single-photon switch [42],
quantum filter [43], single-photon transistor [44,45], etc. In
addition, the photon-photon interactions can be generated via
the Rydberg blockade [46,47]. And the blockade of the photon
is also interesting [48].

In stark contrast to the blockade regime, Ates et al.
[49] predicted a Rydberg antiblockade (RAB) regime in a
three-level scheme when interaction energy matches the Rabi
frequency of the lower transition in an ultracold lattice gas.
Amthor et al. demonstrated [50] in the antiblockade regime in
experiment even the atomic interaction shift is much greater
than the excitation line width when the system is initially set as
an unstructured gas. Despite the fact that the population of the
two-atom Rydberg excited state is not higher than 0.2 [49,50],
these schemes pave the way for the RAB regime. Besides,
Pohl et al. showed that the RAB regime would emerge for
three Rydberg atoms if the dark state of the whole system that
contained three excited Rydberg atoms was populated [51].
Immediately, the antiblockade between two Rydberg atoms
was studied when the atoms were illuminated by a zero-area
phase-jump pulse [52].

The critical condition to achieve the simultaneous-driving-
based RAB regime was given by Zuo et al. [53] and Lee et al.
[54]. The main starting point is to compensate the energy shift
induced by the Rydberg-Rydberg interaction by modulating
the detuning between the driving field and atomic transition.
The application and advantage of this RAB regime become
apparent when the dissipative processes are considered by Carr
and Saffman [55] for preparation of entanglement. However,
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constructing the quantum logic operations based on the
traditional RAB regime [53,54] is challenging since some extra
unwanted Stark shift terms would emerge inevitably in the
effective Hamiltonian of the traditional RAB-based scheme
when two ground states of each Rydberg atom are involved
and the large detuning condition is satisfied.

The above studies for the RAB regime refers specially
to the simultaneous-driving-based case. The merit is that
the regime can be realized in one step [53,54] and can be
further used to prepare entanglement via the aid of dissipative
dynamics [55,56] or not [53]. Besides, in Ref. [57], the
authors propose a completely different RAB regime with
sequent driving which pumps the Rydberg atoms one by one.
Each of the two kinds of antiblockade regimes is able to
realize the collective excitation of Rydberg atoms and find
corresponding applications in quantum information processing
(QIP). The differences between the simultaneous-driving-
based (the former) and the sequent-driving-based (the latter)
RAB regimes can be summarized as follows. (i) The former
regime is based on the second-order perturbation theory while
the latter regime is based on the accurate excitation process
without approximation. (ii) The former regime can be realized
in one step while the latter one can be realized fast. (iii) The
former regime does not require atom addressability, which
is not the case of the latter one. (iv) The former regime is
convenient for preparing entanglement while the latter one is
feasible for construction of the quantum logic gate.

In this paper, we modify the traditional RAB regime
[53–55] with simultaneous driving by compensating not only
the energy shift induced by the Rydberg-Rydberg interaction,
but also the energy associated with some of the Stark shift
induced by the dispersive interactions without adding extra
lasers and controls. We show that, in contrast to the traditional
RAB regime with simultaneous driving,one the modified
one (i) can be utilized to construct the controlled-PHASE

gate, and (ii) can be used to construct the controlled-NOT

gate. Different from the blockade-based schemes, our scheme
can construct the quantum controlled-PHASE gate in one-
step approximately or two-step accurately (with arbitrary
conditional phases) through adding single-qubit operations
without adiabatic controls. Besides, the modified regime is
able to be used to construct the quantum controlled-NOT gate
directly in one step without adiabatic controls. In addition,
the modified RAB (iii) can also improve the efficiency of
the dissipative dynamics-based schemes for entanglement
generation. Our study enriches the physics and applications
of the simultaneous-driving-based RAB regime.

II. BASIC MODEL AND THE MODIFIED RAB REGIME

A. Basic model

As shown in Fig. 1(a), we consider two Rydberg atoms
trapped in optical tweezers. Each of the atoms has two ground
states, and one of the ground states |1〉 is coupled to the
Rydberg state |r〉 via the two-photon process shown in Fig. 1(b)
or single-photon transition shown in Fig. 1(c). If the condition
δ � {�1/2,�2/2} is satisfied, one can adiabatically eliminate
the intermediate energy level |p〉. The model in Fig. 1(b) would
be equivalent to that in Fig. 1(c) with �1 − (�2)2/(4δ) = �
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FIG. 1. (a) Schematic representation of two trapped Rydberg
atoms. (b) Diagram of two four-energy-level Rydberg atoms. Each
atom has two ground states |0〉 and |1〉, one short-lived state |p〉 and
one Rydberg state |r〉. The ground state |1〉 is coupled to the Rydberg
level |r〉 by a two-photon process via the intermediate energy level
|p〉. The corresponding Rabi frequencies of the transition |1〉 → |p〉
and |p〉 → |r〉 are �1 and �2, respectively. (c) Diagram of two
three-energy-level Rydberg atoms. Each atom has two ground states
|0〉 and |1〉, and one Rydberg state |r〉. The transition from ground
state |1〉 to |r〉 is coupled directly by a laser with Rabi frequency
�. Experimentally, in Ref. [41], researchers used a 319-nm laser to
couple the 133Cs atom directly from the ground state to the Rydberg
state, in a single-photon transition [58].

and �1�2/(2δ) = �, and canceling some Stark shift of energy
level |1〉 through adding extra lasers. On the other hand,
the model in Fig. 1(c) can be achieved in experiment di-
rectly [41,58] through encoding |1〉 ≡ |6S1/2,F = 4,mF = 0〉,
|0〉 ≡ |6S1/2,F = 3,mF = 0〉, and |r〉 ≡ |84P3/2; mJ 〉, and
considering the exciting laser at λ = 319 nm. In the following,
we only consider the model in Fig. 1(c) for simplicity.

In the rotation frame, the Hamiltonian of the system can be
written as

Ĥ = Ĥ1 + Ĥ2 + Û , (1)

where

Ĥj = −�|r〉j 〈r| + �

2
(|r〉j 〈1| + H.c.), (2)

and

Û = V |rr〉〈rr|. (3)

With the dispersive regime condition � � �/2 and the
traditional RAB condition � = V/2 [53–55,59,60] being
satisfied, the effective Hamiltonian of the whole system in
the two-atom basis would be

Ĥeff = �2

4�
[2(|11〉 + |rr〉)(〈11| + 〈rr|)

+ (|10〉〈10| + |01〉〈01|)], (4)

in which the second-order perturbation method is considered
[61] and we have discarded the single excitation terms since
they are in a closed subspace and not included in the initial
states.

The Stark shift in Eq. (4) is the reason why the quantum
logic gate cannot be implemented efficiently [62]. Besides,
for the case of the dissipative-dynamics-based quantum en-
tanglement preparation scheme, the Stark shift of |rr〉〈rr|
may stretch the time of the system to be steady. If one can
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modify the RAB regime to cancel some of the undesirable
Stark-shift terms, the following relevant QIP schemes would
be interesting.

B. Modified Rydberg antiblockade regime
with simultaneous driving

We notice that the term relevant to the Rydberg-Rydberg
interaction is |rr〉〈rr|, and interestingly, one of the Stark-shift
terms of the effective Hamiltonian (4) also has the same form.
This inspires us to see whether we can modify V and � to
cancel some of the unwanted Stark shift, and furthermore
to achieve some useful QIP tasks. We first modify the RAB
condition as [63]

V = 2� − μ
�2

2�
[μ ∈ Reals]. (5)

When μ = 0 is satisfied, Eq. (5) turns back to the traditional
RAB condition with simultaneous driving. Otherwise, when
μ �= 0 the effective Hamiltonian of Eq. (1) would be changed
to [61] (see appendix)

Ĥeff = �2

4�
[2(|11〉〈11| + |rr〉〈11| + |11〉〈rr|)

+ 2(1 − μ)|rr〉〈rr| + (|10〉〈10| + |01〉〈01|)]. (6)

The value of μ is not constant, one can specify different values
of μ for different QIP tasks. In fact, one would find that, even
for a specific QIP task, there may be many options for the
values of μ. These features enrich the physics and applications
of the RAB regime with simultaneous driving. In the following,
we illustrate how to choose μ to effectively achieve the
quantum controlled-PHASE gate and -NOT gate, and improve
the performance of the dissipative-dynamics-based quantum
entanglement preparation scheme. Another thing that should
be noted is that the introduction of μ can be realized through
changing the Rabi frequency or detunings of the driving
process. That is, the extra lasers or controls are not required on
the basis of the traditional simultaneous-driving-based RAB
regime.

III. QUANTUM LOGIC GATE

A. Quantum controlled-PHASE gate

The evolution operator related to Eq. (6), e−iĤeff t , induces

|00〉 → |00〉,|01〉 → e−iν |01〉,|10〉 → e−iν |10〉,

|11〉 → eiμ1ν

μ2
{[μ2 cos(μ2ν) − iμ sin(μ2ν)]|11〉

− 2i sin(μ2ν)|rr〉}, (7)

in which ν = �2t/(4�), μ1 = μ − 2, and μ2 =
√

μ2 + 4.
The form of the controlled-PHASE gate is

Û = |00〉〈00| + |01〉〈01| + |10〉〈10| + eiθ |11〉〈11|. (8)

The following analysis is based on Eq. (7), whose aim is to
construct the quantum logic gate in Eq. (8).
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FIG. 2. Phase of |11〉 and the absolute value of the amplitude of
|rr〉 versus μ, respectively, at the time t = 8π�/�2. The conditional
phase is accurate only when the amplitude of |rr〉 equals zero.

1. Approximate, one-step case

To construct the controlled-PHASE gate in one step, |11〉
should get a phase θ while the other states keep invariant.
Therefore, ν = 2nπ (n ∈ Integer, we first consider n = 1)
should be satisfied in Eq. (7). And the coefficient of |rr〉
should be zero since it is out of the computational sub-
space. Consequently, μ2 should be integral or half integral.
Then the controlled-PHASE gate with the conditional phase
[2μπ Mod 2π ](when μ2 is integral) or [(2μ − 1)π Mod 2π ]
(when μ2 is half integral) is constructed.

The phase θ of state |11〉 versus μ is shown in Fig. 2, from
which one can find that although the results are analytical, the
phase π and π/2 cannot be achieved. That is, the practicability
of the gate would be discounted in the QIP tasks. In the
following, we pay attention to construct controlled-π/2 and
controlled-π gates approximately [64], in one step by choosing
appropriate μ.

In Fig. 3(a), we plot the imaginary part of the coefficient
of |11〉 versus μ with the precondition t = 8π�/�2 being
satisfied. One can see that the conditional phase θ = ±π/2
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FIG. 3. (a) Imaginary part of the coefficient of |11〉 versus μ with
the precondition t = 8π�/�2 that keeps |01〉 and |10〉 invariant
being satisfied. (b) and (c) Real part of the coefficient of |11〉 versus
μ with (b) the precondition t = 8π�/�2 or t = 16π�/�2 and (c)
the precondition t = 12π�/�2 or t = 20π�/�2 being satisfied,
respectively.
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FIG. 4. Gate fidelity versus μ at different evolution times with
� = 20�. The initial state is supposed as |ψ0〉 = (|00〉 + |01〉 +
|10〉 + |11〉)/2. The fidelity is plotted via Eqs. (9) and (10). (a) and
(b) Fidelity of the standard controlled-π gate. (c) and (d) Fidelity of
the gate Û = |00〉〈00| − |01〉〈01| − |10〉〈10| − |11〉〈11|. (e) Fidelity
of the gate Û = |00〉〈00| + |01〉〈01| + |10〉〈10| + e−iπ/2|11〉〈11|.

can be approximately achieved when μ equals 2.25 and 7.75,
respectively.

In Figs. 3(b) and 3(c), we plot the real part of |11〉
versus μ with the preconditions t = 8π�/�2 and 16π�/�2,
12π�/�2 and 20π�/�2 being fulfilled, respectively. From
the numerical results in Fig. 3(b), one can find that if μ = 4,
the transformation |11〉 → −0.985|11〉 would be achieved and
the other three computation bases keep invariant at the time
t = 8π�/�2. Besides, if μ = 8 is satisfied, the conditional
phase |11〉 → −0.999|11〉 would be achieved at the time
t = 16π�/�2. That is, the controlled-π gate is constructed.

One should note μ = 7.75 is also feasible for realization of
the controlled-π gate [65]. In Fig. 3(c), we plot the real part
of |11〉 versus μ with the preconditions t = 12π�/�2 and
20π�/�2 being fulfilled, respectively. At these two evolution
times, the transformations |01(10)〉 → −|01(10)〉 are realized.
Then, if one chooses μ to achieve |11〉 → −|11〉, the oper-
ations Û = |00〉〈00| − |01〉〈01| − |10〉〈10| − |11〉〈11| would
be constructed, which is equivalent to the controlled-π gate
through adding single-qubit operations. And we call this
controlled-π ′ gate in the following. From Fig. 3(c), one can get
for the case t = 12π�/�2, |11〉 → −0.997|11〉 is achieved
when μ = 6. For the case t = 20π�/�2, |11〉 → −0.999|11〉
is achieved when μ = 10.

A measure of the distance between two quantum states is
the fidelity [66],

F = tr
√

ρ̂1/2σ̂ ρ̂1/2. (9)

For a specific input state, one can use the fidelity between
the output state (σ̂ ) generated by the ideal quantum logic gate
and that (ρ̂) generated by the practical logic gate to access
the performance of the scheme. The following Schrödinger
equation,

˙̂ρ(t) = −i[Ĥ ,ρ̂(t)], (10)

is used to get the final state of the scheme.
In Fig. 4, one can see that (i) the curves plotted by full

and effective Hamiltonians agree well with each other, which
proves the validity of the effective Hamiltonian. And (ii) the
gate fidelity is close to unity when μ takes the optimal value
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μ

FIG. 5. (a), (c), and (f) Gate fidelity plotted versus μ under
effective (solid line) and full (dashed line) Hamiltonians with
μ2ν = 2π (π,3π ) and � = 12�. The initial state is set as (|00〉 +
|01〉 + |10〉 + |11〉)/2. (b), (d), and (f) Conditional phase plotted by
effective (solid line) and full (dashed line) Hamiltonians versus μ

with μ2ν = 2π (π,3π ) and � = 12�.

predicted by Fig. 3. Besides, each point with high fidelity in
Fig. 4 has its corresponding point predicated by the displayed
curves in Fig. 3.

2. Accurate, analytical, arbitrary phase, two-step case

Suppose the parameters in Eq. (7) satisfy μ2ν = 2nπ or
(2n + 1)π at a given time, |11〉 would get an accurate phase
θ ′ = μ1ν or π + μ1ν accordingly. At the same time, |01〉 and
|10〉 would both get a phase ϕ = −ν. Then if one performs a
single-qubit operation on |1〉 to eliminate the phases of |01〉
and |10〉, the phase of |11〉 would be changed to θ = θ ′ −
2ϕ = μν for μ2ν = 2nπ and to π + μν for μ2ν = (2n + 1)π ,
respectively.

We first consider the case μ2ν = 2π , i.e., ν = 2π/μ2.
Then θ = μν ≡ 2πμ/

√
μ2 + 4 is achieved. One can easily get

that θ = ±π when μ = ±√
4/3, and θ is monotonically for

μ ∈ [−√
4/3,

√
4/3]. In other words, the arbitrary conditional

phase from −π to π can be achieved analytically with
appropriate μ, as shown in Fig. 5(b).

For the case μ2ν = π , θ = π + μν ≡ π + μπ/
√

μ2 + 4.
One cannot find an appropriate μ to realize θ = 0. That is,
the phase with the arbitrary angle is a challenge for μ2ν =
π . Nevertheless, θ ∈ [π − 2π/

√
5,π ] and [−π,2π/

√
5 − π ],

which include ±π/8, ±π/4, ±π/2, and ±π , are achievable
for μ ∈ [−4,4], respectively, as shown in Fig. 5(d).

For the case μ2ν=3π , θ=π + μν ≡ π + 3μπ/√
μ2 + 4. One can find that θ = π or −π when μ = 0

or (−√
16/5), and θ is monotonically for μ ∈ [−√

16/5,0].
In other words, the conditional phase with the arbitrary angle
is achievable, as shown in Fig. 5(f).

Besides, we plot the conditional phase under the full
Hamiltonian with � = 12� for μ2ν = 2π (π,3π ) in Figs. 5(b),
5(d) and 5(f) (dashed line). In addition, the gate fidelities under
the effective and full Hamiltonian with one group of specific
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initial states are also plotted in Figs. 5(a), 5(c) and 5(e). These
studies show the analysis of the two-step scheme is feasible.

In contrast to the one-step case, these two-step schemes are
analytical and can be implemented accurately with a shorter
evolution time. Besides, the arbitrary conditional phase is
achievable through adjusting μ correspondingly.

B. Quantum controlled-NOT gate

In this subsection, we focus on the quantum controlled-NOT

gate via the modified RAB regime. As shown in Fig. 6(a), we
first consider the system with the Hamiltonian,

Ĥ = Ĥ1 + Ĥ2 + Û , (11)

where

Ĥ1 = −�|r〉1〈r| + �

2
(|r〉1〈1| + H.c.),

Ĥ2 = −�|r〉2〈r| + �

2
(|r〉2〈1| + |r〉2〈0| + H.c.), (12)

and

Û = V |rr〉〈rr|. (13)

Then, under the traditional RAB regime V = 2� and disper-
sive regime condition � � �/2, the effective form of the
Hamiltonian (11) would be

Ĥeff = �2

2�
[(|10〉 + |11〉)〈rr| + H.c.] + 3�2

4�
|rr〉〈rr|

+ �2

4�
(2|10〉〈10| + 2|11〉〈11| + |01〉〈01| + |00〉〈00|)

+ �2

4�
(|00〉〈01| + |10〉〈11| + H.c.), (14)

in which we have ignored the terms in the single excitation
subspace since they are not included in the initial states and also
do not interact with other states. The form of the controlled-
NOT gate is

Û = |00〉〈00| + |01〉〈01| + |11〉〈10| + |10〉〈11|. (15)

G
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FIG. 7. (a) Values of the real part of [m − 2e−i�2t/(4�)]/4 versus μ

at two different evolution times. (b) and (c) Gate fidelity versus μ with
the condition � = 20� for two different evolution times with the spe-
cific initial state |ψ0〉 = (0.1|00〉 + 0.1|01〉 + |10〉 + 0.05|11〉)/N (N
is the normalization coefficient). The fidelity is plotted via Eqs. (9)
and (10). (b) Fidelity of the standard controlled-NOT gate. (c) Fidelity
of the controlled-NOT′ gate Û = |00〉〈00| + |01〉〈01| − |11〉〈10| −
|10〉〈11|.

1. Approximate case

Under the modified RAB condition in Eq. (5), the effective
Hamiltonian can be modified to

Ĥeff = �2

2�
[(|10〉 + |11〉)〈rr| + H.c.] + �2

4�
(3 − 2μ)|rr〉〈rr|

+ �2

4�
(2|10〉〈10| + 2|11〉〈11| + |01〉〈01| + |00〉〈00|)

+ �2

4�
(|00〉〈01| + |10〉〈11| + H.c.). (16)

The evolution process dominated by Eq. (16) is

|00〉 → 1

2

[(
1 + e

−i�2 t
2�

)|00〉 + (−1 + e
−i�2 t

2�

)|01〉],
|01〉 → 1

2

[(−1 + e
−i�2 t

2�

)|00〉 + (
1 + e

−i�2 t
2�

)|01〉],
|10〉 → 1

4

[(
m + 2e

−i�2 t
4�

)|10〉 + (
m − 2e

−i�2 t
4�

)|11〉]

− 1

μ5
e

−iμ4�2 t

4�

(
e

iμ5�2 t

2� − 1
)|rr〉,

|11〉 → 1

4

[(
m − 2e

−i�2 t
4�

)|10〉 + (
m + 2e

−i�2 t
4�

)|11〉]

− 1

μ5
e

−iμ4�2 t

4�

(
e

iμ5�2 t

2� − 1
)|rr〉, (17)

in which μ3 = −3 + μ +
√

8 + μ2, μ4 = 3 − μ +
√

8 + μ2,
μ5 =

√
8 + μ2, and m = eiμ3�

2t/(4�)(1 − μ/μ5) +
e−iμ4�

2t/(4�)(1 + μ/μ5). Therefore, if one can choose the
evolution time and parameters to make [1 + e−i�2t/(2�)]/2 = 1
and [m − 2ei�2t/(4�)]/4 = 1 being satisfied simultaneously,
the desired quantum logic gate is achieved. The first
condition can be easily satisfied if one chooses the condition
�2t/(2�) = 2nπ (n ∈ Integer). The second condition cannot
be satisfied for μ = 0, which corresponds to the traditional
RAB regime.

In Fig. 7(a), we plot the real part of [m − 2e−i�2t/(4�)]/4 to
find suitable μ. It is obvious that, when t = 4π�/�2 and μ =
±4 are satisfied, the real part of [m − 2e−i�2t/(4�)]/4 is close to

042335-5
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1 and the desired logic operation in Eq. (15) would be achieved
approximately. Besides, when t = 8π�/�2 and μ = ±2, ±
7.5, ± 8 are satisfied, the real part of [m − 2e−i�2t/(4�)]/4
is close to −1 and the logic gate Û = |00〉〈00| + |01〉〈01| −
|11〉〈10| − |10〉〈11|(we call it controlled-NOT′ gate), which is
equivalent to the standard controlled-NOT gate through adding
one single-qubit operation, can be constructed. In Figs. 7(b)
and 7(c), we plot the fidelity of the controlled-NOT gate with
one specific initial state. One can see that the curves plotted by
effective and full Hamiltonians agree well with each other, and
the fidelity approaches to unity around the values of μ given
by the former analysis.

2. Accurate cases

Through adding one laser filed on the control atom and one
Raman process on the target atom, respectively, as shown in
Fig. 6(b), Ĥ1 and Ĥ2 is changed to

Ĥ1 = −�|r〉1〈r| + �

2
(|r〉1〈1| + |r〉1〈1|e2i�t + H.c.),

Ĥ2 = −�|r〉2〈r| + �

2
(|r〉2〈1| + |r〉2〈0| + H.c.)

+ �

2
(|r〉2〈1|e2i�t + |r〉2〈0|e2i�t + H.c.), (18)

and the rest of the system Hamiltonian is the same as that
of the model described in Fig. 6(a). Under the modified
RAB regime and dispersive regime condition � � �/2, the
effective Hamiltonian would be

Ĥeff = �2

2�
{[(|10〉 + |11〉)〈rr| + H.c.] + (2 − μ)|rr〉〈rr|}.

(19)

If μ = 2, the Hamiltonian would be further simplified to

Ĥeff = �2

2�
[(|10〉 + |11〉)〈rr| + H.c.], (20)

which induces the following evolution processes:

|00〉 → |00〉,|01〉 → |01〉,

|10〉 →
[

cos

(
�2t

2
√

2�

)]2

|10〉 −
[

sin

(
�2t

2
√

2�

)]2

|11〉

− i√
2

sin

(
�2t√

2�

)
|rr〉,

|11〉 → −
[

sin

(
�2t

2
√

2�

)]2

|10〉 +
[

cos

(
�2t

2
√

2�

)]2

|11〉

− i√
2

sin

(
�2t√

2�

)
|rr〉. (21)

If t = √
2π�/�2 is fulfilled, the controlled-NOT′ gate is

achieved.
Besides, if one modifies the relative phase of the Rabi

frequencies to change Ĥ2 as

Ĥ2 = −�|r〉2〈r| + �

2
(|r〉2〈1| − |r〉2〈0| + H.c.)

+ �

2
(|r〉2〈1|e2i�t − |r〉2〈0|e2i�t + H.c.), (22)

0
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Plot with effective Hamiltonian

  ( 2 Δ Ω2)//

FIG. 8. Fidelity of the standard controlled-NOT gate versus evolu-
tion time. The initial state is chosen as |ψ0〉 = (0.2|00〉 + 0.2|01〉 +
0.5|10〉 + 0.05|11〉)/N (N is the normalization coefficient). For the
curve plotted with the full Hamiltonian, � = 20� is used.

the effective Hamiltonian would be changed to

Ĥeff = �2

2�
[(−|10〉 + |11〉)〈rr| + H.c.], (23)

after choosing μ = 2, based on which the standard controlled-
NOT gate would be achieved at the time t = √

2π�/�2.
In Fig. 8, we use a specific initial state to estimate the

performance of the gate. The numerical results show the
consistency between the curves plotted by the full and effective
Hamiltonian, respectively.

IV. IMPROVE THE PERFORMANCE OF
THE DISSIPATIVE-DYNAMICS-BASED

ENTANGLEMENT PREPARATION

In this section, we study the influence of the modified
RAB regime on the dissipative-dynamics-based quantum
entanglement preparation scheme.

A. Physical process

Considering the model shown in Fig. 9, the Hamiltonian of
the whole system is Ĥ = Ĥ1 + Ĥ2, where

Ĥ1 =
∑
j=1,2

−�|r〉j 〈r| + �

2
(|r〉j 〈1| + |1〉j 〈r|), (24)

Δ V

atom 1 atom 2

Ω
2

0

1

r Δ

Ω
2

0

1

r

ω
2

ω
2

γ γ

00

rr

11

T S

(a) (b)

FIG. 9. (a) Energy diagram of the dissipative scheme to prepare
steady entanglement. The coupling between |1〉 and |r〉 is dispersive
with detuning −� and Rabi frequency �. And the transition between
two ground states is driven by the resonant microwave field with Rabi
frequency ω. The Rydberg state |r〉 decays to two ground states with
a total spontaneous rate γ . (b) Diagram of the effective process of the
dynamics under the two-atom basis.
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and

Ĥ2 =
∑
j=1,2

ω

2
(|1〉j 〈0| + |0〉j 〈1|). (25)

Under the traditional RAB condition V = 2� and the disper-
sive regime, the effective form of Hamiltonian (24) can be
written as

Ĥ eff
1 = �2

4�
[2(|11〉 + |rr〉)(〈rr| + 〈11|)

+ (|10〉〈10| + |01〉〈01|)]. (26)

Under the two-atom basis, the microwave field Hamiltonian
can be rewritten as

Ĥ2 =
√

2ω

2
[|00〉〈T | + |T 〉〈11| + H.c.], (27)

in which |T 〉 = (|01〉 + |10〉)/√2. The dark state of Hamil-
tonian (27) is |S〉 = (|01〉 − |10〉)/√2, which is the desired
steady entanglement. Thus, one can get from Eq. (27) that
the microwave field shuffles the states |00〉, |T 〉, and |11〉,
and keeps |S〉 invariant. The state |11〉 can be excited to |rr〉
via the effect of Hamiltonian (26) and further decayed to the
ground-state subspace. Once |S〉 is populated, the scheme
succeeds. Otherwise, if the other three states are populated,
they would be re-excited and decay to the ground subspace
again. The above processes get repeated until the scheme is
successful.

B. Relationship between unitary dynamics
and the dissipative process

Strictly speaking, the relationship between unitary dynam-
ics and the dissipative process can be interpreted as unity of
opposites between competition and cooperation, which makes
the target state |S〉 the specific stationary state of the system.
The unitary process |11〉 → |rr〉 is cooperative with the
dissipative process, while the unitary processes |rr〉 → |11〉
and |rr〉 → |rr〉 are competitive with the dissipative process.
One should be aware of the fact that, under the traditional RAB
regime � = 2V , the scheme is feasible [55,56]. The aim of
introducing the modified RAB is to try to find a more optimal
equilibrium point between competition and cooperation, which
may improve the performance of the scheme. In Fig. 10, we
use the master equation,

˙̂ρ = −i[Ĥ ,ρ̂] + γ

2

4∑
j=1

(2σ̂j ρ̂σ̂
†
j − σ̂

†
j σ̂j ρ̂ − ρ̂σ̂

†
j σ̂j ), (28)

to solve numerically the dynamics of the system [67], where
σ̂1 = |0〉1〈r| and σ̂2 = |1〉1〈r| denote the operators of atom
1, and σ̂3 = |0〉2〈r|, and σ̂4 = |1〉2〈r| denote the operators of
atom 2, respectively. In Fig. 10(a), we plot the fidelities versus
μ to find the optimal value. In Fig. 10(b), we plot the fidelities
versus evolution time under the traditional and modified RAB
regimes with the optimal μ from Fig. 10(a). One can see that
under the modified RAB regime the fidelity can be improved
a little and the time to be steady is reduced.

Time (ms) 
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µ
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FIG. 10. (a) Fidelity of the steady entanglement versus μ under
the modified RAB condition. (b) Fidelities of the entanglement versus
evolution time with optimal μ = 0.465 and μ = 0 (traditional RAB
regime). The parameters are chosen as �/2π = 0.036 MHz, ω/2π =
1.45×10−4 MHz, � = 3 MHz, and γ = 1.257 KHz. The initial state
is chosen as |11〉, and the target state is |S〉. For simplicity, we have
assumed the Rydberg state has equal spontaneous rates on two ground
states.

C. Differences of the unitary dynamics

We now aim to find some differences of the unitary
dynamics process under the traditional and modified RAB
regimes since the dissipative processes are almost the same as
one another under these two regimes, and try to give some
reasonable explanations why the performance is improved
under the modified RAB regime. To do this we first write
the effective Hamiltonian under the modified regime,

Ĥ eff
1 = �2

4�
[2(|11〉〈11| + |rr〉〈11| + |11〉〈rr|)

+ (2 − 2μ)|rr〉〈rr| + (|10〉〈10| + |01〉〈01|)]. (29)

Then we use Eq. (29) to simulate the behaviors of the unitary
dynamics, which is shown in Fig. 11. One can see that the
amplitude of the Rabi oscillation under the modified RAB
condition is slightly less than that under the traditional RAB
regime. In other words, |rr〉 has not been converted to |11〉

Pr
o
b
al
ili
ti
es

(a) (b)

(c) (d)

FIG. 11. (a) and (d) Probabilities of |11〉 (|rr〉) versus time under
the traditional RAB regime. (b) and (c) Probabilities of |rr〉 (|11〉)
versus time under the modified RAB regime with μ = 0.465. We have
set |rr〉 as the initial state. On the other hand, if |11〉 is considered
as the initial state, the curve of the probability of |rr〉 is the same as
(a) (traditional Rydberg antiblockade regime) or (c) (modified RAB
regime).
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FIG. 12. (a1)–(c1) Optimal values of μ versus �(�,V ). (a2)–
(c2)] Fidelity of the scheme versus �(�,V ) with μ being optimal.
(d) Fidelity to reveal the optimal μ versus γ with parameters the same
as that in Figs. 10. (e)–(g) Fidelity of the optimal μ versus γ , and
the rest of the parameters are chosen the same as that in Fig. 10. For
each �(�,V , γ ), we scan 200 groups of μ from 0 to 1 and find the
top two fidelities. �0 and �0 are the same as � and � in Fig. 10, and
V0 = 2�0 are supposed.

completely in half period of Rabi oscillation. The role of
the unitary process which is competitive with the dissipative
process is decreased. And it was perhaps on this account that
the whole performance of the scheme was enhanced a little.
On the other hand, one can also find μ to further decrease the
probabilities from |rr〉 to |11〉. Nevertheless, the probability
of the process |11〉 → |rr〉, which is cooperative with the
dissipative process, would also be decreased at the same time,
and further reduce the whole performance of the scheme.
Besides, the oscillation frequency of Figs. 11(b) and 11(c)
is slightly faster than that of Figs. 11(a) and 11(d). That is, the
speed of the energy exchange (|11〉 ↔ |rr〉) of the modified
RAB regime is slightly quicker than that of the traditional one.
This may be the other reason for the improvement. The lowest
point of Fig. 10(a) corresponding to the optimal balance point
between the cooperative and competitive regimes.

D. Optimal μ for wide range of parameters

In practice, for a wide range of parameters �,�, V, and
γ , it is necessary to discuss the optimal values of μ. In
Figs. 12(a1)–12(c1), we plot the optimal values of μ versus
�(�,V ), from which one can find the one-to-one relationship
between �(�,V ) and μ. Besides, in Figs. 12(a2)–12(c2),
we plot the fidelity of the scheme versus � with μ being
optimal correspondingly. Since � and � can be optimized for
a given V based on the RAB condition, one can always find
the parameters to make the scheme optimal. However, this is
not the case for the spontaneous emission rate γ which is not
easily controlled. Fortunately, Figs. 12(d)–12(g) show that the

optimal μ is almost independent of γ . From Fig. 12, it is easy
to find that, with the optimal μ, the fidelity increases when �

increases or � decreases. The reason is that the scheme works
under the dispersive condition � � �.

V. DISCUSSIONS

A. Average fidelity with dissipation

The presented schemes are independent of the initial state in
the strict scene, which motivates us to use the average fidelity to
evaluate the performance of the logic gate. One of the common
definitions of average fidelity for quantum logic gate is [68]

F = 1

4π2

∫ 2π

0
dα

∫ 2π

0
dβF (α,β), (30)

where the initial state is set as (cos α|0〉1 +
sin α|1〉1) ⊗ (cos β|0〉2 + sin β|1〉2). And F (α,β) ≡
tr
√

ρ̂1/2(α,β)σ̂ (α,β)ρ̂1/2(α,β), in which σ̂ (α,β) is from
the ideal quantum logic gate, and ρ̂(α,β) is obtained from the
practical logic gate. In Fig. 13, we plot the average fidelity
of the quantum logic gate with approximate and accurate
cases, respectively, versus γ with the full Hamiltonian. For
the approximate quantum logic gates, the trend of the average
fidelity versus γ are mainly affected by two factors. One is
the length of the optimal evolution time (the longer evolution
time would enhance the influences of the dissipation). The
other is the perfectness of the optimal values from numerical
simulations in Figs. 3 and 4. For instance, when μ = 2.25,
the transformation |11〉 → 0.9979i|11〉 is realized at the time
t = 8π�/�2. While for μ = 8, |11〉 → −0.9997i|11〉 is
realized with the same evolution time. Thus, the average
fidelity of the latter case (μ = 7.75) should be better than that
of the former one (μ = 2.25), which is consistent with the
results in Fig. 13(a).

We use 1000 groups of pure states and mixed states as initial
states, respectively, to test the performance of the modified
RAB-regime-based state preparation scheme. As shown in

(i)
(ii)

(a) (b)

(c)

γ

1 
- 

F
1 

- 
F

γ

(d)

FIG. 13. (a) Average fidelity of the approximate controlled-
PHASE gates versus γ at the time 8π�/�2: (i) μ = 7.75, controlled-
− π

2 gate; (ii) μ = 2.25, controlled- π

2 gate. (b) Average fidelity of
the approximate controlled-NOT′ gate versus γ with μ = 7.5 at the
time 8π�/�2. (c) Average fidelity of the accurate controlled-NOT

gate versus γ with μ = 2 at the optimal time t = √
2π�/�2. (d)

Average fidelity of the accurate controlled-π gate. � = 10� is
assumed for the above simulations.
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FIG. 14. Average fidelity of the modified RAB-regime-based
scheme with 1000 groups of the initially mixed state and pure state,
respectively. The parameters are the same as those used in Fig. 10(b).

Fig. 14, one can find that the |S〉 state can be prepared with
high fidelity for these two cases.

B. Influence of the parameter fluctuations

In practical situations, the parameters would no doubt
fluctuate and influence the performance of the scheme. One
of the main considerations is the fluctuation of V induced by
atomic motion. Without loss of generality, we suppose the
fluctuation of V satisfying the Gauss distribution with mean
V0 and standard deviation δV . In Fig. 15, we use the full
Hamiltonian to simulate numerically the evolution process.
For a fixed δV , the mean value of the fidelity is calculated

as FA = (
∑j=m

j=1 F
j

max)/m, in which F
j

max is obtained from
Eq. (30). The results show the schemes corresponding to
Figs. 15(a) and 15(b) have better robustness on the fluctuation
of V than those corresponding to Figs. 15(c) and 15(d). For
the schemes corresponding to Figs. 15(a) and 15(b), there may
exist many values of V satisfying the scheme approximately,
which may induce the good robustness. Nevertheless, the RAB
condition of the schemes corresponding to Figs. 15(c) and
15(d) are unique. Besides, in Fig. 16, we plot the influences
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FIG. 15. Average fidelity of the modified RAB-regime-based
quantum logic gates versus scaled standard deviations of inhomoge-
neous parameters V with m = 100 at the optimal evolution time. (a)
The approximate controlled- − π

2 gate. (b) and (c) The controlled-NOT

gate with the schematic in Figs. 6(a) and 6(b). (d) The accurate
controlled-π gate. Parameters are chosen as � = 10�,γ = 10−4�,
(a) μ = 7.75, (b) μ = 7.5, (c) μ = 2, and (d) μ = √

4/3.
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FIG. 16. (a) and (b) Fidelities of the accurate controlled-PHASE

gate (without loss of generality, we here consider θ = π ) versus
the deviation of � (�) under Eq. (30). (c) and (d) Fidelities of the
accurate controlled-NOT gate versus deviation of � (�) with the
initial state |ψ0〉 = (0.1|00〉 + 0.1|01〉 + 0.4|10〉 + 0.1|11〉)/N (N is
the normalization coefficient). � = 10� and γ = 10−4� are used.

of the fluctuation of � and � on the accurate quantum
controlled-π and controlled-NOT gates, respectively. One can
see that the fluctuation of � has more influences than that of
�. The reason is that � is greater than � and thus the RAB
condition Eq. (5) is sensitive on the fluctuation of �.

VI. CONCLUSION

In conclusion, we modify the traditional simultaneous-
driving-based RAB regime through the effective dynamics
obtained from the second-order perturbation theory. In contrast
to the traditional simultaneous-driving-based antiblockade
regime, the modified one enriches the dynamics process
and applications in QIP, including approximate and accurate
quantum logic gates and dissipation-assisted quantum entan-
glement without adding any additional controls and resources.
Thus, the experimental complexity of the scheme is not
increased when the applications of the RAB with simultaneous
driving is improved and enriched. In the future, generalizing
the present modified RAB regime to Rydberg dressing atoms
[31–39] is one of our study goals.
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APPENDIX: DERIVATION OF EQ. (6)

The full Hamiltonian in the interaction picture can be
written as

Ĥ = �

2
[(|r〉1〈1| + |r〉2〈1|)e−i�t + H.c.] + V |rr〉〈rr|, (A1)

which can be transformed to

Ĥ = �

2
[ei�t (|01〉〈0r| + |11〉〈1r| + |10〉〈r0| + |11〉〈r1|

+ |r1〉〈rr| + |1r〉〈rr|) + H.c.] + V |rr〉〈rr|, (A2)

under the two-atom basis. After considering the modified
RAB condition in Eq. (5) and moving Hamiltonian (A2)
to the rotation frame with respect to Û

†
0 ≡ eiĤ0t with Ĥ0 =

2�|rr〉〈rr|, one can get

Ĥ ′ = �

2
[ei�t (|01〉〈0r| + |11〉〈1r| + |10〉〈r0| + |11〉〈r1|

+ |rr〉〈r1| + |rr〉〈1r|) + H.c.] − μ
�2

2�
|rr〉〈rr|, (A3)

in which the formula Ĥ ′ = −Ĥ0 + Û
†
0 Ĥ Û0 is used. Under

the large detuning regime � � �/2, one can get the effective
Hamiltonian as [61]

Ĥ ′
eff = �2

2�
(|11〉 + |rr〉)(〈rr| + 〈11|)

+ �2

4�
(|10〉〈10| + |01〉〈01|) − μ

�2

2�
|rr〉〈rr|, (A4)

which is the same as Eq. (6). Two things are worth mentioning
about this effective Hamiltonian. (i) We have discarded the
terms in single excitation subspace since they are not included
in the initial states and do not exchange energy with the states
in the other subspace. (ii) Strictly speaking, the dynamics
of the whole system is governed by e−iH0t e−iH ′

eff t [69].
However, our scheme requires that under the control of the
evolution operator e−iH ′

eff t , the amplitude of |rr〉 should be
zero approximately at the optimal evolution time since |rr〉 is
out of the computational subspace. In this case, the e−iH0t has
no influence and we thus do not consider it.
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